mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
Changement Translation pour taille relative image
This commit is contained in:
parent
a26252feea
commit
a3bf82c7ca
2 changed files with 18 additions and 12 deletions
|
@ -19,13 +19,16 @@ tf_names = [
|
||||||
'ShearX',
|
'ShearX',
|
||||||
'ShearY',
|
'ShearY',
|
||||||
|
|
||||||
|
#'TranslateXabs',
|
||||||
|
#'TranslateYabs',
|
||||||
|
|
||||||
## Color TF (Expect image in the range of [0, 1]) ##
|
## Color TF (Expect image in the range of [0, 1]) ##
|
||||||
'Contrast',
|
'Contrast',
|
||||||
'Color',
|
'Color',
|
||||||
'Brightness',
|
'Brightness',
|
||||||
'Sharpness',
|
'Sharpness',
|
||||||
'Posterize',
|
'Posterize',
|
||||||
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
'Solarize',
|
||||||
|
|
||||||
#Color TF (Common mag scale)
|
#Color TF (Common mag scale)
|
||||||
#'+Contrast',
|
#'+Contrast',
|
||||||
|
@ -79,7 +82,7 @@ if __name__ == "__main__":
|
||||||
}
|
}
|
||||||
#Parameters
|
#Parameters
|
||||||
n_inner_iter = 1
|
n_inner_iter = 1
|
||||||
epochs = 2
|
epochs = 150
|
||||||
dataug_epoch_start=0
|
dataug_epoch_start=0
|
||||||
optim_param={
|
optim_param={
|
||||||
'Meta':{
|
'Meta':{
|
||||||
|
@ -94,12 +97,12 @@ if __name__ == "__main__":
|
||||||
}
|
}
|
||||||
|
|
||||||
#Models
|
#Models
|
||||||
#model = LeNet(3,10)
|
model = LeNet(3,10)
|
||||||
#model = ResNet(num_classes=10)
|
#model = ResNet(num_classes=10)
|
||||||
import torchvision.models as models
|
#import torchvision.models as models
|
||||||
#model=models.resnet18()
|
#model=models.resnet18()
|
||||||
model_name = 'resnet18' #'wide_resnet50_2' #'resnet18' #str(model)
|
model_name = str(model) #'wide_resnet50_2' #'resnet18' #str(model)
|
||||||
model = getattr(models.resnet, model_name)(pretrained=False)
|
#model = getattr(models.resnet, model_name)(pretrained=False)
|
||||||
|
|
||||||
#### Classic ####
|
#### Classic ####
|
||||||
if 'classic' in tasks:
|
if 'classic' in tasks:
|
||||||
|
@ -143,11 +146,12 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
#### Augmented Model ####
|
#### Augmented Model ####
|
||||||
if 'aug_model' in tasks:
|
if 'aug_model' in tasks:
|
||||||
|
torch.cuda.reset_max_memory_cached() #reset_peak_stats
|
||||||
t0 = time.perf_counter()
|
t0 = time.perf_counter()
|
||||||
|
|
||||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||||
model = Higher_model(model, model_name) #run_dist_dataugV3
|
model = Higher_model(model, model_name) #run_dist_dataugV3
|
||||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.5, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||||
|
|
||||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||||
|
@ -159,10 +163,10 @@ if __name__ == "__main__":
|
||||||
print_freq=1,
|
print_freq=1,
|
||||||
unsup_loss=1,
|
unsup_loss=1,
|
||||||
hp_opt=False,
|
hp_opt=False,
|
||||||
save_sample_freq=None)
|
save_sample_freq=1)
|
||||||
|
|
||||||
exec_time=time.perf_counter() - t0
|
exec_time=time.perf_counter() - t0
|
||||||
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved()
|
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB
|
||||||
####
|
####
|
||||||
print('-'*9)
|
print('-'*9)
|
||||||
times = [x["time"] for x in log]
|
times = [x["time"] for x in log]
|
||||||
|
@ -174,7 +178,7 @@ if __name__ == "__main__":
|
||||||
"Param_names": aug_model.TF_names(),
|
"Param_names": aug_model.TF_names(),
|
||||||
"Log": log}
|
"Log": log}
|
||||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||||
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)+"(CV)"
|
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)+"(CV0.1)"
|
||||||
with open("../res/log/%s.json" % filename, "w+") as f:
|
with open("../res/log/%s.json" % filename, "w+") as f:
|
||||||
try:
|
try:
|
||||||
json.dump(out, f, indent=True)
|
json.dump(out, f, indent=True)
|
||||||
|
|
|
@ -38,8 +38,10 @@ TF_dict={ #Dataugv5+
|
||||||
'FlipUD' : (lambda x, mag: flipUD(x)),
|
'FlipUD' : (lambda x, mag: flipUD(x)),
|
||||||
'FlipLR' : (lambda x, mag: flipLR(x)),
|
'FlipLR' : (lambda x, mag: flipLR(x)),
|
||||||
'Rotate': (lambda x, mag: rotate(x, angle=rand_floats(size=x.shape[0], mag=mag, maxval=30))),
|
'Rotate': (lambda x, mag: rotate(x, angle=rand_floats(size=x.shape[0], mag=mag, maxval=30))),
|
||||||
'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=0))),
|
'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[1]*0.33), zero_pos=0))),
|
||||||
'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=1))),
|
'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[2]*0.33), zero_pos=1))),
|
||||||
|
'TranslateXabs': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=0))),
|
||||||
|
'TranslateYabs': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=1))),
|
||||||
'ShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=0))),
|
'ShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=0))),
|
||||||
'ShearY': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=1))),
|
'ShearY': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=1))),
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue