smart_augmentation/higher/smart_aug/test_dataug.py

219 lines
7.4 KiB
Python
Raw Normal View History

2020-01-24 14:32:37 -05:00
""" Script to run experiment on smart augmentation.
"""
2019-11-08 11:28:06 -05:00
from model import *
from dataug import *
2019-11-13 11:44:29 -05:00
#from utils import *
from train_utils import *
2019-11-08 11:28:06 -05:00
2020-01-24 14:32:37 -05:00
# Use available TF (see transformations.py)
tf_names = [
## Geometric TF ##
2019-12-02 06:37:19 -05:00
'Identity',
2020-01-13 10:59:32 -05:00
'FlipUD',
'FlipLR',
'Rotate',
'TranslateX',
'TranslateY',
'ShearX',
'ShearY',
2019-11-27 12:54:19 -05:00
## Color TF (Expect image in the range of [0, 1]) ##
2020-01-13 10:59:32 -05:00
'Contrast',
'Color',
'Brightness',
'Sharpness',
'Posterize',
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
2019-11-27 12:54:19 -05:00
#Color TF (Common mag scale)
#'+Contrast',
#'+Color',
#'+Brightness',
#'+Sharpness',
#'-Contrast',
#'-Color',
#'-Brightness',
#'-Sharpness',
#'=Posterize',
#'=Solarize',
2020-01-24 14:32:37 -05:00
## Bad Tranformations ##
# Bad Geometric TF #
2020-01-20 11:05:40 -05:00
#'BShearX',
#'BShearY',
#'BTranslateX-',
#'BTranslateX-',
#'BTranslateY',
#'BTranslateY-',
#'BadContrast',
#'BadBrightness',
#'Random',
#'RandBlend'
]
2020-01-24 14:32:37 -05:00
device = torch.device('cuda') #Select device to use
2019-11-08 11:28:06 -05:00
if device == torch.device('cpu'):
device_name = 'CPU'
else:
device_name = torch.cuda.get_device_name(device)
2020-01-30 11:21:25 -05:00
torch.backends.cudnn.benchmark = True #Faster if same input size #Not recommended for reproductibility
#Increase reproductibility
torch.manual_seed(0)
np.random.seed(0)
2019-11-08 11:28:06 -05:00
##########################################
if __name__ == "__main__":
2020-01-24 14:32:37 -05:00
#Task to perform
2019-12-04 12:28:32 -05:00
tasks={
#'classic',
'aug_model'
2020-01-29 06:36:12 -05:00
#'aug_dataset', #Moved to old code
2019-12-04 12:28:32 -05:00
}
2020-01-24 14:32:37 -05:00
#Parameters
2020-01-13 18:02:36 -05:00
n_inner_iter = 1
2020-01-30 11:21:25 -05:00
epochs = 150
2020-01-21 13:53:07 -05:00
dataug_epoch_start=0
optim_param={
'Meta':{
'optim':'Adam',
'lr':1e-2, #1e-2
},
'Inner':{
'optim': 'SGD',
'lr':1e-2, #1e-2
'momentum':0.9, #0.9
}
}
2019-11-08 11:28:06 -05:00
2020-01-24 14:32:37 -05:00
#Models
model = LeNet(3,10)
#model = ResNet(num_classes=10)
2020-01-30 11:21:25 -05:00
#import torchvision.models as models
#model=models.resnet18()
2019-12-04 12:28:32 -05:00
2019-11-08 11:28:06 -05:00
#### Classic ####
2019-12-04 12:28:32 -05:00
if 'classic' in tasks:
t0 = time.process_time()
model = model.to(device)
2019-12-04 12:28:32 -05:00
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
2020-01-30 11:21:25 -05:00
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=20)
#log= train_classic_higher(model=model, epochs=epochs)
2019-12-04 12:28:32 -05:00
exec_time=time.process_time() - t0
2019-12-04 12:28:32 -05:00
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Log": log}
2019-12-04 12:28:32 -05:00
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs".format(str(model),epochs)
2020-01-24 14:32:37 -05:00
with open("../res/log/%s.json" % filename, "w+") as f:
2019-12-04 12:28:32 -05:00
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
2020-01-24 14:32:37 -05:00
plot_res(log, fig_name="../res/"+filename)
2019-12-04 12:28:32 -05:00
print('Execution Time : %.00f '%(exec_time))
2019-12-04 12:28:32 -05:00
print('-'*9)
2020-01-29 06:36:12 -05:00
#### Augmented Model ####
if 'aug_model' in tasks:
t0 = time.process_time()
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
model = Higher_model(model) #run_dist_dataugV3
2020-01-30 11:21:25 -05:00
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
2020-01-29 06:36:12 -05:00
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_dist_dataugV3(model=aug_model,
epochs=epochs,
inner_it=n_inner_iter,
dataug_epoch_start=dataug_epoch_start,
opt_param=optim_param,
print_freq=1,
unsup_loss=1,
2020-01-30 11:21:25 -05:00
hp_opt=False,
save_sample_freq=None)
2020-01-29 06:36:12 -05:00
exec_time=time.process_time() - t0
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
with open("../res/log/%s.json" % filename, "w+") as f:
try:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
except:
print("Failed to save logs :",f.name)
try:
plot_resV2(log, fig_name="../res/"+filename, param_names=aug_model.TF_names())
except:
print("Failed to plot res")
print('Execution Time : %.00f '%(exec_time))
print('-'*9)
2019-12-04 12:28:32 -05:00
#### Augmented Dataset ####
2020-01-24 14:32:37 -05:00
'''
2019-12-04 12:28:32 -05:00
if 'aug_dataset' in tasks:
2019-12-04 12:58:11 -05:00
2019-12-04 12:28:32 -05:00
t0 = time.process_time()
2019-12-06 16:54:40 -05:00
#data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
#data_train_aug.augement_data(aug_copy=30)
#print(data_train_aug)
#dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True)
#xs, ys = next(iter(dl_train))
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
#model = model.to(device)
#print("{} on {} for {} epochs".format(str(model), device_name, epochs))
#log= train_classic(model=model, epochs=epochs, print_freq=10)
##log= train_classic_higher(model=model, epochs=epochs)
data_train_aug = AugmentedDatasetV2("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
data_train_aug.augement_data(aug_copy=1)
print(data_train_aug)
2019-12-06 16:54:40 -05:00
unsup_ratio = 5
dl_unsup = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE*unsup_ratio, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
2019-12-06 16:54:40 -05:00
unsup_xs, sup_xs, ys = next(iter(dl_unsup))
viz_sample_data(imgs=sup_xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
viz_sample_data(imgs=unsup_xs, labels=ys, fig_name='samples/data_sample_{}_unsup'.format(str(data_train_aug)))
model = model.to(device)
2019-12-04 12:28:32 -05:00
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
log= train_UDA(model=model, dl_unsup=dl_unsup, epochs=epochs, opt_param=optim_param, print_freq=10)
2019-12-04 12:28:32 -05:00
exec_time=time.process_time() - t0
2019-12-04 12:28:32 -05:00
####
print('-'*9)
times = [x["time"] for x in log]
2020-01-13 10:59:32 -05:00
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Param_names": data_train_aug._TF, "Log": log}
2019-12-04 12:28:32 -05:00
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{}-{} epochs".format(str(data_train_aug),str(model),epochs)
with open("res/log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
plot_res(log, fig_name="res/"+filename)
print('Execution Time : %.00f '%(exec_time))
2019-12-04 12:28:32 -05:00
print('-'*9)
2020-01-29 06:36:12 -05:00
'''