Ajout simplification pour entrainment

This commit is contained in:
Harle, Antoine (Contracteur) 2020-01-28 19:42:00 -05:00
parent 705ecd74b7
commit 96ed9fe2ae
3 changed files with 163 additions and 0 deletions

View file

@ -870,6 +870,8 @@ class Higher_model(nn.Module):
"""
return self._name
from utils import clip_norm
from train_utils import compute_vaLoss
class Augmented_model(nn.Module):
"""Wrapper for a Data Augmentation module and a model.
@ -917,6 +919,70 @@ class Augmented_model(nn.Module):
self._data_augmentation=mode
self._mods['data_aug'].augment(mode)
def start_bilevel_opt(self, inner_it, hp_list, opt_param, dl_val):
if inner_it==0 or len(hp_list)==0: #No meta-opt
print("No meta optimization")
self._diffopt = model['model'].get_diffopt(
inner_opt,
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
track_higher_grads=False)
else: #Bi-level opt
print("Bi-Level optimization")
self._it_count=0
self._in_it=inner_it
self._opt_param=opt_param
#Inner Opt
inner_opt = torch.optim.SGD(self._mods['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
self._diffopt = self._mods['model'].get_diffopt(
inner_opt,
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
track_higher_grads=True)
#Meta Opt
self._meta_opt = torch.optim.Adam(hp_list, lr=opt_param['Meta']['lr'])
self._dl_val=dl_val
self._dl_val_it=iter(dl_val)
self._val_loss=0.
self._meta_opt.zero_grad()
def step(self, loss):
self._it_count+=1
self._diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
if(self._meta_opt and self._it_count>0 and self._it_count%self._in_it==0): #Perform Meta step
#print("meta")
self._val_loss = compute_vaLoss(model=self._mods['model'], dl_it=self._dl_val_it, dl=self._dl_val) + self._mods['data_aug'].reg_loss()
#print_graph(val_loss) #to visualize computational graph
self._val_loss.backward()
torch.nn.utils.clip_grad_norm_(self._mods['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN
self._meta_opt.step()
#Adjust Hyper-parameters
self._mods['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
#For optimizer parameters, if needed
#for param_group in self._diffopt.param_groups:
# for param in list(self._opt_param['Inner'].keys())[1:]:
# param_group[param].data = param_group[param].data.clamp(min=1e-4)
#Reset gradients
self._diffopt.detach_()
self._mods['model'].detach_()
self._meta_opt.zero_grad()
self._it_count=0
def train(self, mode=True):
""" Set the module training mode.

View file

@ -187,6 +187,7 @@ if __name__ == "__main__":
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_simple_smartaug(model=aug_model, opt_param=optim_param)
log= run_dist_dataugV3(model=aug_model,
epochs=epochs,
inner_it=n_inner_iter,

View file

@ -363,3 +363,99 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
pass
return log
def run_simple_smartaug(model, opt_param, epochs=1, inner_it=1, print_freq=1, unsup_loss=1, save_sample_freq=None):
"""Simple training of an augmented model with higher.
This function is intended to be used with Augmented_model containing an Higher_model (see dataug.py).
Ex : Augmented_model(Data_augV5(...), Higher_model(model))
Training loss can either be computed directly from augmented inputs (unsup_loss=0).
However, it is recommended to use the mixed loss computation, which combine original and augmented inputs to compute the loss (unsup_loss>0).
Args:
model (nn.Module): Augmented model to train.
opt_param (dict): Dictionnary containing optimizers parameters.
epochs (int): Number of epochs to perform. (default: 1)
inner_it (int): Number of inner iteration before a meta-step. 0 inner iteration means there's no meta-step. (default: 1)
print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1)
unsup_loss (float): Proportion of the unsup_loss loss added to the supervised loss. If set to 0, the loss is only computed on augmented inputs. (default: 1)
save_sample_freq (int): Number of epochs between saves of samples of data. If set to None, only one save would be done at the end of the training. (default: None)
Returns:
(list) Logs of training. Each items is a dict containing results of an epoch.
"""
device = next(model.parameters()).device
log = []
## Optimizers ##
hyper_param = list(model['data_aug'].parameters())
model.start_bilevel_opt(inner_it=inner_it, hp_list=hyper_param, opt_param=opt_param, dl_val=dl_val)
model.train()
for epoch in range(1, epochs+1):
t0 = time.process_time()
for i, (xs, ys) in enumerate(dl_train):
xs, ys = xs.to(device), ys.to(device)
#Methode mixed
loss = mixed_loss(xs, ys, model, unsup_factor=unsup_loss)
model.step(loss) #(opt.zero_grad, loss.backward, opt.step) + automatic meta-optimisation
tf = time.process_time()
if (save_sample_freq and epoch%save_sample_freq==0): #Data sample saving
try:
viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch))
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch))
except:
print("Couldn't save samples epoch"+epoch)
pass
val_loss = model._val_loss
# Test model
accuracy, test_loss =test(model)
model.train()
#### Log ####
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
data={
"epoch": epoch,
"train_loss": loss.item(),
"val_loss": val_loss.item(),
"acc": accuracy,
"time": tf - t0,
"mix_dist": model['data_aug']['mix_dist'].item(),
"param": param,
}
log.append(data)
#############
#### Print ####
if(print_freq and epoch%print_freq==0):
print('-'*9)
print('Epoch : %d/%d'%(epoch,epochs))
print('Time : %.00f'%(tf - t0))
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
print('Accuracy :', max([x["acc"] for x in log]))
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, 0))
if not model['data_aug']._fixed_prob: print('TF Proba :', model['data_aug']['prob'].data)
#print('proba grad',model['data_aug']['prob'].grad)
if not model['data_aug']._fixed_mag: print('TF Mag :', model['data_aug']['mag'].data)
#print('Mag grad',model['data_aug']['mag'].grad)
if not model['data_aug']._fixed_mix: print('Mix:', model['data_aug']['mix_dist'].item())
#print('Reg loss:', model['data_aug'].reg_loss().item())
#############
#Data sample saving
try:
viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch))
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch))
except:
print("Couldn't save finals samples")
pass
return log