My Project
|
Variables | |
list | tf_names |
device = torch.device('cuda') | |
string | device_name = 'CPU' |
dictionary | tasks |
int | n_inner_iter = 1 |
int | epochs = 200 |
int | dataug_epoch_start = 0 |
dictionary | optim_param |
model = LeNet(3,10) | |
t0 = time.process_time() | |
Classic ####. More... | |
log = train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=1) | |
exec_time = time.process_time() - t0 | |
list | times = [x["time"] for x in log] |
dictionary | out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Log": log} |
string | filename = "{}-{} epochs".format(str(model),epochs) |
f | |
indent | |
fig_name | |
dictionary | tf_dict = {k: TF.TF_dict[k] for k in tf_names} |
aug_model = Augmented_model(Data_augV7(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device) | |
param_names | |
Script to run experiment on smart augmentation.
dictionary test_dataug.optim_param |
test_dataug.t0 = time.process_time() |
Classic ####.
Augmented Dataset ####.
Augmented Model ####