mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
Memory Usage
This commit is contained in:
parent
fcd0217d54
commit
cdeca24776
1 changed files with 18 additions and 5 deletions
|
@ -74,12 +74,12 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
#Task to perform
|
#Task to perform
|
||||||
tasks={
|
tasks={
|
||||||
#'classic',
|
'classic',
|
||||||
'aug_model'
|
#'aug_model'
|
||||||
}
|
}
|
||||||
#Parameters
|
#Parameters
|
||||||
n_inner_iter = 1
|
n_inner_iter = 1
|
||||||
epochs = 10
|
epochs = 2
|
||||||
dataug_epoch_start=0
|
dataug_epoch_start=0
|
||||||
optim_param={
|
optim_param={
|
||||||
'Meta':{
|
'Meta':{
|
||||||
|
@ -112,10 +112,16 @@ if __name__ == "__main__":
|
||||||
#log= train_classic_higher(model=model, epochs=epochs)
|
#log= train_classic_higher(model=model, epochs=epochs)
|
||||||
|
|
||||||
exec_time=time.process_time() - t0
|
exec_time=time.process_time() - t0
|
||||||
|
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved()
|
||||||
####
|
####
|
||||||
print('-'*9)
|
print('-'*9)
|
||||||
times = [x["time"] for x in log]
|
times = [x["time"] for x in log]
|
||||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Log": log}
|
out = {"Accuracy": max([x["acc"] for x in log]),
|
||||||
|
"Time": (np.mean(times),np.std(times), exec_time),
|
||||||
|
'Optimizer': optim_param['Inner'],
|
||||||
|
"Device": device_name,
|
||||||
|
"Memory": max_cached,
|
||||||
|
"Log": log}
|
||||||
print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||||
filename = "{}-{} epochs".format(model_name,epochs)
|
filename = "{}-{} epochs".format(model_name,epochs)
|
||||||
with open("../res/log/%s.json" % filename, "w+") as f:
|
with open("../res/log/%s.json" % filename, "w+") as f:
|
||||||
|
@ -156,10 +162,17 @@ if __name__ == "__main__":
|
||||||
save_sample_freq=None)
|
save_sample_freq=None)
|
||||||
|
|
||||||
exec_time=time.process_time() - t0
|
exec_time=time.process_time() - t0
|
||||||
|
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved()
|
||||||
####
|
####
|
||||||
print('-'*9)
|
print('-'*9)
|
||||||
times = [x["time"] for x in log]
|
times = [x["time"] for x in log]
|
||||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
out = {"Accuracy": max([x["acc"] for x in log]),
|
||||||
|
"Time": (np.mean(times),np.std(times), exec_time),
|
||||||
|
'Optimizer': optim_param,
|
||||||
|
"Device": device_name,
|
||||||
|
"Memory": max_cached,
|
||||||
|
"Param_names": aug_model.TF_names(),
|
||||||
|
"Log": log}
|
||||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||||
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||||
with open("../res/log/%s.json" % filename, "w+") as f:
|
with open("../res/log/%s.json" % filename, "w+") as f:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue