Fix Translate + TF loader

This commit is contained in:
Harle, Antoine (Contracteur) 2020-02-14 13:57:17 -05:00
parent 79de0191a8
commit b170af076f
9 changed files with 674 additions and 40 deletions

View file

@ -8,6 +8,7 @@ from dataug import *
from train_utils import *
# Use available TF (see transformations.py)
'''
tf_names = [
## Geometric TF ##
'Identity',
@ -57,7 +58,8 @@ tf_names = [
#'Random',
#'RandBlend'
]
'''
TF_loader=TF_loader()
device = torch.device('cuda') #Select device to use
@ -77,12 +79,12 @@ if __name__ == "__main__":
#Task to perform
tasks={
'classic',
#'aug_model'
#'classic',
'aug_model'
}
#Parameters
n_inner_iter = 1
epochs = 200
epochs = 20
dataug_epoch_start=0
optim_param={
'Meta':{
@ -91,11 +93,11 @@ if __name__ == "__main__":
},
'Inner':{
'optim': 'SGD',
'lr':1e-1, #1e-2/1e-1
'lr':1e-1, #1e-2/1e-1 (ResNet)
'momentum':0.9, #0.9
'decay':0.0005, #0.0005
'nesterov':True,
'scheduler':'exponential', #None, 'cosine', 'multiStep', 'exponential'
'scheduler':'cosine', #None, 'cosine', 'multiStep', 'exponential'
}
}
@ -137,7 +139,7 @@ if __name__ == "__main__":
print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs".format(model_name,epochs)
#print("RandAugment-",model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
#filename = "RandAugment(N{}-M{:.2f})-{}-{} epochs".format(rand_aug['N'],rand_aug['M'],model_name,epochs)
#filename = "RandAugment(N{}-M{:.2f})-{}-{} epochs".format(rand_aug['N'],rand_aug['M'],model_name,epochs)+'-cosine'
with open("../res/log/%s.json" % filename, "w+") as f:
try:
json.dump(out, f, indent=True)
@ -157,13 +159,23 @@ if __name__ == "__main__":
#### Augmented Model ####
if 'aug_model' in tasks:
tf_config='../config/base_tf_config.json'
tf_dict, tf_ignore_mag =TF_loader.load_TF_dict(tf_config)
#tf_dict = {k: TF_dict[k] for k in tf_names}
torch.cuda.reset_max_memory_allocated() #reset_peak_stats
torch.cuda.reset_max_memory_cached() #reset_peak_stats
t0 = time.perf_counter()
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
model = Higher_model(model, model_name) #run_dist_dataugV3
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.5, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
aug_model = Augmented_model(
Data_augV5(TF_dict=tf_dict,
N_TF=3,
mix_dist=0.5,
fixed_prob=False,
fixed_mag=False,
shared_mag=False,
TF_ignore_mag=tf_ignore_mag), model).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
@ -175,7 +187,7 @@ if __name__ == "__main__":
print_freq=1,
unsup_loss=1,
hp_opt=False,
save_sample_freq=None)
save_sample_freq=0)
exec_time=time.perf_counter() - t0
max_allocated = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0)
@ -188,6 +200,7 @@ if __name__ == "__main__":
'Optimizer': optim_param,
"Device": device_name,
"Memory": [max_allocated, max_cached],
"TF_config": tf_config,
"Param_names": aug_model.TF_names(),
"Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])