Tests consomation memoire/temps + methode KL divergence (UDA)

This commit is contained in:
Harle, Antoine (Contracteur) 2019-12-06 14:13:28 -05:00
parent b60610d9a7
commit d68034eec1
5 changed files with 214 additions and 37 deletions

View file

@ -6,7 +6,9 @@ if __name__ == "__main__":
files=[
#"res/good_TF_tests/log/Aug_mod(Data_augV5(Mix0.5-14TFx2-MagFxSh)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
#"res/good_TF_tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
"res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-150epochs(dataug:0)-0in_it-0.json",
"res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx3-MagFxSh)-LeNet)-150epochs(dataug:0)-10in_it-0.json",
"res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx3-MagFxSh)-LeNet)-150epochs(dataug:0)-10in_it-1.json",
"res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx3-MagFxSh)-LeNet)-150epochs(dataug:0)-10in_it-2.json",
#"res/log/Aug_mod(RandAugUDA(18TFx2-Mag1)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
]
@ -80,7 +82,7 @@ if __name__ == "__main__":
nb_run=3
accs = []
times = []
files = ["res/brutus-tests/log/Aug_mod(Data_augV5(Mix1.0-18TFx3-MagFxSh)-LeNet)-150epochs(dataug:0)-1in_it-%s.json"%str(run) for run in range(nb_run)]
files = ["res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-150epochs(dataug:0)-0in_it-%s.json"%str(run) for run in range(nb_run)]
for idx, file in enumerate(files):
#legend+=str(idx)+'-'+file+'\n'
@ -88,6 +90,7 @@ if __name__ == "__main__":
data = json.load(json_file)
accs.append(data['Accuracy'])
times.append(data['Time'][0])
print(idx, data['Accuracy'])
print(files[0], np.mean(accs), np.std(accs), np.mean(times))
#'''

View file

@ -4,9 +4,9 @@ import torch.nn as nn
import torch.nn.functional as F
## Basic CNN ##
class LeNet(nn.Module):
class LeNet_F(nn.Module):
def __init__(self, num_inp, num_out):
super(LeNet, self).__init__()
super(LeNet_F, self).__init__()
self._params = nn.ParameterDict({
'w1': nn.Parameter(torch.zeros(20, num_inp, 5, 5)),
'b1': nn.Parameter(torch.zeros(20)),
@ -52,6 +52,178 @@ class LeNet(nn.Module):
def __str__(self):
return "LeNet"
class LeNet(nn.Module):
def __init__(self, num_inp, num_out):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(num_inp, 20, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(20, 50, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(5*5*50, 500)
self.fc2 = nn.Linear(500, num_out)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def __str__(self):
return "LeNet"
## MobileNetv2 ##
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True)
)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self,
num_classes=1000,
width_mult=1.0,
inverted_residual_setting=None,
round_nearest=8,
block=None):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
"""
super(MobileNetV2, self).__init__()
if block is None:
block = InvertedResidual
input_channel = 32
last_channel = 1280
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(3, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.last_channel, num_classes),
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
x = self.features(x)
x = x.mean([2, 3])
x = self.classifier(x)
return x
def forward(self, x):
return self._forward_impl(x)
def __str__(self):
return "MobileNetV2"
## Wide ResNet ##
#https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
#https://github.com/arcelien/pba/blob/master/pba/wrn.py
@ -95,7 +267,6 @@ class NetworkBlock(nn.Module):
def forward(self, x):
return self.layer(x)
#wrn_size: 32 = WRN-28-2 ? 160 = WRN-28-10
class WideResNet(nn.Module):
#def __init__(self, depth, num_classes, widen_factor=1, dropRate=0.0):

View file

@ -69,21 +69,21 @@ if __name__ == "__main__":
#'aug_dataset',
'aug_model'
}
n_inner_iter = 1
epochs = 100
n_inner_iter = 0
epochs = 150
dataug_epoch_start=0
model = LeNet(3,10)
#model = MobileNetV2(num_classes=10)
#model = WideResNet(num_classes=10, wrn_size=32)
#### Classic ####
if 'classic' in tasks:
t0 = time.process_time()
model = LeNet(3,10).to(device)
#model = WideResNet(num_classes=10, wrn_size=16).to(device)
#model = Augmented_model(Data_augV3(mix_dist=0.0), LeNet(3,10)).to(device)
#model.augment(mode=False)
model = model.to(device)
print(str(model), 'on', device_name)
log= train_classic(model=model, epochs=epochs, print_freq=10)
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
log= train_classic(model=model, epochs=epochs, print_freq=1)
#log= train_classic_higher(model=model, epochs=epochs)
exec_time=time.process_time() - t0
@ -116,12 +116,9 @@ if __name__ == "__main__":
xs, ys = next(iter(dl_train))
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
model = LeNet(3,10).to(device)
#model = WideResNet(num_classes=10, wrn_size=16).to(device)
#model = Augmented_model(Data_augV3(mix_dist=0.0), LeNet(3,10)).to(device)
#model.augment(mode=False)
model = model.to(device)
print(str(model), 'on', device_name)
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
log= train_classic(model=model, epochs=epochs, print_freq=10)
#log= train_classic_higher(model=model, epochs=epochs)
@ -147,14 +144,13 @@ if __name__ == "__main__":
t0 = time.process_time()
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), model).to(device)
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.0, fixed_prob=True, fixed_mag=True, shared_mag=True), model).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), LeNet(3,10)).to(device)
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), WideResNet(num_classes=10, wrn_size=32)).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), WideResNet(num_classes=10, wrn_size=32)).to(device)
print(str(aug_model), 'on', device_name)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=1, KLdiv=True, loss_patience=None)
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None)
exec_time=time.process_time() - t0
####

View file

@ -63,7 +63,8 @@ def train_classic(model, epochs=1, print_freq=1):
features,labels = features.to(device), labels.to(device)
optim.zero_grad()
pred = model.forward(features)
logits = model.forward(features)
pred = F.log_softmax(logits, dim=1)
loss = F.cross_entropy(pred,labels)
loss.backward()
optim.step()
@ -125,7 +126,8 @@ def train_classic_higher(model, epochs=1):
features,labels = features.to(device), labels.to(device)
#optim.zero_grad()
pred = fmodel.forward(features)
logits = model.forward(features)
pred = F.log_softmax(logits, dim=1)
loss = F.cross_entropy(pred,labels)
#.backward()
#optim.step()
@ -550,7 +552,7 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
dl_val_it = iter(dl_val)
#if inner_it!=0:
meta_opt = torch.optim.Adam(model['data_aug'].parameters(), lr=1e-2)
meta_opt = torch.optim.Adam(model['data_aug'].parameters(), lr=1e-2) #lr=1e-2
inner_opt = torch.optim.SGD(model['model'].parameters(), lr=1e-2, momentum=0.9)
high_grad_track = True
@ -589,11 +591,10 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
# final_loss += loss*fmodel['data_aug']['prob'][tf_idx] #Take it in the forward function ?
#loss = final_loss
#KLdiv=False
if(not KLdiv):
#Methode uniforme
logits = fmodel(xs) # modified `params` can also be passed as a kwarg
loss = F.cross_entropy(logits, ys, reduction='none') # no need to call loss.backwards()
loss = F.cross_entropy(F.log_softmax(logits, dim=1), ys, reduction='none') # no need to call loss.backwards()
if fmodel._data_augmentation: #Weight loss
w_loss = fmodel['data_aug'].loss_weight()#.to(device)
@ -612,18 +613,15 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
aug_logits = fmodel(xs)
log_aug=F.log_softmax(aug_logits, dim=1)
#KL div w/ logits
aug_loss = sup_logits*(log_sup-log_aug)
aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug)
aug_loss=aug_loss.sum(dim=-1)
#aug_loss = F.kl_div(aug_logits, sup_logits, reduction='none') #Similarite predictions (distributions)
w_loss = fmodel['data_aug'].loss_weight()#.unsqueeze(dim=1).expand(-1,10) #Weight loss
w_loss = fmodel['data_aug'].loss_weight() #Weight loss
aug_loss = (w_loss * aug_loss).mean()
unsupp_coeff = 1
loss += aug_loss * unsupp_coeff
print('TF Proba :', model['data_aug']['prob'].data)
#to visualize computational graph
#print_graph(loss)
@ -637,11 +635,10 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
#print("meta")
#Peu utile si high_grad_track = False
val_loss = compute_vaLoss(model=fmodel, dl_it=dl_val_it, dl=dl_val) + fmodel['data_aug'].reg_loss()
#print_graph(val_loss)
val_loss.backward()
countcopy+=1
model_copy(src=fmodel, dst=model)
optim_copy(dopt=diffopt, opt=inner_opt)
@ -685,7 +682,7 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
print('TF Mag :', model['data_aug']['mag'].data)
#print('Mag grad',model['data_aug']['mag'].grad)
#print('Reg loss:', model['data_aug'].reg_loss().item())
print('Aug loss', aug_loss.item())
#print('Aug loss', aug_loss.item())
#############
#### Log ####
#print(type(model['data_aug']) is dataug.Data_augV5)

View file

@ -9,6 +9,16 @@ from torchviz import make_dot
import torch
import torch.nn.functional as F
import time
class timer():
def __init__(self):
self._start_time=time.time()
def exec_time(self):
end = time.time()
res = end-self._start_time
self._start_time=end
return res
def print_graph(PyTorch_obj, fig_name='graph'):
graph=make_dot(PyTorch_obj) #Loss give the whole graph