smart_augmentation/higher/test_dataug.py

204 lines
7 KiB
Python
Raw Normal View History

2019-11-08 11:28:06 -05:00
from model import *
from dataug import *
2019-11-13 11:44:29 -05:00
#from utils import *
from train_utils import *
2019-11-08 11:28:06 -05:00
tf_names = [
## Geometric TF ##
2019-12-02 06:37:19 -05:00
'Identity',
#'FlipUD',
#'FlipLR',
#'Rotate',
#'TranslateX',
#'TranslateY',
#'ShearX',
#'ShearY',
2019-11-27 12:54:19 -05:00
## Color TF (Expect image in the range of [0, 1]) ##
#'Contrast',
#'Color',
#'Brightness',
#'Sharpness',
#'Posterize',
#'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
2019-11-27 12:54:19 -05:00
#Color TF (Common mag scale)
#'+Contrast',
#'+Color',
#'+Brightness',
#'+Sharpness',
#'-Contrast',
#'-Color',
#'-Brightness',
#'-Sharpness',
#'=Posterize',
#'=Solarize',
2019-11-22 11:22:57 -05:00
#'BRotate',
#'BTranslateX',
#'BTranslateY',
#'BShearX',
#'BShearY',
2019-11-25 16:36:35 +00:00
#'BadTranslateX',
#'BadTranslateX_neg',
#'BadTranslateY',
#'BadTranslateY_neg',
2019-11-22 11:22:57 -05:00
#'BadColor',
#'BadSharpness',
#'BadContrast',
#'BadBrightness',
'Random',
#'RandBlend'
#Non fonctionnel
#'Auto_Contrast', #Pas opti pour des batch (Super lent)
#'Equalize',
]
2019-11-08 11:28:06 -05:00
device = torch.device('cuda')
if device == torch.device('cpu'):
device_name = 'CPU'
else:
device_name = torch.cuda.get_device_name(device)
##########################################
if __name__ == "__main__":
2019-12-04 12:28:32 -05:00
tasks={
#'classic',
#'aug_dataset',
'aug_model'
2019-12-04 12:28:32 -05:00
}
2019-12-06 16:54:40 -05:00
n_inner_iter = 1
epochs = 1
2019-11-08 11:28:06 -05:00
dataug_epoch_start=0
optim_param={
'Meta':{
'optim':'Adam',
'lr':1e-2, #1e-2
},
'Inner':{
'optim': 'SGD',
'lr':1e-2, #1e-2
'momentum':0.9, #0.9
}
}
2019-11-08 11:28:06 -05:00
model = LeNet(3,10)
#model = MobileNetV2(num_classes=10)
#model = ResNet(num_classes=10)
#model = WideResNet(num_classes=10, wrn_size=32)
2019-12-04 12:28:32 -05:00
2019-11-08 11:28:06 -05:00
#### Classic ####
2019-12-04 12:28:32 -05:00
if 'classic' in tasks:
t0 = time.process_time()
model = model.to(device)
2019-12-04 12:28:32 -05:00
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
#log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=10)
log= train_classic_higher(model=model, epochs=epochs)
2019-12-04 12:28:32 -05:00
exec_time=time.process_time() - t0
2019-12-04 12:28:32 -05:00
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Log": log}
2019-12-04 12:28:32 -05:00
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs".format(str(model),epochs)
with open("res/log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
plot_res(log, fig_name="res/"+filename)
print('Execution Time : %.00f '%(exec_time))
2019-12-04 12:28:32 -05:00
print('-'*9)
#### Augmented Dataset ####
if 'aug_dataset' in tasks:
2019-12-04 12:58:11 -05:00
2019-12-04 12:28:32 -05:00
t0 = time.process_time()
2019-12-06 16:54:40 -05:00
#data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
#data_train_aug.augement_data(aug_copy=30)
#print(data_train_aug)
#dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True)
#xs, ys = next(iter(dl_train))
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
#model = model.to(device)
#print("{} on {} for {} epochs".format(str(model), device_name, epochs))
#log= train_classic(model=model, epochs=epochs, print_freq=10)
##log= train_classic_higher(model=model, epochs=epochs)
data_train_aug = AugmentedDatasetV2("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
data_train_aug.augement_data(aug_copy=1)
print(data_train_aug)
2019-12-06 16:54:40 -05:00
unsup_ratio = 5
dl_unsup = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE*unsup_ratio, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
2019-12-06 16:54:40 -05:00
unsup_xs, sup_xs, ys = next(iter(dl_unsup))
viz_sample_data(imgs=sup_xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
viz_sample_data(imgs=unsup_xs, labels=ys, fig_name='samples/data_sample_{}_unsup'.format(str(data_train_aug)))
model = model.to(device)
2019-12-04 12:28:32 -05:00
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
log= train_UDA(model=model, dl_unsup=dl_unsup, epochs=epochs, opt_param=optim_param, print_freq=10)
2019-12-04 12:28:32 -05:00
exec_time=time.process_time() - t0
2019-12-04 12:28:32 -05:00
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Log": log}
2019-12-04 12:28:32 -05:00
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{}-{} epochs".format(str(data_train_aug),str(model),epochs)
with open("res/log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
plot_res(log, fig_name="res/"+filename)
print('Execution Time : %.00f '%(exec_time))
2019-12-04 12:28:32 -05:00
print('-'*9)
2019-11-08 16:50:02 -05:00
2019-12-04 12:28:32 -05:00
#### Augmented Model ####
if 'aug_model' in tasks:
t0 = time.process_time()
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), model).to(device)
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.5, fixed_prob=False, fixed_mag=True, shared_mag=True), model).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
2019-12-04 12:28:32 -05:00
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_dist_dataugV2(model=aug_model,
epochs=epochs,
inner_it=n_inner_iter,
dataug_epoch_start=dataug_epoch_start,
opt_param=optim_param,
print_freq=1,
KLdiv=True,
loss_patience=None)
2019-12-04 12:28:32 -05:00
exec_time=time.process_time() - t0
2019-12-04 12:28:32 -05:00
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Log": log}
2019-12-04 12:28:32 -05:00
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
2019-12-06 16:54:40 -05:00
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
2019-12-04 12:28:32 -05:00
with open("res/log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
plot_resV2(log, fig_name="res/"+filename, param_names=tf_names)
print('Execution Time : %.00f '%(exec_time))
2019-12-04 12:28:32 -05:00
print('-'*9)