mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
192 lines
No EOL
5.7 KiB
Python
Executable file
192 lines
No EOL
5.7 KiB
Python
Executable file
""" Script to run experiment on smart augmentation.
|
|
|
|
"""
|
|
import sys
|
|
from LeNet import *
|
|
from dataug import *
|
|
#from utils import *
|
|
from train_utils import *
|
|
|
|
# Use available TF (see transformations.py)
|
|
tf_names = [
|
|
## Geometric TF ##
|
|
'Identity',
|
|
'FlipUD',
|
|
'FlipLR',
|
|
#'Rotate',
|
|
#'TranslateX',
|
|
#'TranslateY',
|
|
#'ShearX',
|
|
#'ShearY',
|
|
|
|
## Color TF (Expect image in the range of [0, 1]) ##
|
|
#'Contrast',
|
|
#'Color',
|
|
#'Brightness',
|
|
#'Sharpness',
|
|
#'Posterize',
|
|
#'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
|
|
|
#Color TF (Common mag scale)
|
|
#'+Contrast',
|
|
#'+Color',
|
|
#'+Brightness',
|
|
#'+Sharpness',
|
|
#'-Contrast',
|
|
#'-Color',
|
|
#'-Brightness',
|
|
#'-Sharpness',
|
|
#'=Posterize',
|
|
#'=Solarize',
|
|
|
|
## Bad Tranformations ##
|
|
# Bad Geometric TF #
|
|
#'BShearX',
|
|
#'BShearY',
|
|
#'BTranslateX-',
|
|
#'BTranslateX-',
|
|
#'BTranslateY',
|
|
#'BTranslateY-',
|
|
|
|
#'BadContrast',
|
|
#'BadBrightness',
|
|
|
|
#'Random',
|
|
#'RandBlend'
|
|
]
|
|
|
|
|
|
device = torch.device('cuda') #Select device to use
|
|
|
|
if device == torch.device('cpu'):
|
|
device_name = 'CPU'
|
|
else:
|
|
device_name = torch.cuda.get_device_name(device)
|
|
|
|
torch.backends.cudnn.benchmark = True #Faster if same input size #Not recommended for reproductibility
|
|
|
|
#Increase reproductibility
|
|
torch.manual_seed(0)
|
|
np.random.seed(0)
|
|
|
|
##########################################
|
|
if __name__ == "__main__":
|
|
|
|
#Task to perform
|
|
tasks={
|
|
'classic',
|
|
#'aug_model'
|
|
}
|
|
#Parameters
|
|
n_inner_iter = 1
|
|
epochs = 2
|
|
dataug_epoch_start=0
|
|
optim_param={
|
|
'Meta':{
|
|
'optim':'Adam',
|
|
'lr':1e-2, #1e-2
|
|
},
|
|
'Inner':{
|
|
'optim': 'SGD',
|
|
'lr':1e-2, #1e-2
|
|
'momentum':0.9, #0.9
|
|
}
|
|
}
|
|
|
|
#Models
|
|
#model = LeNet(3,10)
|
|
#model = ResNet(num_classes=10)
|
|
import torchvision.models as models
|
|
#model=models.resnet18()
|
|
model_name = 'resnet18' #'wide_resnet50_2' #'resnet18' #str(model)
|
|
model = getattr(models.resnet, model_name)(pretrained=False)
|
|
|
|
#### Classic ####
|
|
if 'classic' in tasks:
|
|
t0 = time.process_time()
|
|
model = model.to(device)
|
|
|
|
|
|
print("{} on {} for {} epochs".format(model_name, device_name, epochs))
|
|
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=1)
|
|
#log= train_classic_higher(model=model, epochs=epochs)
|
|
|
|
exec_time=time.process_time() - t0
|
|
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved()
|
|
####
|
|
print('-'*9)
|
|
times = [x["time"] for x in log]
|
|
out = {"Accuracy": max([x["acc"] for x in log]),
|
|
"Time": (np.mean(times),np.std(times), exec_time),
|
|
'Optimizer': optim_param['Inner'],
|
|
"Device": device_name,
|
|
"Memory": max_cached,
|
|
"Log": log}
|
|
print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
|
filename = "{}-{} epochs".format(model_name,epochs)
|
|
with open("../res/log/%s.json" % filename, "w+") as f:
|
|
try:
|
|
json.dump(out, f, indent=True)
|
|
print('Log :\"',f.name, '\" saved !')
|
|
except:
|
|
print("Failed to save logs :",f.name)
|
|
print(sys.exc_info()[1])
|
|
|
|
try:
|
|
plot_resV2(log, fig_name="../res/"+filename)
|
|
except:
|
|
print("Failed to plot res")
|
|
print(sys.exc_info()[1])
|
|
|
|
print('Execution Time : %.00f '%(exec_time))
|
|
print('-'*9)
|
|
|
|
#### Augmented Model ####
|
|
if 'aug_model' in tasks:
|
|
t0 = time.process_time()
|
|
|
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
|
model = Higher_model(model, model_name) #run_dist_dataugV3
|
|
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
|
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
|
|
|
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
|
log= run_dist_dataugV3(model=aug_model,
|
|
epochs=epochs,
|
|
inner_it=n_inner_iter,
|
|
dataug_epoch_start=dataug_epoch_start,
|
|
opt_param=optim_param,
|
|
print_freq=1,
|
|
unsup_loss=1,
|
|
hp_opt=False,
|
|
save_sample_freq=None)
|
|
|
|
exec_time=time.process_time() - t0
|
|
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved()
|
|
####
|
|
print('-'*9)
|
|
times = [x["time"] for x in log]
|
|
out = {"Accuracy": max([x["acc"] for x in log]),
|
|
"Time": (np.mean(times),np.std(times), exec_time),
|
|
'Optimizer': optim_param,
|
|
"Device": device_name,
|
|
"Memory": max_cached,
|
|
"Param_names": aug_model.TF_names(),
|
|
"Log": log}
|
|
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
|
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
|
with open("../res/log/%s.json" % filename, "w+") as f:
|
|
try:
|
|
json.dump(out, f, indent=True)
|
|
print('Log :\"',f.name, '\" saved !')
|
|
except:
|
|
print("Failed to save logs :",f.name)
|
|
print(sys.exc_info()[1])
|
|
try:
|
|
plot_resV2(log, fig_name="../res/"+filename, param_names=aug_model.TF_names())
|
|
except:
|
|
print("Failed to plot res")
|
|
print(sys.exc_info()[1])
|
|
|
|
print('Execution Time : %.00f '%(exec_time))
|
|
print('-'*9) |