'Smart_aug' objective is to make data augmentation differentiable, thus allowing to learn its parameters, with 'Higher' objects, such as 'Data_aug' classes. The meta-learning of the data augmentation parameter is performed jointly with the training of the model. Thus it minimize the overhead compared to other data augmentation learning techniques.
Find a file
2020-01-27 17:29:25 -05:00
FAR-HO Changement permission fichiers + Simplification utilisation Augmented_dataset 2019-12-04 14:48:11 -05:00
Gradient-Descent-The-Ultimate-Optimizer Changement permission fichiers + Simplification utilisation Augmented_dataset 2019-12-04 14:48:11 -05:00
higher Evite redefinition inutile de prob dist + Fix mineur transformation 2020-01-27 17:29:25 -05:00
PBA Changement permission fichiers + Simplification utilisation Augmented_dataset 2019-12-04 14:48:11 -05:00
salvador Brutus 2020-01-13 18:02:36 -05:00
UDA Changement permission fichiers + Simplification utilisation Augmented_dataset 2019-12-04 14:48:11 -05:00
.gitignore Test doxygen 2020-01-24 15:10:08 -05:00
README.md Ajout d'un Readme 2020-01-24 15:19:49 -05:00


'Smart_aug' is module to make data_augmentation differentiable, thus allowing to learn its parameters, with 'Data_aug' classes.

Requirements and Installation

  • Python version >= 3.5
  • PyTorch version >= 1.3
  • Higher version >=

Example Usage

Look to 'test_dataug.py'