mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
336 lines
13 KiB
Python
Executable file
336 lines
13 KiB
Python
Executable file
""" Utilities function for training.
|
|
|
|
"""
|
|
|
|
import torch
|
|
#import torch.optim
|
|
import torchvision
|
|
import higher
|
|
|
|
from datasets import *
|
|
from utils import *
|
|
|
|
def test(model):
|
|
"""Evaluate a model on test data.
|
|
|
|
Args:
|
|
model (nn.Module): Model to test.
|
|
|
|
Returns:
|
|
(float, Tensor) Returns the accuracy and test loss of the model.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
model.eval()
|
|
|
|
#for i, (features, labels) in enumerate(dl_test):
|
|
# features,labels = features.to(device), labels.to(device)
|
|
|
|
# pred = model.forward(features)
|
|
# return pred.argmax(dim=1).eq(labels).sum().item() / dl_test.batch_size * 100
|
|
|
|
correct = 0
|
|
total = 0
|
|
loss = []
|
|
with torch.no_grad():
|
|
for features, labels in dl_test:
|
|
features,labels = features.to(device), labels.to(device)
|
|
|
|
outputs = model(features)
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
total += labels.size(0)
|
|
correct += (predicted == labels).sum().item()
|
|
|
|
loss.append(F.cross_entropy(outputs, labels).item())
|
|
|
|
accuracy = 100 * correct / total
|
|
|
|
return accuracy, np.mean(loss)
|
|
|
|
def compute_vaLoss(model, dl_it, dl):
|
|
"""Evaluate a model on a batch of data.
|
|
|
|
Args:
|
|
model (nn.Module): Model to evaluate.
|
|
dl_it (Iterator): Data loader iterator.
|
|
dl (DataLoader): Data loader.
|
|
|
|
Returns:
|
|
(Tensor) Loss on a single batch of data.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
try:
|
|
xs, ys = next(dl_it)
|
|
except StopIteration: #Fin epoch val
|
|
dl_it = iter(dl)
|
|
xs, ys = next(dl_it)
|
|
xs, ys = xs.to(device), ys.to(device)
|
|
|
|
model.eval() #Validation sans transfornations !
|
|
return F.cross_entropy(F.log_softmax(model(xs), dim=1), ys)
|
|
|
|
def train_classic(model, opt_param, epochs=1, print_freq=1):
|
|
"""Classic training of a model.
|
|
|
|
Args:
|
|
model (nn.Module): Model to train.
|
|
opt_param (dict): Dictionnary containing optimizers parameters.
|
|
epochs (int): Number of epochs to perform. (default: 1)
|
|
print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1)
|
|
|
|
Returns:
|
|
(list) Logs of training. Each items is a dict containing results of an epoch.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
|
|
optim = torch.optim.SGD(model.parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
|
|
|
|
model.train()
|
|
dl_val_it = iter(dl_val)
|
|
log = []
|
|
for epoch in range(epochs):
|
|
#print_torch_mem("Start epoch")
|
|
t0 = time.process_time()
|
|
for i, (features, labels) in enumerate(dl_train):
|
|
#print_torch_mem("Start iter")
|
|
features,labels = features.to(device), labels.to(device)
|
|
|
|
optim.zero_grad()
|
|
logits = model.forward(features)
|
|
pred = F.log_softmax(logits, dim=1)
|
|
loss = F.cross_entropy(pred,labels)
|
|
loss.backward()
|
|
optim.step()
|
|
|
|
#### Tests ####
|
|
tf = time.process_time()
|
|
|
|
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
|
|
accuracy, _ =test(model)
|
|
model.train()
|
|
|
|
#### Print ####
|
|
if(print_freq and epoch%print_freq==0):
|
|
print('-'*9)
|
|
print('Epoch : %d/%d'%(epoch,epochs))
|
|
print('Time : %.00f'%(tf - t0))
|
|
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
|
print('Accuracy :', accuracy)
|
|
|
|
#### Log ####
|
|
data={
|
|
"epoch": epoch,
|
|
"train_loss": loss.item(),
|
|
"val_loss": val_loss.item(),
|
|
"acc": accuracy,
|
|
"time": tf - t0,
|
|
|
|
"param": None,
|
|
}
|
|
log.append(data)
|
|
|
|
return log
|
|
|
|
def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start=0, print_freq=1, KLdiv=1, hp_opt=False, save_sample_freq=None):
|
|
"""Training of an augmented model with higher.
|
|
|
|
This function is intended to be used with Augmented_model containing an Higher_model (see dataug.py).
|
|
Ex : Augmented_model(Data_augV5(...), Higher_model(model))
|
|
|
|
Training loss can either be computed directly from augmented inputs (KLdiv=0).
|
|
However, it is recommended to use the KLdiv loss computation, inspired from UDA, which combine original and augmented inputs to compute the loss (KLdiv>0).
|
|
See : https://github.com/google-research/uda
|
|
|
|
Args:
|
|
model (nn.Module): Augmented model to train.
|
|
opt_param (dict): Dictionnary containing optimizers parameters.
|
|
epochs (int): Number of epochs to perform. (default: 1)
|
|
inner_it (int): Number of inner iteration before a meta-step. 0 inner iteration means there's no meta-step. (default: 1)
|
|
dataug_epoch_start (int): Epoch when to start data augmentation. (default: 0)
|
|
print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1)
|
|
KLdiv (float): Proportion of the KLdiv loss added to the supervised loss. If set to 0, the loss is classicly computed on augmented inputs. (default: 1)
|
|
hp_opt (bool): Wether to learn inner optimizer parameters. (default: False)
|
|
save_sample_freq (int): Number of epochs between saves of samples of data. If set to None, only one save would be done at the end of the training. (default: None)
|
|
|
|
Returns:
|
|
(list) Logs of training. Each items is a dict containing results of an epoch.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
log = []
|
|
dl_val_it = iter(dl_val)
|
|
val_loss=None
|
|
|
|
high_grad_track = True
|
|
if inner_it == 0: #No HP optimization
|
|
high_grad_track=False
|
|
if dataug_epoch_start!=0: #Augmentation de donnee differee
|
|
model.augment(mode=False)
|
|
high_grad_track = False
|
|
|
|
## Optimizers ##
|
|
#Inner Opt
|
|
inner_opt = torch.optim.SGD(model['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
|
|
|
|
diffopt = model['model'].get_diffopt(
|
|
inner_opt,
|
|
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
|
|
track_higher_grads=high_grad_track)
|
|
|
|
#Meta Opt
|
|
hyper_param = list(model['data_aug'].parameters())
|
|
if hp_opt :
|
|
for param_group in diffopt.param_groups:
|
|
for param in list(opt_param['Inner'].keys())[1:]:
|
|
param_group[param]=torch.tensor(param_group[param]).to(device).requires_grad_()
|
|
hyper_param += [param_group[param]]
|
|
meta_opt = torch.optim.Adam(hyper_param, lr=opt_param['Meta']['lr']) #lr=1e-2
|
|
|
|
model.train()
|
|
meta_opt.zero_grad()
|
|
|
|
for epoch in range(1, epochs+1):
|
|
t0 = time.process_time()
|
|
|
|
for i, (xs, ys) in enumerate(dl_train):
|
|
xs, ys = xs.to(device), ys.to(device)
|
|
|
|
if(KLdiv<=0):
|
|
#Methode uniforme
|
|
logits = model(xs) # modified `params` can also be passed as a kwarg
|
|
loss = F.cross_entropy(F.log_softmax(logits, dim=1), ys, reduction='none') # no need to call loss.backwards()
|
|
|
|
if model._data_augmentation: #Weight loss
|
|
w_loss = model['data_aug'].loss_weight()#.to(device)
|
|
loss = loss * w_loss
|
|
loss = loss.mean()
|
|
|
|
else:
|
|
#Methode KL div
|
|
# Supervised loss (classic)
|
|
if model.is_augmenting() :
|
|
model.augment(mode=False)
|
|
sup_logits = model(xs)
|
|
model.augment(mode=True)
|
|
else:
|
|
sup_logits = model(xs)
|
|
log_sup=F.log_softmax(sup_logits, dim=1)
|
|
loss = F.cross_entropy(log_sup, ys)
|
|
|
|
# Unsupervised loss (KLdiv)
|
|
if model.is_augmenting() :
|
|
aug_logits = model(xs)
|
|
log_aug=F.log_softmax(aug_logits, dim=1)
|
|
aug_loss=0
|
|
w_loss = model['data_aug'].loss_weight() #Weight loss
|
|
|
|
#KL div w/ logits - Similarite predictions (distributions)
|
|
aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug)
|
|
aug_loss = aug_loss.sum(dim=-1)
|
|
aug_loss = (w_loss * aug_loss).mean()
|
|
aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean()
|
|
|
|
loss += aug_loss * KLdiv
|
|
|
|
#print_graph(loss) #to visualize computational graph
|
|
|
|
#t = time.process_time()
|
|
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
|
|
#print(len(model['model']['functional']._fast_params),"step", time.process_time()-t)
|
|
|
|
|
|
if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step
|
|
#print("meta")
|
|
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss()
|
|
#print_graph(val_loss) #to visualize computational graph
|
|
val_loss.backward()
|
|
|
|
torch.nn.utils.clip_grad_norm_(model['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN
|
|
|
|
meta_opt.step()
|
|
|
|
#Adjust Hyper-parameters
|
|
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
|
|
if hp_opt:
|
|
for param_group in diffopt.param_groups:
|
|
for param in list(opt_param['Inner'].keys())[1:]:
|
|
param_group[param].data = param_group[param].data.clamp(min=1e-4)
|
|
|
|
#Reset gradients
|
|
diffopt.detach_()
|
|
model['model'].detach_()
|
|
meta_opt.zero_grad()
|
|
|
|
tf = time.process_time()
|
|
|
|
if (save_sample_freq and epoch%save_sample_freq==0): #Data sample saving
|
|
try:
|
|
viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch))
|
|
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch))
|
|
except:
|
|
print("Couldn't save samples epoch"+epoch)
|
|
pass
|
|
|
|
|
|
if(not val_loss): #Compute val loss for logs
|
|
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
|
|
|
|
# Test model
|
|
accuracy, test_loss =test(model)
|
|
model.train()
|
|
|
|
#### Log ####
|
|
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
|
|
data={
|
|
"epoch": epoch,
|
|
"train_loss": loss.item(),
|
|
"val_loss": val_loss.item(),
|
|
"acc": accuracy,
|
|
"time": tf - t0,
|
|
|
|
"mix_dist": model['data_aug']['mix_dist'].item(),
|
|
"param": param,
|
|
}
|
|
if hp_opt : data["opt_param"]=[{'lr': p_grp['lr'].item(), 'momentum': p_grp['momentum'].item()} for p_grp in diffopt.param_groups]
|
|
log.append(data)
|
|
#############
|
|
#### Print ####
|
|
if(print_freq and epoch%print_freq==0):
|
|
print('-'*9)
|
|
print('Epoch : %d/%d'%(epoch,epochs))
|
|
print('Time : %.00f'%(tf - t0))
|
|
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
|
print('Accuracy :', max([x["acc"] for x in log]))
|
|
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
|
|
if not model['data_aug']._fixed_prob: print('TF Proba :', model['data_aug']['prob'].data)
|
|
#print('proba grad',model['data_aug']['prob'].grad)
|
|
if not model['data_aug']._fixed_mag: print('TF Mag :', model['data_aug']['mag'].data)
|
|
#print('Mag grad',model['data_aug']['mag'].grad)
|
|
if not model['data_aug']._fixed_mix: print('Mix:', model['data_aug']['mix_dist'].item())
|
|
#print('Reg loss:', model['data_aug'].reg_loss().item())
|
|
|
|
if hp_opt :
|
|
for param_group in diffopt.param_groups:
|
|
print('Opt param - lr:', param_group['lr'].item(),'- momentum:', param_group['momentum'].item())
|
|
#############
|
|
|
|
#Augmentation de donnee differee
|
|
if not model.is_augmenting() and (epoch == dataug_epoch_start):
|
|
print('Starting Data Augmention...')
|
|
dataug_epoch_start = epoch
|
|
model.augment(mode=True)
|
|
if inner_it != 0: #Rebuild diffopt if needed
|
|
high_grad_track = True
|
|
diffopt = model['model'].get_diffopt(
|
|
inner_opt,
|
|
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
|
|
track_higher_grads=high_grad_track)
|
|
|
|
|
|
#Data sample saving
|
|
try:
|
|
viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch))
|
|
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch))
|
|
except:
|
|
print("Couldn't save finals samples")
|
|
pass
|
|
|
|
return log
|