My Project
Variables
test_dataug Namespace Reference

Variables

list tf_names
 
 device = torch.device('cuda')
 
string device_name = 'CPU'
 
dictionary tasks
 
int n_inner_iter = 1
 
int epochs = 200
 
int dataug_epoch_start = 0
 
dictionary optim_param
 
 model = LeNet(3,10)
 
 t0 = time.process_time()
 Classic ####. More...
 
 log = train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=1)
 
 exec_time = time.process_time() - t0
 
list times = [x["time"] for x in log]
 
dictionary out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Log": log}
 
string filename = "{}-{} epochs".format(str(model),epochs)
 
 f
 
 indent
 
 fig_name
 
dictionary tf_dict = {k: TF.TF_dict[k] for k in tf_names}
 
 aug_model = Augmented_model(Data_augV7(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
 
 param_names
 

Detailed Description

Script to run experiment on smart augmentation.

Variable Documentation

◆ optim_param

dictionary test_dataug.optim_param
Initial value:
1 = {
2  'Meta':{
3  'optim':'Adam',
4  'lr':1e-2, #1e-2
5  },
6  'Inner':{
7  'optim': 'SGD',
8  'lr':1e-2, #1e-2
9  'momentum':0.9, #0.9
10  }
11  }

◆ t0

test_dataug.t0 = time.process_time()

Classic ####.

Augmented Dataset ####.

Augmented Model ####

◆ tasks

dictionary test_dataug.tasks
Initial value:
1 = {
2  #'classic',
3  #'aug_dataset', #Moved to old code
4  'aug_model'
5  }