mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-03 11:40:46 +02:00
Fin script example
This commit is contained in:
parent
96ed9fe2ae
commit
5cd50ca9f3
4 changed files with 198 additions and 103 deletions
|
@ -919,25 +919,51 @@ class Augmented_model(nn.Module):
|
|||
self._data_augmentation=mode
|
||||
self._mods['data_aug'].augment(mode)
|
||||
|
||||
#### Encapsulation Meta Opt ####
|
||||
def start_bilevel_opt(self, inner_it, hp_list, opt_param, dl_val):
|
||||
""" Set up Augmented Model for bi-level optimisation.
|
||||
|
||||
Create and keep in Augmented Model the necessary objects for meta-optimisation.
|
||||
This allow for an almost transparent use by just hiding the bi-level optimisation (see ''run_dist_dataugV3'') by ::
|
||||
|
||||
model.step(loss)
|
||||
|
||||
See ''run_simple_smartaug'' for a complete example.
|
||||
|
||||
Args:
|
||||
inner_it (int): Number of inner iteration before a meta-step. 0 inner iteration means there's no meta-step.
|
||||
hp_list (list): List of hyper-parameters to be learned.
|
||||
opt_param (dict): Dictionnary containing optimizers parameters.
|
||||
dl_val (DataLoader): Data loader of validation data.
|
||||
"""
|
||||
|
||||
self._it_count=0
|
||||
self._in_it=inner_it
|
||||
|
||||
self._opt_param=opt_param
|
||||
#Inner Opt
|
||||
inner_opt = torch.optim.SGD(self._mods['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
|
||||
|
||||
#Validation data
|
||||
self._dl_val=dl_val
|
||||
self._dl_val_it=iter(dl_val)
|
||||
self._val_loss=0.
|
||||
|
||||
if inner_it==0 or len(hp_list)==0: #No meta-opt
|
||||
print("No meta optimization")
|
||||
|
||||
self._diffopt = model['model'].get_diffopt(
|
||||
#Inner Opt
|
||||
self._diffopt = self._mods['model'].get_diffopt(
|
||||
inner_opt,
|
||||
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
|
||||
track_higher_grads=False)
|
||||
|
||||
self._meta_opt=None
|
||||
|
||||
else: #Bi-level opt
|
||||
print("Bi-Level optimization")
|
||||
self._it_count=0
|
||||
self._in_it=inner_it
|
||||
|
||||
self._opt_param=opt_param
|
||||
#Inner Opt
|
||||
inner_opt = torch.optim.SGD(self._mods['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
|
||||
|
||||
self._diffopt = self._mods['model'].get_diffopt(
|
||||
inner_opt,
|
||||
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
|
||||
|
@ -945,15 +971,34 @@ class Augmented_model(nn.Module):
|
|||
|
||||
#Meta Opt
|
||||
self._meta_opt = torch.optim.Adam(hp_list, lr=opt_param['Meta']['lr'])
|
||||
|
||||
self._dl_val=dl_val
|
||||
self._dl_val_it=iter(dl_val)
|
||||
self._val_loss=0.
|
||||
|
||||
self._meta_opt.zero_grad()
|
||||
|
||||
def step(self, loss):
|
||||
""" Perform a model update.
|
||||
|
||||
''start_bilevel_opt'' method needs to be called once before using this method.
|
||||
|
||||
Perform a step of inner optimization and, if needed, a step of meta optimization.
|
||||
Replace ::
|
||||
|
||||
opt.zero_grad()
|
||||
loss.backward()
|
||||
opt.step()
|
||||
|
||||
val_loss=...
|
||||
val_loss.backward()
|
||||
meta_opt.step()
|
||||
adjust_param()
|
||||
detach()
|
||||
meta_opt.zero_grad()
|
||||
|
||||
By ::
|
||||
|
||||
model.step(loss)
|
||||
|
||||
Args:
|
||||
loss (Tensor): the training loss tensor.
|
||||
"""
|
||||
self._it_count+=1
|
||||
self._diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
|
||||
|
||||
|
@ -982,6 +1027,22 @@ class Augmented_model(nn.Module):
|
|||
|
||||
self._it_count=0
|
||||
|
||||
def val_loss(self):
|
||||
""" Get the validation loss.
|
||||
|
||||
Compute, if needed, the validation loss and returns it.
|
||||
|
||||
''start_bilevel_opt'' method needs to be called once before using this method.
|
||||
|
||||
Returns:
|
||||
(Tensor) Validation loss on a single batch of data.
|
||||
"""
|
||||
if(self._meta_opt): #Bilevel opti
|
||||
return self._val_loss
|
||||
else:
|
||||
return compute_vaLoss(model=self._mods['model'], dl_it=self._dl_val_it, dl=self._dl_val)
|
||||
|
||||
##########################
|
||||
|
||||
def train(self, mode=True):
|
||||
""" Set the module training mode.
|
||||
|
|
77
higher/smart_aug/smart_aug_example.py
Normal file
77
higher/smart_aug/smart_aug_example.py
Normal file
|
@ -0,0 +1,77 @@
|
|||
""" Example use of smart augmentation.
|
||||
|
||||
"""
|
||||
|
||||
from model import *
|
||||
from dataug import *
|
||||
from train_utils import *
|
||||
|
||||
# Use available TF (see transformations.py)
|
||||
tf_names = [
|
||||
## Geometric TF ##
|
||||
'Identity',
|
||||
'FlipUD',
|
||||
'FlipLR',
|
||||
'Rotate',
|
||||
'TranslateX',
|
||||
'TranslateY',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
|
||||
## Color TF (Expect image in the range of [0, 1]) ##
|
||||
'Contrast',
|
||||
'Color',
|
||||
'Brightness',
|
||||
'Sharpness',
|
||||
'Posterize',
|
||||
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
]
|
||||
|
||||
|
||||
device = torch.device('cuda') #Select device to use
|
||||
|
||||
if device == torch.device('cpu'):
|
||||
device_name = 'CPU'
|
||||
else:
|
||||
device_name = torch.cuda.get_device_name(device)
|
||||
|
||||
##########################################
|
||||
if __name__ == "__main__":
|
||||
|
||||
#Parameters
|
||||
n_inner_iter = 1
|
||||
epochs = 150
|
||||
optim_param={
|
||||
'Meta':{
|
||||
'optim':'Adam',
|
||||
'lr':1e-2, #1e-2
|
||||
},
|
||||
'Inner':{
|
||||
'optim': 'SGD',
|
||||
'lr':1e-2, #1e-2
|
||||
'momentum':0.9, #0.9
|
||||
}
|
||||
}
|
||||
|
||||
#Models
|
||||
model = LeNet(3,10)
|
||||
#model = ResNet(num_classes=10)
|
||||
#model = MobileNetV2(num_classes=10)
|
||||
#model = WideResNet(num_classes=10, wrn_size=32)
|
||||
|
||||
#Smart_aug initialisation
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
model = Higher_model(model) #run_dist_dataugV3
|
||||
aug_model = Augmented_model(
|
||||
Data_augV5(TF_dict=tf_dict,
|
||||
N_TF=3,
|
||||
mix_dist=0.8,
|
||||
fixed_prob=False,
|
||||
fixed_mag=False,
|
||||
shared_mag=False),
|
||||
model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
|
||||
# Training
|
||||
trained_model = run_simple_smartaug(model=aug_model, epochs=epochs, inner_it=n_inner_iter, opt_param=optim_param)
|
|
@ -73,12 +73,12 @@ if __name__ == "__main__":
|
|||
#Task to perform
|
||||
tasks={
|
||||
#'classic',
|
||||
#'aug_dataset', #Moved to old code
|
||||
'aug_model'
|
||||
#'aug_dataset', #Moved to old code
|
||||
}
|
||||
#Parameters
|
||||
n_inner_iter = 1
|
||||
epochs = 200
|
||||
epochs = 1
|
||||
dataug_epoch_start=0
|
||||
optim_param={
|
||||
'Meta':{
|
||||
|
@ -123,7 +123,47 @@ if __name__ == "__main__":
|
|||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
|
||||
|
||||
#### Augmented Model ####
|
||||
if 'aug_model' in tasks:
|
||||
t0 = time.process_time()
|
||||
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
model = Higher_model(model) #run_dist_dataugV3
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_simple_smartaug(model=aug_model, epochs=epochs, inner_it=n_inner_iter, opt_param=optim_param)
|
||||
log= run_dist_dataugV3(model=aug_model,
|
||||
epochs=epochs,
|
||||
inner_it=n_inner_iter,
|
||||
dataug_epoch_start=dataug_epoch_start,
|
||||
opt_param=optim_param,
|
||||
print_freq=1,
|
||||
unsup_loss=1,
|
||||
hp_opt=False)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||
with open("../res/log/%s.json" % filename, "w+") as f:
|
||||
try:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
except:
|
||||
print("Failed to save logs :",f.name)
|
||||
try:
|
||||
plot_resV2(log, fig_name="../res/"+filename, param_names=aug_model.TF_names())
|
||||
except:
|
||||
print("Failed to plot res")
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
|
||||
#### Augmented Dataset ####
|
||||
'''
|
||||
|
@ -175,45 +215,4 @@ if __name__ == "__main__":
|
|||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
'''
|
||||
|
||||
#### Augmented Model ####
|
||||
if 'aug_model' in tasks:
|
||||
t0 = time.process_time()
|
||||
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
model = Higher_model(model) #run_dist_dataugV3
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_simple_smartaug(model=aug_model, opt_param=optim_param)
|
||||
log= run_dist_dataugV3(model=aug_model,
|
||||
epochs=epochs,
|
||||
inner_it=n_inner_iter,
|
||||
dataug_epoch_start=dataug_epoch_start,
|
||||
opt_param=optim_param,
|
||||
print_freq=1,
|
||||
unsup_loss=1,
|
||||
hp_opt=False)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||
with open("res/log/%s.json" % filename, "w+") as f:
|
||||
try:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
except:
|
||||
print("Failed to save logs :",f.name)
|
||||
try:
|
||||
plot_resV2(log, fig_name="res/"+filename, param_names=aug_model.TF_names())
|
||||
except:
|
||||
print("Failed to plot res")
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
'''
|
|
@ -364,7 +364,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
|
|||
|
||||
return log
|
||||
|
||||
def run_simple_smartaug(model, opt_param, epochs=1, inner_it=1, print_freq=1, unsup_loss=1, save_sample_freq=None):
|
||||
def run_simple_smartaug(model, opt_param, epochs=1, inner_it=1, print_freq=1, unsup_loss=1):
|
||||
"""Simple training of an augmented model with higher.
|
||||
|
||||
This function is intended to be used with Augmented_model containing an Higher_model (see dataug.py).
|
||||
|
@ -380,13 +380,11 @@ def run_simple_smartaug(model, opt_param, epochs=1, inner_it=1, print_freq=1, un
|
|||
inner_it (int): Number of inner iteration before a meta-step. 0 inner iteration means there's no meta-step. (default: 1)
|
||||
print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1)
|
||||
unsup_loss (float): Proportion of the unsup_loss loss added to the supervised loss. If set to 0, the loss is only computed on augmented inputs. (default: 1)
|
||||
save_sample_freq (int): Number of epochs between saves of samples of data. If set to None, only one save would be done at the end of the training. (default: None)
|
||||
|
||||
|
||||
Returns:
|
||||
(list) Logs of training. Each items is a dict containing results of an epoch.
|
||||
(dict) A dictionary containing a whole state of the trained network.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
log = []
|
||||
|
||||
## Optimizers ##
|
||||
hyper_param = list(model['data_aug'].parameters())
|
||||
|
@ -407,55 +405,15 @@ def run_simple_smartaug(model, opt_param, epochs=1, inner_it=1, print_freq=1, un
|
|||
|
||||
tf = time.process_time()
|
||||
|
||||
if (save_sample_freq and epoch%save_sample_freq==0): #Data sample saving
|
||||
try:
|
||||
viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch))
|
||||
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch))
|
||||
except:
|
||||
print("Couldn't save samples epoch"+epoch)
|
||||
pass
|
||||
|
||||
val_loss = model._val_loss
|
||||
# Test model
|
||||
accuracy, test_loss =test(model)
|
||||
model.train()
|
||||
|
||||
#### Log ####
|
||||
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"mix_dist": model['data_aug']['mix_dist'].item(),
|
||||
"param": param,
|
||||
}
|
||||
log.append(data)
|
||||
#############
|
||||
#### Print ####
|
||||
if(print_freq and epoch%print_freq==0):
|
||||
print('-'*9)
|
||||
print('Epoch : %d/%d'%(epoch,epochs))
|
||||
print('Time : %.00f'%(tf - t0))
|
||||
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
||||
print('Accuracy :', max([x["acc"] for x in log]))
|
||||
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, 0))
|
||||
print('Train loss :',loss.item(), '/ val loss', model.val_loss().item())
|
||||
if not model['data_aug']._fixed_prob: print('TF Proba :', model['data_aug']['prob'].data)
|
||||
#print('proba grad',model['data_aug']['prob'].grad)
|
||||
if not model['data_aug']._fixed_mag: print('TF Mag :', model['data_aug']['mag'].data)
|
||||
#print('Mag grad',model['data_aug']['mag'].grad)
|
||||
if not model['data_aug']._fixed_mix: print('Mix:', model['data_aug']['mix_dist'].item())
|
||||
#print('Reg loss:', model['data_aug'].reg_loss().item())
|
||||
#############
|
||||
|
||||
#Data sample saving
|
||||
try:
|
||||
viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch))
|
||||
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch))
|
||||
except:
|
||||
print("Couldn't save finals samples")
|
||||
pass
|
||||
|
||||
return log
|
||||
return model['model'].state_dict()
|
Loading…
Add table
Add a link
Reference in a new issue