Fix Translate + TF loader

This commit is contained in:
Harle, Antoine (Contracteur) 2020-02-14 13:57:17 -05:00
parent 79de0191a8
commit b170af076f
9 changed files with 674 additions and 40 deletions

View file

@ -0,0 +1,193 @@
[
{
"name": "Identity",
"function": "identity"
},
{
"name": "FlipUD",
"function": "flip",
"param": {
"axis": "Y"
}
},
{
"name": "FlipLR",
"function": "flip",
"param": {
"axis": "X"
}
},
{
"name": "Rotate",
"function": "rotate",
"param": {
"min": null,
"max": 30,
"invScale": false
}
},
{
"name": "TranslateX",
"function": "translate",
"param": {
"axis": "X",
"min": null,
"max": 0.33,
"absolute": false,
"invScale": false
}
},
{
"name": "TranslateY",
"function": "translate",
"param": {
"axis": "Y",
"min": null,
"max": 0.33,
"absolute": false,
"invScale": false
}
},
{
"name": "ShearX",
"function": "shear",
"param": {
"axis": "X",
"min": null,
"max": 0.3,
"absolute": true,
"invScale": false
}
},
{
"name": "ShearY",
"function": "shear",
"param": {
"axis": "Y",
"min": null,
"max": 0.3,
"absolute": true,
"invScale": false
}
},
{
"name": "Contrast",
"function": "contrast",
"param": {
"min": 0.1,
"max": 1.9,
"invScale": false
}
},
{
"name": "Color",
"function": "color",
"param": {
"min": 0.1,
"max": 1.9,
"invScale": false
}
},
{
"name": "Brightness",
"function": "brightness",
"param": {
"min": 0.1,
"max": 1.9,
"invScale": false
}
},
{
"name": "Sharpness",
"function": "sharpness",
"param": {
"min": 0.1,
"max": 1.9,
"invScale": false
}
},
{
"name": "Posterize",
"function": "posterize",
"param": {
"min": 4.0,
"max": 8.0,
"invScale": false
}
},
{
"name": "Solarize",
"function": "solarize",
"param": {
"min": 0.00390625,
"max": 1.0,
"invScale": false
}
},
{
"name": "BTranslateX",
"function": "translate",
"param": {
"axis": "X",
"min": 25,
"max": 30,
"absolute": true,
"invScale": false
}
},
{
"name": "BTranslateX-",
"function": "translate",
"param": {
"axis": "X",
"min": -25,
"max": -30,
"absolute": true,
"invScale": false
}
},
{
"name": "BTranslateY",
"function": "translate",
"param": {
"axis": "Y",
"min": 25,
"max": 30,
"absolute": true,
"invScale": false
}
},
{
"name": "BTranslateY-",
"function": "translate",
"param": {
"axis": "Y",
"min": -25,
"max": -30,
"absolute": true,
"invScale": false
}
},
{
"name": "BShearX",
"function": "shear",
"param": {
"axis": "X",
"min": 0.9,
"max": 1.2,
"absolute": true,
"invScale": false
}
},
{
"name": "BShearY",
"function": "shear",
"param": {
"axis": "Y",
"min": 0.9,
"max": 1.2,
"absolute": true,
"invScale": false
}
}
]

View file

@ -0,0 +1,127 @@
[
{
"name": "Identity",
"function": "identity"
},
{
"name": "FlipUD",
"function": "flip",
"param": {
"axis": "Y"
}
},
{
"name": "FlipLR",
"function": "flip",
"param": {
"axis": "X"
}
},
{
"name": "Rotate",
"function": "rotate",
"param": {
"min": null,
"max": 30,
"invScale": false
}
},
{
"name": "TranslateX",
"function": "translate",
"param": {
"axis": "X",
"min": null,
"max": 0.33,
"absolute": false,
"invScale": false
}
},
{
"name": "TranslateY",
"function": "translate",
"param": {
"axis": "Y",
"min": null,
"max": 0.33,
"absolute": false,
"invScale": false
}
},
{
"name": "ShearX",
"function": "shear",
"param": {
"axis": "X",
"min": null,
"max": 0.3,
"absolute": true,
"invScale": false
}
},
{
"name": "ShearY",
"function": "shear",
"param": {
"axis": "Y",
"min": null,
"max": 0.3,
"absolute": true,
"invScale": false
}
},
{
"name": "Contrast",
"function": "contrast",
"param": {
"min": 0.1,
"max": 1.9,
"invScale": false
}
},
{
"name": "Color",
"function": "color",
"param": {
"min": 0.1,
"max": 1.9,
"invScale": false
}
},
{
"name": "Brightness",
"function": "brightness",
"param": {
"min": 0.1,
"max": 1.9,
"invScale": false
}
},
{
"name": "Sharpness",
"function": "sharpness",
"param": {
"min": 0.1,
"max": 1.9,
"invScale": false
}
},
{
"name": "Posterize",
"function": "posterize",
"param": {
"min": 4.0,
"max": 8.0,
"invScale": false
}
},
{
"name": "Solarize",
"function": "solarize",
"param": {
"min": 0.00390625,
"max": 1.0,
"invScale": false
}
}
]

View file

@ -0,0 +1,163 @@
[
{
"name": "Identity",
"function": "identity"
},
{
"name": "FlipUD",
"function": "flip",
"param": {
"axis": "Y"
}
},
{
"name": "FlipLR",
"function": "flip",
"param": {
"axis": "X"
}
},
{
"name": "Rotate",
"function": "rotate",
"param": {
"min": null,
"max": 30,
"invScale": false
}
},
{
"name": "TranslateX",
"function": "translate",
"param": {
"axis": "X",
"min": null,
"max": 0.33,
"absolute": false,
"invScale": false
}
},
{
"name": "TranslateY",
"function": "translate",
"param": {
"axis": "Y",
"min": null,
"max": 0.33,
"absolute": false,
"invScale": false
}
},
{
"name": "ShearX",
"function": "shear",
"param": {
"axis": "X",
"min": null,
"max": 0.3,
"absolute": true,
"invScale": false
}
},
{
"name": "ShearY",
"function": "shear",
"param": {
"axis": "Y",
"min": null,
"max": 0.3,
"absolute": true,
"invScale": false
}
},
{
"name": "+Contrast",
"function": "contrast",
"param": {
"min": 1.0,
"max": 1.9,
"invScale": false
}
},
{
"name": "+Color",
"function": "color",
"param": {
"min": 1.0,
"max": 1.9,
"invScale": false
}
},
{
"name": "+Brightness",
"function": "brightness",
"param": {
"min": 1.0,
"max": 1.9,
"invScale": false
}
},
{
"name": "+Sharpness",
"function": "sharpness",
"param": {
"min": 1.0,
"max": 1.9,
"invScale": false
}
},
{
"name": "-Contrast",
"function": "contrast",
"param": {
"min": 0.1,
"max": 1.0,
"invScale": true
}
},
{
"name": "-Color",
"function": "color",
"param": {
"min": 0.1,
"max": 1.0,
"invScale": true
}
},
{
"name": "-Brightness",
"function": "brightness",
"param": {
"min": 0.1,
"max": 1.0,
"invScale": true
}
},
{
"name": "-Sharpness",
"function": "sharpness",
"param": {
"min": 0.1,
"max": 1.0,
"invScale": true
}
},
{
"name": "Posterize",
"function": "posterize",
"param": {
"min": 4.0,
"max": 8.0,
"invScale": true
}
},
{
"name": "Solarize",
"function": "solarize",
"param": {
"min": 0.00390625,
"max": 1.0,
"invScale": true
}
}
]

View file

@ -16,8 +16,11 @@ optim_param={
},
'Inner':{
'optim': 'SGD',
'lr':1e-2, #1e-2 #1e-1 for ResNet
'lr':1e-1, #1e-2/1e-1 (ResNet)
'momentum':0.9, #0.9
'decay':0.0005, #0.0005
'nesterov':True,
'scheduler':'cosine', #None, 'cosine', 'multiStep', 'exponential'
}
}
@ -28,6 +31,7 @@ dataug_epoch_start=0
nb_run= 3
# Use available TF (see transformations.py)
'''
tf_names = [
## Geometric TF ##
'Identity',
@ -63,7 +67,10 @@ tf_names = [
#'RandBlend'
]
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
'''
tf_config='../config/base_tf_config.json'
TF_loader=TF_loader()
tf_dict, tf_ignore_mag =TF_loader.load_TF_dict(tf_config)
device = torch.device('cuda')
@ -82,11 +89,11 @@ np.random.seed(0)
if __name__ == "__main__":
### Benchmark ###
'''
#'''
n_inner_iter = 1
dist_mix = [0.5]#[0.5, 1.0]
N_seq_TF= [3, 4]
mag_setup = [(True, True), (False, False)] #(FxSh, Independant)
mag_setup = [(False, False)] #[(True, True), (False, False)] #(FxSh, Independant)
for model_type in model_list.keys():
for model_name in model_list[model_type]:
@ -100,7 +107,7 @@ if __name__ == "__main__":
torch.cuda.reset_max_memory_cached() #reset_peak_stats
t0 = time.perf_counter()
model = getattr(model_type, model_name)(pretrained=False)
model = getattr(model_type, model_name)(pretrained=False, num_classes=len(dl_train.dataset.classes))
model = Higher_model(model, model_name) #run_dist_dataugV3
if n_inner_iter!=0:
@ -137,6 +144,7 @@ if __name__ == "__main__":
'Optimizer': optim_param,
"Device": device_name,
"Memory": [max_allocated, max_cached],
"TF_config": tf_config,
"Param_names": aug_model.TF_names(),
"Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
@ -150,9 +158,9 @@ if __name__ == "__main__":
print('Execution Time : %.00f '%(exec_time))
print('-'*9)
'''
### Benchmark - RandAugment/Vanilla ###
#'''
### Benchmark - RandAugment/Vanilla ###
'''
for model_type in model_list.keys():
for model_name in model_list[model_type]:
for run in range(nb_run):
@ -160,7 +168,7 @@ if __name__ == "__main__":
torch.cuda.reset_max_memory_cached() #reset_peak_stats
t0 = time.perf_counter()
model = getattr(model_type, model_name)(pretrained=False).to(device)
model = getattr(model_type, model_name)(pretrained=False, num_classes=len(dl_train.dataset.classes)).to(device)
print("{} on {} for {} epochs".format(model_name, device_name, epochs))
#print("RandAugment(N{}-M{:.2f})-{} on {} for {} epochs".format(rand_aug['N'],rand_aug['M'],model_name, device_name, epochs))
@ -180,7 +188,7 @@ if __name__ == "__main__":
#"Rand_Aug": rand_aug,
"Log": log}
print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{} epochs -{}".format(model_name,epochs, run)
filename = "{}-{} epochs -{}".format(model_name,epochs, run)
#print("RandAugment-",model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
#filename = "RandAugment(N{}-M{:.2f})-{}-{} epochs -{}".format(rand_aug['N'],rand_aug['M'],model_name,epochs, run)
with open(res_folder+"log/%s.json" % filename, "w+") as f:
@ -189,12 +197,13 @@ if __name__ == "__main__":
print('Log :\"',f.name, '\" saved !')
except:
print("Failed to save logs :",f.name)
print(sys.exc_info()[1])
#plot_resV2(log, fig_name=res_folder+filename)
print('Execution Time : %.00f '%(exec_time))
print('-'*9)
#'''
'''
### HP Search ###
'''
from LeNet import *
@ -221,7 +230,7 @@ if __name__ == "__main__":
t0 = time.perf_counter()
model = getattr(models.resnet, 'resnet18')(pretrained=False)
model = getattr(models.resnet, 'resnet18')(pretrained=False, num_classes=len(dl_train.dataset.classes))
#model = LeNet(3,10)
model = Higher_model(model) #run_dist_dataugV3
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device)

View file

@ -39,6 +39,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
_data_augmentation (bool): Wether TF will be applied during forward pass.
_TF_dict (dict) : A dictionnary containing the data transformations (TF) to be applied.
_TF (list) : List of TF names.
_TF_ignore_mag (set): TF for which magnitude should be ignored (either it's fixed or unused).
_nb_tf (int) : Number of TF used.
_N_seqTF (int) : Number of TF to be applied sequentially to each inputs
_shared_mag (bool) : Wether to share a single magnitude parameters for all TF. Beware using shared mag with basic color TF as their lowest magnitude is at PARAMETER_MAX/2.
@ -51,7 +52,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
_reg_tgt (Tensor): Target for the magnitude regularisation. Only used when _fixed_mag is set to false (ie. we learn the magnitudes).
_reg_mask (list): Mask selecting the TF considered for the regularisation.
"""
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True):
def __init__(self, TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True, TF_ignore_mag=TF.TF_ignore_mag):
"""Init Data_augv5.
Args:
@ -61,6 +62,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
fixed_prob (bool): Wether to lock the TF probabilies. (default: False)
fixed_mag (bool): Wether to lock the TF magnitudes. (default: True)
shared_mag (bool): Wether to share a single magnitude parameters for all TF. (default: True)
TF_ignore_mag (set): TF for which magnitude should be ignored (either it's fixed or unused).
"""
super(Data_augV5, self).__init__()
assert len(TF_dict)>0
@ -71,13 +73,14 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
#TF
self._TF_dict = TF_dict
self._TF= list(self._TF_dict.keys())
self._TF_ignore_mag=TF_ignore_mag
self._nb_tf= len(self._TF)
self._N_seqTF = N_TF
#Mag
self._shared_mag = shared_mag
self._fixed_mag = fixed_mag
if not self._fixed_mag and len([tf for tf in self._TF if tf not in TF.TF_ignore_mag])==0:
if not self._fixed_mag and len([tf for tf in self._TF if tf not in self._TF_ignore_mag])==0:
print("WARNING: Mag would be fixed as current TF doesn't allow gradient propagation:",self._TF)
self._fixed_mag=True
@ -112,7 +115,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
if self._shared_mag :
self._reg_tgt = torch.tensor(TF.PARAMETER_MAX, dtype=torch.float) #Encourage amplitude max
else:
self._reg_mask=[self._TF.index(t) for t in self._TF if t not in TF.TF_ignore_mag]
self._reg_mask=[self._TF.index(t) for t in self._TF if t not in self._TF_ignore_mag]
self._reg_tgt=torch.full(size=(len(self._reg_mask),), fill_value=TF.PARAMETER_MAX) #Encourage amplitude max
def forward(self, x):
@ -324,6 +327,7 @@ class Data_augV7(nn.Module): #Proba sequentielles
_data_augmentation (bool): Wether TF will be applied during forward pass.
_TF_dict (dict) : A dictionnary containing the data transformations (TF) to be applied.
_TF (list) : List of TF names.
_TF_ignore_mag (set): TF for which magnitude should be ignored (either it's fixed or unused).
_nb_tf (int) : Number of TF used.
_N_seqTF (int) : Number of TF to be applied sequentially to each inputs
_shared_mag (bool) : Wether to share a single magnitude parameters for all TF. Beware using shared mag with basic color TF as their lowest magnitude is at PARAMETER_MAX/2.
@ -336,7 +340,7 @@ class Data_augV7(nn.Module): #Proba sequentielles
_reg_tgt (Tensor): Target for the magnitude regularisation. Only used when _fixed_mag is set to false (ie. we learn the magnitudes).
_reg_mask (list): Mask selecting the TF considered for the regularisation.
"""
def __init__(self, TF_dict=TF.TF_dict, N_TF=2, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True):
def __init__(self, TF_dict, N_TF=2, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True, TF_ignore_mag=TF.TF_ignore_mag):
"""Init Data_augv7.
Args:
@ -346,6 +350,7 @@ class Data_augV7(nn.Module): #Proba sequentielles
fixed_prob (bool): Wether to lock the TF probabilies. (default: False)
fixed_mag (bool): Wether to lock the TF magnitudes. (default: True)
shared_mag (bool): Wether to share a single magnitude parameters for all TF. (default: True)
TF_ignore_mag (set): TF for which magnitude should be ignored (either it's fixed or unused).
"""
super(Data_augV7, self).__init__()
assert len(TF_dict)>0
@ -359,13 +364,14 @@ class Data_augV7(nn.Module): #Proba sequentielles
#TF
self._TF_dict = TF_dict
self._TF= list(self._TF_dict.keys())
self._TF_ignore_mag= TF_ignore_mag
self._nb_tf= len(self._TF)
self._N_seqTF = N_TF
#Mag
self._shared_mag = shared_mag
self._fixed_mag = fixed_mag
if not self._fixed_mag and len([tf for tf in self._TF if tf not in TF.TF_ignore_mag])==0:
if not self._fixed_mag and len([tf for tf in self._TF if tf not in self._TF_ignore_mag])==0:
print("WARNING: Mag would be fixed as current TF doesn't allow gradient propagation:",self._TF)
self._fixed_mag=True
@ -423,7 +429,7 @@ class Data_augV7(nn.Module): #Proba sequentielles
if self._shared_mag :
self._reg_tgt = torch.FloatTensor(TF.PARAMETER_MAX) #Encourage amplitude max
else:
self._reg_mask=[idx for idx,t in enumerate(self._TF) if t not in TF.TF_ignore_mag]
self._reg_mask=[idx for idx,t in enumerate(self._TF) if t not in self._TF_ignore_mag]
self._reg_tgt=torch.full(size=(len(self._reg_mask),), fill_value=TF.PARAMETER_MAX) #Encourage amplitude max
def forward(self, x):
@ -657,7 +663,7 @@ class RandAug(nn.Module): #RandAugment = UniformFx-MagFxSh + rapide
_fixed_mag (bool): Wether to lock the TF magnitudes. Should be True.
_params (nn.ParameterDict): Data augmentation parameters.
"""
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mag=TF.PARAMETER_MAX):
def __init__(self, TF_dict, N_TF=1, mag=TF.PARAMETER_MAX):
"""Init RandAug.
Args:

View file

@ -8,6 +8,7 @@ from dataug import *
from train_utils import *
# Use available TF (see transformations.py)
'''
tf_names = [
## Geometric TF ##
'Identity',
@ -57,7 +58,8 @@ tf_names = [
#'Random',
#'RandBlend'
]
'''
TF_loader=TF_loader()
device = torch.device('cuda') #Select device to use
@ -77,12 +79,12 @@ if __name__ == "__main__":
#Task to perform
tasks={
'classic',
#'aug_model'
#'classic',
'aug_model'
}
#Parameters
n_inner_iter = 1
epochs = 200
epochs = 20
dataug_epoch_start=0
optim_param={
'Meta':{
@ -91,11 +93,11 @@ if __name__ == "__main__":
},
'Inner':{
'optim': 'SGD',
'lr':1e-1, #1e-2/1e-1
'lr':1e-1, #1e-2/1e-1 (ResNet)
'momentum':0.9, #0.9
'decay':0.0005, #0.0005
'nesterov':True,
'scheduler':'exponential', #None, 'cosine', 'multiStep', 'exponential'
'scheduler':'cosine', #None, 'cosine', 'multiStep', 'exponential'
}
}
@ -137,7 +139,7 @@ if __name__ == "__main__":
print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs".format(model_name,epochs)
#print("RandAugment-",model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
#filename = "RandAugment(N{}-M{:.2f})-{}-{} epochs".format(rand_aug['N'],rand_aug['M'],model_name,epochs)
#filename = "RandAugment(N{}-M{:.2f})-{}-{} epochs".format(rand_aug['N'],rand_aug['M'],model_name,epochs)+'-cosine'
with open("../res/log/%s.json" % filename, "w+") as f:
try:
json.dump(out, f, indent=True)
@ -157,13 +159,23 @@ if __name__ == "__main__":
#### Augmented Model ####
if 'aug_model' in tasks:
tf_config='../config/base_tf_config.json'
tf_dict, tf_ignore_mag =TF_loader.load_TF_dict(tf_config)
#tf_dict = {k: TF_dict[k] for k in tf_names}
torch.cuda.reset_max_memory_allocated() #reset_peak_stats
torch.cuda.reset_max_memory_cached() #reset_peak_stats
t0 = time.perf_counter()
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
model = Higher_model(model, model_name) #run_dist_dataugV3
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.5, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
aug_model = Augmented_model(
Data_augV5(TF_dict=tf_dict,
N_TF=3,
mix_dist=0.5,
fixed_prob=False,
fixed_mag=False,
shared_mag=False,
TF_ignore_mag=tf_ignore_mag), model).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
@ -175,7 +187,7 @@ if __name__ == "__main__":
print_freq=1,
unsup_loss=1,
hp_opt=False,
save_sample_freq=None)
save_sample_freq=0)
exec_time=time.perf_counter() - t0
max_allocated = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0)
@ -188,6 +200,7 @@ if __name__ == "__main__":
'Optimizer': optim_param,
"Device": device_name,
"Memory": [max_allocated, max_cached],
"TF_config": tf_config,
"Param_names": aug_model.TF_names(),
"Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])

View file

@ -272,15 +272,15 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
#Scheduler
inner_scheduler=None
if opt_param['Inner']['scheduler']=='cosine':
inner_scheduler=torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=epochs, eta_min=0.)
inner_scheduler=torch.optim.lr_scheduler.CosineAnnealingLR(inner_opt, T_max=epochs, eta_min=0.)
elif opt_param['Inner']['scheduler']=='multiStep':
#Multistep milestones inspired by AutoAugment
inner_scheduler=torch.optim.lr_scheduler.MultiStepLR(optim,
inner_scheduler=torch.optim.lr_scheduler.MultiStepLR(inner_opt,
milestones=[int(epochs/3), int(epochs*2/3), int(epochs*2.7/3)],
gamma=0.1)
elif opt_param['Inner']['scheduler']=='exponential':
#inner_scheduler=torch.optim.lr_scheduler.ExponentialLR(optim, gamma=0.1) #Wrong gamma
inner_scheduler=torch.optim.lr_scheduler.LambdaLR(optim, lambda epoch: (1 - epoch / epochs) ** 0.9)
inner_scheduler=torch.optim.lr_scheduler.LambdaLR(inner_opt, lambda epoch: (1 - epoch / epochs) ** 0.9)
elif opt_param['Inner']['scheduler'] is not None:
raise ValueError("Lr scheduler unknown : %s"%opt_param['Inner']['scheduler'])

View file

@ -19,9 +19,9 @@ import kornia
import random
#TF that don't have use for magnitude parameter.
TF_no_mag={'Identity', 'FlipUD', 'FlipLR', 'Random', 'RandBlend'}
TF_no_mag={'Identity', 'FlipUD', 'FlipLR', 'Random', 'RandBlend', 'identity', 'flipUD', 'flipLR'}
#TF which implemetation doesn't allow gradient propagaition.
TF_no_grad={'Solarize', 'Posterize', '=Solarize', '=Posterize'}
TF_no_grad={'Solarize', 'Posterize', '=Solarize', '=Posterize', 'posterize','solarize'}
#TF for which magnitude should be ignored (Magnitude fixed).
TF_ignore_mag= TF_no_mag | TF_no_grad
@ -30,6 +30,7 @@ PARAMETER_MAX = 1
# What is the min 'level' a transform could be predicted
PARAMETER_MIN = 0.1
'''
# Dictionnary mapping tranformations identifiers to their function.
# Each value of the dict should be a lambda function taking a (batch of data, magnitude of transformations) tuple as input and returns a batch of data.
TF_dict={ #Dataugv5+
@ -38,8 +39,8 @@ TF_dict={ #Dataugv5+
'FlipUD' : (lambda x, mag: flipUD(x)),
'FlipLR' : (lambda x, mag: flipLR(x)),
'Rotate': (lambda x, mag: rotate(x, angle=rand_floats(size=x.shape[0], mag=mag, maxval=30))),
'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[1]*0.33), zero_pos=0))),
'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[2]*0.33), zero_pos=1))),
'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[2]*0.33), zero_pos=0))),
'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[3]*0.33), zero_pos=1))),
'TranslateXabs': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=0))),
'TranslateYabs': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=1))),
'ShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=0))),
@ -49,7 +50,7 @@ TF_dict={ #Dataugv5+
'Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Sharpness':(lambda x, mag: sharpness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Posterize': (lambda x, mag: posterize(x, bits=rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient
'Solarize': (lambda x, mag: solarize(x, thresholds=rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1]
@ -57,11 +58,11 @@ TF_dict={ #Dataugv5+
'+Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
'+Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
'+Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
'+Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
'+Sharpness':(lambda x, mag: sharpness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
'-Contrast': (lambda x, mag: contrast(x, contrast_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
'-Color':(lambda x, mag: color(x, color_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
'-Brightness':(lambda x, mag: brightness(x, brightness_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
'-Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
'-Sharpness':(lambda x, mag: sharpness(x, sharpness_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
'=Posterize': (lambda x, mag: posterize(x, bits=invScale_rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient
'=Solarize': (lambda x, mag: solarize(x, thresholds=invScale_rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1]
@ -86,7 +87,7 @@ TF_dict={ #Dataugv5+
#'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent)
#'Equalize': (lambda mag: None),
}
'''
## Image type cast ##
def int_image(float_image):
"""Convert a float Tensor/Image to an int Tensor/Image.
@ -304,7 +305,7 @@ def brightness(x, brightness_factor):
return blend(torch.zeros(x.size(), device=device), x, brightness_factor).clamp(min=0.0,max=1.0) #Expect image in the range of [0, 1]
def sharpeness(x, sharpness_factor):
def sharpness(x, sharpness_factor):
"""Adjust sharpness of images.
Args:

View file

@ -14,6 +14,128 @@ import torch.nn.functional as F
import time
import transformations as TF
class TF_loader(object):
""" Transformations builder.
See 'config' folder for pre-defined config files.
Attributes:
_filename (str): Path to config file (JSON) used.
_TF_dict (dict): Transformations dictionnary built from config file.
_TF_ignore_mag (set): Ensemble of transformations names for which magnitude should be ignored.
_TF_names (list): List of transformations names/keys.
"""
def __init__(self):
""" Initialize TF_loader.
"""
self._filename=''
self._TF_dict={}
self._TF_ignore_mag=set()
self._TF_names=[]
def load_TF_dict(self, filename):
""" Build a TF dictionnary.
Args:
filename (str): Path to config file (JSON) defining the transformations.
Returns:
(dict, set) : TF dicttionnary built and ensemble of TF names for which mag should be ignored.
"""
self._filename=filename
self._TF_names=[]
self._TF_dict={}
self._TF_ignore_mag=set()
with open(filename) as json_file:
TF_params = json.load(json_file)
for tf in TF_params:
self._TF_names.append(tf['name'])
if tf['function'] in TF.TF_ignore_mag:
self._TF_ignore_mag.add(tf['name'])
if tf['function'] == 'identity':
self._TF_dict[tf['name']]=(lambda x, mag: x)
elif tf['function'] == 'flip':
#Inverser axes ?
if tf['param']['axis'] == 'X':
self._TF_dict[tf['name']]=(lambda x, mag: TF.flipLR(x))
elif tf['param']['axis'] == 'Y':
self._TF_dict[tf['name']]=(lambda x, mag: TF.flipUD(x))
else:
raise Exception("Unknown TF axis : %s in %s"%(tf['function'], self._filename))
elif tf['function'] in {'translate', 'shear'}:
rand_fct= 'invScale_rand_floats' if tf['param']['invScale'] else 'rand_floats'
self._TF_dict[tf['name']]=self.build_lambda(tf['function'], rand_fct, tf['param']['min'], tf['param']['max'], tf['param']['absolute'], tf['param']['axis'])
else:
rand_fct= 'invScale_rand_floats' if tf['param']['invScale'] else 'rand_floats'
self._TF_dict[tf['name']]=self.build_lambda(tf['function'], rand_fct, tf['param']['min'], tf['param']['max'])
return self._TF_dict, self._TF_ignore_mag
def build_lambda(self, fct_name, rand_fct_name, minval, maxval, absolute=True, axis=None):
""" Build a lambda function performing transformations.
Args:
fct_name (str): Name of the transformations to use (see transformations.py).
rand_fct_name (str): Name of the random mapping function to use (see transformations.py).
minval (float): minimum magnitude value of the TF.
maxval (float): maximum magnitude value of the TF.
absolute (bool): Wether the maxval should be relative (absolute=False) to the image size. (default: True)
axis (str): Axis ('X' / 'Y') of the TF, if relevant. Should be used for (flip)/translate/shear functions. (default: None)
Returns:
(function) transformations function : Tensor=f(Tensor, magnitude)
"""
if absolute:
max_val_fct=(lambda x: maxval)
else: #Relative to img size
max_val_fct=(lambda x: x*maxval)
if axis is None:
return (lambda x, mag:
getattr(TF, fct_name)(
x,
getattr(TF, rand_fct_name)(
size=x.shape[0],
mag=mag,
minval=minval,
maxval=maxval)))
elif axis =='X':
return (lambda x, mag:
getattr(TF, fct_name)(
x,
TF.zero_stack(
getattr(TF, rand_fct_name)(
size=(x.shape[0],),
mag=mag,
minval=minval,
maxval=max_val_fct(x.shape[2])),
zero_pos=0)))
elif axis == 'Y':
return (lambda x, mag:
getattr(TF, fct_name)(
x,
TF.zero_stack(
getattr(TF, rand_fct_name)(
size=(x.shape[0],),
mag=mag,
minval=minval,
maxval=max_val_fct(x.shape[3])),
zero_pos=1)))
else:
raise Exception("Unknown TF axis : %s in %s"%(fct_name, self._filename))
def get_TF_names(self):
return self._TF_names
def get_TF_dict(self):
return self._TF_dict
class ConfusionMatrix(object):
""" Confusion matrix.