diff --git a/higher/config/bad_tf_config.json b/higher/config/bad_tf_config.json new file mode 100644 index 0000000..9f25c08 --- /dev/null +++ b/higher/config/bad_tf_config.json @@ -0,0 +1,193 @@ +[ + { + "name": "Identity", + "function": "identity" + }, + { + "name": "FlipUD", + "function": "flip", + "param": { + "axis": "Y" + } + }, + { + "name": "FlipLR", + "function": "flip", + "param": { + "axis": "X" + } + }, + { + "name": "Rotate", + "function": "rotate", + "param": { + "min": null, + "max": 30, + "invScale": false + } + }, + { + "name": "TranslateX", + "function": "translate", + "param": { + "axis": "X", + "min": null, + "max": 0.33, + "absolute": false, + "invScale": false + } + }, + { + "name": "TranslateY", + "function": "translate", + "param": { + "axis": "Y", + "min": null, + "max": 0.33, + "absolute": false, + "invScale": false + } + }, + { + "name": "ShearX", + "function": "shear", + "param": { + "axis": "X", + "min": null, + "max": 0.3, + "absolute": true, + "invScale": false + } + }, + { + "name": "ShearY", + "function": "shear", + "param": { + "axis": "Y", + "min": null, + "max": 0.3, + "absolute": true, + "invScale": false + } + }, + { + "name": "Contrast", + "function": "contrast", + "param": { + "min": 0.1, + "max": 1.9, + "invScale": false + } + }, + { + "name": "Color", + "function": "color", + "param": { + "min": 0.1, + "max": 1.9, + "invScale": false + } + }, + { + "name": "Brightness", + "function": "brightness", + "param": { + "min": 0.1, + "max": 1.9, + "invScale": false + } + }, + { + "name": "Sharpness", + "function": "sharpness", + "param": { + "min": 0.1, + "max": 1.9, + "invScale": false + } + }, + { + "name": "Posterize", + "function": "posterize", + "param": { + "min": 4.0, + "max": 8.0, + "invScale": false + } + }, + { + "name": "Solarize", + "function": "solarize", + "param": { + "min": 0.00390625, + "max": 1.0, + "invScale": false + } + }, + { + "name": "BTranslateX", + "function": "translate", + "param": { + "axis": "X", + "min": 25, + "max": 30, + "absolute": true, + "invScale": false + } + }, + { + "name": "BTranslateX-", + "function": "translate", + "param": { + "axis": "X", + "min": -25, + "max": -30, + "absolute": true, + "invScale": false + } + }, + { + "name": "BTranslateY", + "function": "translate", + "param": { + "axis": "Y", + "min": 25, + "max": 30, + "absolute": true, + "invScale": false + } + }, + { + "name": "BTranslateY-", + "function": "translate", + "param": { + "axis": "Y", + "min": -25, + "max": -30, + "absolute": true, + "invScale": false + } + }, + { + "name": "BShearX", + "function": "shear", + "param": { + "axis": "X", + "min": 0.9, + "max": 1.2, + "absolute": true, + "invScale": false + } + }, + { + "name": "BShearY", + "function": "shear", + "param": { + "axis": "Y", + "min": 0.9, + "max": 1.2, + "absolute": true, + "invScale": false + } + } +] diff --git a/higher/config/base_tf_config.json b/higher/config/base_tf_config.json new file mode 100644 index 0000000..a8967ac --- /dev/null +++ b/higher/config/base_tf_config.json @@ -0,0 +1,127 @@ +[ + { + "name": "Identity", + "function": "identity" + }, + { + "name": "FlipUD", + "function": "flip", + "param": { + "axis": "Y" + } + }, + { + "name": "FlipLR", + "function": "flip", + "param": { + "axis": "X" + } + }, + { + "name": "Rotate", + "function": "rotate", + "param": { + "min": null, + "max": 30, + "invScale": false + } + }, + { + "name": "TranslateX", + "function": "translate", + "param": { + "axis": "X", + "min": null, + "max": 0.33, + "absolute": false, + "invScale": false + } + }, + { + "name": "TranslateY", + "function": "translate", + "param": { + "axis": "Y", + "min": null, + "max": 0.33, + "absolute": false, + "invScale": false + } + }, + { + "name": "ShearX", + "function": "shear", + "param": { + "axis": "X", + "min": null, + "max": 0.3, + "absolute": true, + "invScale": false + } + }, + { + "name": "ShearY", + "function": "shear", + "param": { + "axis": "Y", + "min": null, + "max": 0.3, + "absolute": true, + "invScale": false + } + }, + { + "name": "Contrast", + "function": "contrast", + "param": { + "min": 0.1, + "max": 1.9, + "invScale": false + } + }, + { + "name": "Color", + "function": "color", + "param": { + "min": 0.1, + "max": 1.9, + "invScale": false + } + }, + { + "name": "Brightness", + "function": "brightness", + "param": { + "min": 0.1, + "max": 1.9, + "invScale": false + } + }, + { + "name": "Sharpness", + "function": "sharpness", + "param": { + "min": 0.1, + "max": 1.9, + "invScale": false + } + }, + { + "name": "Posterize", + "function": "posterize", + "param": { + "min": 4.0, + "max": 8.0, + "invScale": false + } + }, + { + "name": "Solarize", + "function": "solarize", + "param": { + "min": 0.00390625, + "max": 1.0, + "invScale": false + } + } +] diff --git a/higher/config/invScale_tf_config.json b/higher/config/invScale_tf_config.json new file mode 100644 index 0000000..09520c8 --- /dev/null +++ b/higher/config/invScale_tf_config.json @@ -0,0 +1,163 @@ +[ + { + "name": "Identity", + "function": "identity" + }, + { + "name": "FlipUD", + "function": "flip", + "param": { + "axis": "Y" + } + }, + { + "name": "FlipLR", + "function": "flip", + "param": { + "axis": "X" + } + }, + { + "name": "Rotate", + "function": "rotate", + "param": { + "min": null, + "max": 30, + "invScale": false + } + }, + { + "name": "TranslateX", + "function": "translate", + "param": { + "axis": "X", + "min": null, + "max": 0.33, + "absolute": false, + "invScale": false + } + }, + { + "name": "TranslateY", + "function": "translate", + "param": { + "axis": "Y", + "min": null, + "max": 0.33, + "absolute": false, + "invScale": false + } + }, + { + "name": "ShearX", + "function": "shear", + "param": { + "axis": "X", + "min": null, + "max": 0.3, + "absolute": true, + "invScale": false + } + }, + { + "name": "ShearY", + "function": "shear", + "param": { + "axis": "Y", + "min": null, + "max": 0.3, + "absolute": true, + "invScale": false + } + }, + { + "name": "+Contrast", + "function": "contrast", + "param": { + "min": 1.0, + "max": 1.9, + "invScale": false + } + }, + { + "name": "+Color", + "function": "color", + "param": { + "min": 1.0, + "max": 1.9, + "invScale": false + } + }, + { + "name": "+Brightness", + "function": "brightness", + "param": { + "min": 1.0, + "max": 1.9, + "invScale": false + } + }, + { + "name": "+Sharpness", + "function": "sharpness", + "param": { + "min": 1.0, + "max": 1.9, + "invScale": false + } + }, + { + "name": "-Contrast", + "function": "contrast", + "param": { + "min": 0.1, + "max": 1.0, + "invScale": true + } + }, + { + "name": "-Color", + "function": "color", + "param": { + "min": 0.1, + "max": 1.0, + "invScale": true + } + }, + { + "name": "-Brightness", + "function": "brightness", + "param": { + "min": 0.1, + "max": 1.0, + "invScale": true + } + }, + { + "name": "-Sharpness", + "function": "sharpness", + "param": { + "min": 0.1, + "max": 1.0, + "invScale": true + } + }, + { + "name": "Posterize", + "function": "posterize", + "param": { + "min": 4.0, + "max": 8.0, + "invScale": true + } + }, + { + "name": "Solarize", + "function": "solarize", + "param": { + "min": 0.00390625, + "max": 1.0, + "invScale": true + } + } +] diff --git a/higher/smart_aug/benchmark.py b/higher/smart_aug/benchmark.py index d4d34be..0cff138 100644 --- a/higher/smart_aug/benchmark.py +++ b/higher/smart_aug/benchmark.py @@ -16,8 +16,11 @@ optim_param={ }, 'Inner':{ 'optim': 'SGD', - 'lr':1e-2, #1e-2 #1e-1 for ResNet + 'lr':1e-1, #1e-2/1e-1 (ResNet) 'momentum':0.9, #0.9 + 'decay':0.0005, #0.0005 + 'nesterov':True, + 'scheduler':'cosine', #None, 'cosine', 'multiStep', 'exponential' } } @@ -28,6 +31,7 @@ dataug_epoch_start=0 nb_run= 3 # Use available TF (see transformations.py) +''' tf_names = [ ## Geometric TF ## 'Identity', @@ -63,7 +67,10 @@ tf_names = [ #'RandBlend' ] tf_dict = {k: TF.TF_dict[k] for k in tf_names} - +''' +tf_config='../config/base_tf_config.json' +TF_loader=TF_loader() +tf_dict, tf_ignore_mag =TF_loader.load_TF_dict(tf_config) device = torch.device('cuda') @@ -82,11 +89,11 @@ np.random.seed(0) if __name__ == "__main__": ### Benchmark ### - ''' + #''' n_inner_iter = 1 dist_mix = [0.5]#[0.5, 1.0] N_seq_TF= [3, 4] - mag_setup = [(True, True), (False, False)] #(FxSh, Independant) + mag_setup = [(False, False)] #[(True, True), (False, False)] #(FxSh, Independant) for model_type in model_list.keys(): for model_name in model_list[model_type]: @@ -100,7 +107,7 @@ if __name__ == "__main__": torch.cuda.reset_max_memory_cached() #reset_peak_stats t0 = time.perf_counter() - model = getattr(model_type, model_name)(pretrained=False) + model = getattr(model_type, model_name)(pretrained=False, num_classes=len(dl_train.dataset.classes)) model = Higher_model(model, model_name) #run_dist_dataugV3 if n_inner_iter!=0: @@ -137,6 +144,7 @@ if __name__ == "__main__": 'Optimizer': optim_param, "Device": device_name, "Memory": [max_allocated, max_cached], + "TF_config": tf_config, "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) @@ -150,9 +158,9 @@ if __name__ == "__main__": print('Execution Time : %.00f '%(exec_time)) print('-'*9) - ''' - ### Benchmark - RandAugment/Vanilla ### #''' + ### Benchmark - RandAugment/Vanilla ### + ''' for model_type in model_list.keys(): for model_name in model_list[model_type]: for run in range(nb_run): @@ -160,7 +168,7 @@ if __name__ == "__main__": torch.cuda.reset_max_memory_cached() #reset_peak_stats t0 = time.perf_counter() - model = getattr(model_type, model_name)(pretrained=False).to(device) + model = getattr(model_type, model_name)(pretrained=False, num_classes=len(dl_train.dataset.classes)).to(device) print("{} on {} for {} epochs".format(model_name, device_name, epochs)) #print("RandAugment(N{}-M{:.2f})-{} on {} for {} epochs".format(rand_aug['N'],rand_aug['M'],model_name, device_name, epochs)) @@ -180,7 +188,7 @@ if __name__ == "__main__": #"Rand_Aug": rand_aug, "Log": log} print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) - filename = "{} epochs -{}".format(model_name,epochs, run) + filename = "{}-{} epochs -{}".format(model_name,epochs, run) #print("RandAugment-",model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) #filename = "RandAugment(N{}-M{:.2f})-{}-{} epochs -{}".format(rand_aug['N'],rand_aug['M'],model_name,epochs, run) with open(res_folder+"log/%s.json" % filename, "w+") as f: @@ -189,12 +197,13 @@ if __name__ == "__main__": print('Log :\"',f.name, '\" saved !') except: print("Failed to save logs :",f.name) + print(sys.exc_info()[1]) #plot_resV2(log, fig_name=res_folder+filename) print('Execution Time : %.00f '%(exec_time)) print('-'*9) - #''' + ''' ### HP Search ### ''' from LeNet import * @@ -221,7 +230,7 @@ if __name__ == "__main__": t0 = time.perf_counter() - model = getattr(models.resnet, 'resnet18')(pretrained=False) + model = getattr(models.resnet, 'resnet18')(pretrained=False, num_classes=len(dl_train.dataset.classes)) #model = LeNet(3,10) model = Higher_model(model) #run_dist_dataugV3 aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device) diff --git a/higher/smart_aug/dataug.py b/higher/smart_aug/dataug.py index 8cc91e2..e1a94b7 100755 --- a/higher/smart_aug/dataug.py +++ b/higher/smart_aug/dataug.py @@ -39,6 +39,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba) _data_augmentation (bool): Wether TF will be applied during forward pass. _TF_dict (dict) : A dictionnary containing the data transformations (TF) to be applied. _TF (list) : List of TF names. + _TF_ignore_mag (set): TF for which magnitude should be ignored (either it's fixed or unused). _nb_tf (int) : Number of TF used. _N_seqTF (int) : Number of TF to be applied sequentially to each inputs _shared_mag (bool) : Wether to share a single magnitude parameters for all TF. Beware using shared mag with basic color TF as their lowest magnitude is at PARAMETER_MAX/2. @@ -51,7 +52,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba) _reg_tgt (Tensor): Target for the magnitude regularisation. Only used when _fixed_mag is set to false (ie. we learn the magnitudes). _reg_mask (list): Mask selecting the TF considered for the regularisation. """ - def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True): + def __init__(self, TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True, TF_ignore_mag=TF.TF_ignore_mag): """Init Data_augv5. Args: @@ -61,6 +62,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba) fixed_prob (bool): Wether to lock the TF probabilies. (default: False) fixed_mag (bool): Wether to lock the TF magnitudes. (default: True) shared_mag (bool): Wether to share a single magnitude parameters for all TF. (default: True) + TF_ignore_mag (set): TF for which magnitude should be ignored (either it's fixed or unused). """ super(Data_augV5, self).__init__() assert len(TF_dict)>0 @@ -71,13 +73,14 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba) #TF self._TF_dict = TF_dict self._TF= list(self._TF_dict.keys()) + self._TF_ignore_mag=TF_ignore_mag self._nb_tf= len(self._TF) self._N_seqTF = N_TF #Mag self._shared_mag = shared_mag self._fixed_mag = fixed_mag - if not self._fixed_mag and len([tf for tf in self._TF if tf not in TF.TF_ignore_mag])==0: + if not self._fixed_mag and len([tf for tf in self._TF if tf not in self._TF_ignore_mag])==0: print("WARNING: Mag would be fixed as current TF doesn't allow gradient propagation:",self._TF) self._fixed_mag=True @@ -112,7 +115,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba) if self._shared_mag : self._reg_tgt = torch.tensor(TF.PARAMETER_MAX, dtype=torch.float) #Encourage amplitude max else: - self._reg_mask=[self._TF.index(t) for t in self._TF if t not in TF.TF_ignore_mag] + self._reg_mask=[self._TF.index(t) for t in self._TF if t not in self._TF_ignore_mag] self._reg_tgt=torch.full(size=(len(self._reg_mask),), fill_value=TF.PARAMETER_MAX) #Encourage amplitude max def forward(self, x): @@ -324,6 +327,7 @@ class Data_augV7(nn.Module): #Proba sequentielles _data_augmentation (bool): Wether TF will be applied during forward pass. _TF_dict (dict) : A dictionnary containing the data transformations (TF) to be applied. _TF (list) : List of TF names. + _TF_ignore_mag (set): TF for which magnitude should be ignored (either it's fixed or unused). _nb_tf (int) : Number of TF used. _N_seqTF (int) : Number of TF to be applied sequentially to each inputs _shared_mag (bool) : Wether to share a single magnitude parameters for all TF. Beware using shared mag with basic color TF as their lowest magnitude is at PARAMETER_MAX/2. @@ -336,7 +340,7 @@ class Data_augV7(nn.Module): #Proba sequentielles _reg_tgt (Tensor): Target for the magnitude regularisation. Only used when _fixed_mag is set to false (ie. we learn the magnitudes). _reg_mask (list): Mask selecting the TF considered for the regularisation. """ - def __init__(self, TF_dict=TF.TF_dict, N_TF=2, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True): + def __init__(self, TF_dict, N_TF=2, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True, TF_ignore_mag=TF.TF_ignore_mag): """Init Data_augv7. Args: @@ -346,6 +350,7 @@ class Data_augV7(nn.Module): #Proba sequentielles fixed_prob (bool): Wether to lock the TF probabilies. (default: False) fixed_mag (bool): Wether to lock the TF magnitudes. (default: True) shared_mag (bool): Wether to share a single magnitude parameters for all TF. (default: True) + TF_ignore_mag (set): TF for which magnitude should be ignored (either it's fixed or unused). """ super(Data_augV7, self).__init__() assert len(TF_dict)>0 @@ -359,13 +364,14 @@ class Data_augV7(nn.Module): #Proba sequentielles #TF self._TF_dict = TF_dict self._TF= list(self._TF_dict.keys()) + self._TF_ignore_mag= TF_ignore_mag self._nb_tf= len(self._TF) self._N_seqTF = N_TF #Mag self._shared_mag = shared_mag self._fixed_mag = fixed_mag - if not self._fixed_mag and len([tf for tf in self._TF if tf not in TF.TF_ignore_mag])==0: + if not self._fixed_mag and len([tf for tf in self._TF if tf not in self._TF_ignore_mag])==0: print("WARNING: Mag would be fixed as current TF doesn't allow gradient propagation:",self._TF) self._fixed_mag=True @@ -423,7 +429,7 @@ class Data_augV7(nn.Module): #Proba sequentielles if self._shared_mag : self._reg_tgt = torch.FloatTensor(TF.PARAMETER_MAX) #Encourage amplitude max else: - self._reg_mask=[idx for idx,t in enumerate(self._TF) if t not in TF.TF_ignore_mag] + self._reg_mask=[idx for idx,t in enumerate(self._TF) if t not in self._TF_ignore_mag] self._reg_tgt=torch.full(size=(len(self._reg_mask),), fill_value=TF.PARAMETER_MAX) #Encourage amplitude max def forward(self, x): @@ -657,7 +663,7 @@ class RandAug(nn.Module): #RandAugment = UniformFx-MagFxSh + rapide _fixed_mag (bool): Wether to lock the TF magnitudes. Should be True. _params (nn.ParameterDict): Data augmentation parameters. """ - def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mag=TF.PARAMETER_MAX): + def __init__(self, TF_dict, N_TF=1, mag=TF.PARAMETER_MAX): """Init RandAug. Args: diff --git a/higher/smart_aug/test_dataug.py b/higher/smart_aug/test_dataug.py index 24ec173..9532086 100755 --- a/higher/smart_aug/test_dataug.py +++ b/higher/smart_aug/test_dataug.py @@ -8,6 +8,7 @@ from dataug import * from train_utils import * # Use available TF (see transformations.py) +''' tf_names = [ ## Geometric TF ## 'Identity', @@ -57,7 +58,8 @@ tf_names = [ #'Random', #'RandBlend' ] - +''' +TF_loader=TF_loader() device = torch.device('cuda') #Select device to use @@ -77,12 +79,12 @@ if __name__ == "__main__": #Task to perform tasks={ - 'classic', - #'aug_model' + #'classic', + 'aug_model' } #Parameters n_inner_iter = 1 - epochs = 200 + epochs = 20 dataug_epoch_start=0 optim_param={ 'Meta':{ @@ -91,11 +93,11 @@ if __name__ == "__main__": }, 'Inner':{ 'optim': 'SGD', - 'lr':1e-1, #1e-2/1e-1 + 'lr':1e-1, #1e-2/1e-1 (ResNet) 'momentum':0.9, #0.9 'decay':0.0005, #0.0005 'nesterov':True, - 'scheduler':'exponential', #None, 'cosine', 'multiStep', 'exponential' + 'scheduler':'cosine', #None, 'cosine', 'multiStep', 'exponential' } } @@ -137,7 +139,7 @@ if __name__ == "__main__": print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) filename = "{}-{} epochs".format(model_name,epochs) #print("RandAugment-",model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) - #filename = "RandAugment(N{}-M{:.2f})-{}-{} epochs".format(rand_aug['N'],rand_aug['M'],model_name,epochs) + #filename = "RandAugment(N{}-M{:.2f})-{}-{} epochs".format(rand_aug['N'],rand_aug['M'],model_name,epochs)+'-cosine' with open("../res/log/%s.json" % filename, "w+") as f: try: json.dump(out, f, indent=True) @@ -157,13 +159,23 @@ if __name__ == "__main__": #### Augmented Model #### if 'aug_model' in tasks: + tf_config='../config/base_tf_config.json' + tf_dict, tf_ignore_mag =TF_loader.load_TF_dict(tf_config) + #tf_dict = {k: TF_dict[k] for k in tf_names} + torch.cuda.reset_max_memory_allocated() #reset_peak_stats torch.cuda.reset_max_memory_cached() #reset_peak_stats t0 = time.perf_counter() - tf_dict = {k: TF.TF_dict[k] for k in tf_names} model = Higher_model(model, model_name) #run_dist_dataugV3 - aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.5, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device) + aug_model = Augmented_model( + Data_augV5(TF_dict=tf_dict, + N_TF=3, + mix_dist=0.5, + fixed_prob=False, + fixed_mag=False, + shared_mag=False, + TF_ignore_mag=tf_ignore_mag), model).to(device) #aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) @@ -175,7 +187,7 @@ if __name__ == "__main__": print_freq=1, unsup_loss=1, hp_opt=False, - save_sample_freq=None) + save_sample_freq=0) exec_time=time.perf_counter() - t0 max_allocated = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0) @@ -188,6 +200,7 @@ if __name__ == "__main__": 'Optimizer': optim_param, "Device": device_name, "Memory": [max_allocated, max_cached], + "TF_config": tf_config, "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) diff --git a/higher/smart_aug/train_utils.py b/higher/smart_aug/train_utils.py index 519b838..b83863e 100755 --- a/higher/smart_aug/train_utils.py +++ b/higher/smart_aug/train_utils.py @@ -272,15 +272,15 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start #Scheduler inner_scheduler=None if opt_param['Inner']['scheduler']=='cosine': - inner_scheduler=torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=epochs, eta_min=0.) + inner_scheduler=torch.optim.lr_scheduler.CosineAnnealingLR(inner_opt, T_max=epochs, eta_min=0.) elif opt_param['Inner']['scheduler']=='multiStep': #Multistep milestones inspired by AutoAugment - inner_scheduler=torch.optim.lr_scheduler.MultiStepLR(optim, + inner_scheduler=torch.optim.lr_scheduler.MultiStepLR(inner_opt, milestones=[int(epochs/3), int(epochs*2/3), int(epochs*2.7/3)], gamma=0.1) elif opt_param['Inner']['scheduler']=='exponential': #inner_scheduler=torch.optim.lr_scheduler.ExponentialLR(optim, gamma=0.1) #Wrong gamma - inner_scheduler=torch.optim.lr_scheduler.LambdaLR(optim, lambda epoch: (1 - epoch / epochs) ** 0.9) + inner_scheduler=torch.optim.lr_scheduler.LambdaLR(inner_opt, lambda epoch: (1 - epoch / epochs) ** 0.9) elif opt_param['Inner']['scheduler'] is not None: raise ValueError("Lr scheduler unknown : %s"%opt_param['Inner']['scheduler']) diff --git a/higher/smart_aug/transformations.py b/higher/smart_aug/transformations.py index ae2982f..dc0fc71 100755 --- a/higher/smart_aug/transformations.py +++ b/higher/smart_aug/transformations.py @@ -19,9 +19,9 @@ import kornia import random #TF that don't have use for magnitude parameter. -TF_no_mag={'Identity', 'FlipUD', 'FlipLR', 'Random', 'RandBlend'} +TF_no_mag={'Identity', 'FlipUD', 'FlipLR', 'Random', 'RandBlend', 'identity', 'flipUD', 'flipLR'} #TF which implemetation doesn't allow gradient propagaition. -TF_no_grad={'Solarize', 'Posterize', '=Solarize', '=Posterize'} +TF_no_grad={'Solarize', 'Posterize', '=Solarize', '=Posterize', 'posterize','solarize'} #TF for which magnitude should be ignored (Magnitude fixed). TF_ignore_mag= TF_no_mag | TF_no_grad @@ -30,6 +30,7 @@ PARAMETER_MAX = 1 # What is the min 'level' a transform could be predicted PARAMETER_MIN = 0.1 +''' # Dictionnary mapping tranformations identifiers to their function. # Each value of the dict should be a lambda function taking a (batch of data, magnitude of transformations) tuple as input and returns a batch of data. TF_dict={ #Dataugv5+ @@ -38,8 +39,8 @@ TF_dict={ #Dataugv5+ 'FlipUD' : (lambda x, mag: flipUD(x)), 'FlipLR' : (lambda x, mag: flipLR(x)), 'Rotate': (lambda x, mag: rotate(x, angle=rand_floats(size=x.shape[0], mag=mag, maxval=30))), - 'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[1]*0.33), zero_pos=0))), - 'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[2]*0.33), zero_pos=1))), + 'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[2]*0.33), zero_pos=0))), + 'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[3]*0.33), zero_pos=1))), 'TranslateXabs': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=0))), 'TranslateYabs': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=1))), 'ShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=0))), @@ -49,7 +50,7 @@ TF_dict={ #Dataugv5+ 'Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))), 'Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))), 'Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))), - 'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))), + 'Sharpness':(lambda x, mag: sharpness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))), 'Posterize': (lambda x, mag: posterize(x, bits=rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient 'Solarize': (lambda x, mag: solarize(x, thresholds=rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1] @@ -57,11 +58,11 @@ TF_dict={ #Dataugv5+ '+Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))), '+Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))), '+Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))), - '+Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))), + '+Sharpness':(lambda x, mag: sharpness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))), '-Contrast': (lambda x, mag: contrast(x, contrast_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))), '-Color':(lambda x, mag: color(x, color_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))), '-Brightness':(lambda x, mag: brightness(x, brightness_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))), - '-Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))), + '-Sharpness':(lambda x, mag: sharpness(x, sharpness_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))), '=Posterize': (lambda x, mag: posterize(x, bits=invScale_rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient '=Solarize': (lambda x, mag: solarize(x, thresholds=invScale_rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1] @@ -86,7 +87,7 @@ TF_dict={ #Dataugv5+ #'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent) #'Equalize': (lambda mag: None), } - +''' ## Image type cast ## def int_image(float_image): """Convert a float Tensor/Image to an int Tensor/Image. @@ -304,7 +305,7 @@ def brightness(x, brightness_factor): return blend(torch.zeros(x.size(), device=device), x, brightness_factor).clamp(min=0.0,max=1.0) #Expect image in the range of [0, 1] -def sharpeness(x, sharpness_factor): +def sharpness(x, sharpness_factor): """Adjust sharpness of images. Args: diff --git a/higher/smart_aug/utils.py b/higher/smart_aug/utils.py index 4a4b5ae..2480268 100755 --- a/higher/smart_aug/utils.py +++ b/higher/smart_aug/utils.py @@ -14,6 +14,128 @@ import torch.nn.functional as F import time +import transformations as TF +class TF_loader(object): + """ Transformations builder. + + See 'config' folder for pre-defined config files. + + Attributes: + _filename (str): Path to config file (JSON) used. + _TF_dict (dict): Transformations dictionnary built from config file. + _TF_ignore_mag (set): Ensemble of transformations names for which magnitude should be ignored. + _TF_names (list): List of transformations names/keys. + """ + def __init__(self): + """ Initialize TF_loader. + + """ + self._filename='' + self._TF_dict={} + self._TF_ignore_mag=set() + self._TF_names=[] + + def load_TF_dict(self, filename): + """ Build a TF dictionnary. + + Args: + filename (str): Path to config file (JSON) defining the transformations. + Returns: + (dict, set) : TF dicttionnary built and ensemble of TF names for which mag should be ignored. + """ + self._filename=filename + self._TF_names=[] + self._TF_dict={} + self._TF_ignore_mag=set() + + with open(filename) as json_file: + TF_params = json.load(json_file) + + for tf in TF_params: + self._TF_names.append(tf['name']) + if tf['function'] in TF.TF_ignore_mag: + self._TF_ignore_mag.add(tf['name']) + + if tf['function'] == 'identity': + self._TF_dict[tf['name']]=(lambda x, mag: x) + + elif tf['function'] == 'flip': + #Inverser axes ? + if tf['param']['axis'] == 'X': + self._TF_dict[tf['name']]=(lambda x, mag: TF.flipLR(x)) + elif tf['param']['axis'] == 'Y': + self._TF_dict[tf['name']]=(lambda x, mag: TF.flipUD(x)) + else: + raise Exception("Unknown TF axis : %s in %s"%(tf['function'], self._filename)) + + elif tf['function'] in {'translate', 'shear'}: + rand_fct= 'invScale_rand_floats' if tf['param']['invScale'] else 'rand_floats' + self._TF_dict[tf['name']]=self.build_lambda(tf['function'], rand_fct, tf['param']['min'], tf['param']['max'], tf['param']['absolute'], tf['param']['axis']) + + else: + rand_fct= 'invScale_rand_floats' if tf['param']['invScale'] else 'rand_floats' + self._TF_dict[tf['name']]=self.build_lambda(tf['function'], rand_fct, tf['param']['min'], tf['param']['max']) + + return self._TF_dict, self._TF_ignore_mag + + def build_lambda(self, fct_name, rand_fct_name, minval, maxval, absolute=True, axis=None): + """ Build a lambda function performing transformations. + + Args: + fct_name (str): Name of the transformations to use (see transformations.py). + rand_fct_name (str): Name of the random mapping function to use (see transformations.py). + minval (float): minimum magnitude value of the TF. + maxval (float): maximum magnitude value of the TF. + absolute (bool): Wether the maxval should be relative (absolute=False) to the image size. (default: True) + axis (str): Axis ('X' / 'Y') of the TF, if relevant. Should be used for (flip)/translate/shear functions. (default: None) + + Returns: + (function) transformations function : Tensor=f(Tensor, magnitude) + """ + if absolute: + max_val_fct=(lambda x: maxval) + else: #Relative to img size + max_val_fct=(lambda x: x*maxval) + + if axis is None: + return (lambda x, mag: + getattr(TF, fct_name)( + x, + getattr(TF, rand_fct_name)( + size=x.shape[0], + mag=mag, + minval=minval, + maxval=maxval))) + elif axis =='X': + return (lambda x, mag: + getattr(TF, fct_name)( + x, + TF.zero_stack( + getattr(TF, rand_fct_name)( + size=(x.shape[0],), + mag=mag, + minval=minval, + maxval=max_val_fct(x.shape[2])), + zero_pos=0))) + elif axis == 'Y': + return (lambda x, mag: + getattr(TF, fct_name)( + x, + TF.zero_stack( + getattr(TF, rand_fct_name)( + size=(x.shape[0],), + mag=mag, + minval=minval, + maxval=max_val_fct(x.shape[3])), + zero_pos=1))) + else: + raise Exception("Unknown TF axis : %s in %s"%(fct_name, self._filename)) + + def get_TF_names(self): + return self._TF_names + def get_TF_dict(self): + return self._TF_dict + class ConfusionMatrix(object): """ Confusion matrix.