From a3bf82c7ca30957f5fdc2c9d2f9dd6364647ba6f Mon Sep 17 00:00:00 2001 From: "Harle, Antoine (Contracteur)" Date: Wed, 5 Feb 2020 12:06:11 -0500 Subject: [PATCH] Changement Translation pour taille relative image --- higher/smart_aug/test_dataug.py | 24 ++++++++++++++---------- higher/smart_aug/transformations.py | 6 ++++-- 2 files changed, 18 insertions(+), 12 deletions(-) diff --git a/higher/smart_aug/test_dataug.py b/higher/smart_aug/test_dataug.py index 34d25f3..ee7e033 100755 --- a/higher/smart_aug/test_dataug.py +++ b/higher/smart_aug/test_dataug.py @@ -19,13 +19,16 @@ tf_names = [ 'ShearX', 'ShearY', + #'TranslateXabs', + #'TranslateYabs', + ## Color TF (Expect image in the range of [0, 1]) ## 'Contrast', 'Color', 'Brightness', 'Sharpness', 'Posterize', - 'Solarize', #=>Image entre [0,1] #Pas opti pour des batch + 'Solarize', #Color TF (Common mag scale) #'+Contrast', @@ -79,7 +82,7 @@ if __name__ == "__main__": } #Parameters n_inner_iter = 1 - epochs = 2 + epochs = 150 dataug_epoch_start=0 optim_param={ 'Meta':{ @@ -94,12 +97,12 @@ if __name__ == "__main__": } #Models - #model = LeNet(3,10) + model = LeNet(3,10) #model = ResNet(num_classes=10) - import torchvision.models as models + #import torchvision.models as models #model=models.resnet18() - model_name = 'resnet18' #'wide_resnet50_2' #'resnet18' #str(model) - model = getattr(models.resnet, model_name)(pretrained=False) + model_name = str(model) #'wide_resnet50_2' #'resnet18' #str(model) + #model = getattr(models.resnet, model_name)(pretrained=False) #### Classic #### if 'classic' in tasks: @@ -143,11 +146,12 @@ if __name__ == "__main__": #### Augmented Model #### if 'aug_model' in tasks: + torch.cuda.reset_max_memory_cached() #reset_peak_stats t0 = time.perf_counter() tf_dict = {k: TF.TF_dict[k] for k in tf_names} model = Higher_model(model, model_name) #run_dist_dataugV3 - aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device) + aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.5, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device) #aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) @@ -159,10 +163,10 @@ if __name__ == "__main__": print_freq=1, unsup_loss=1, hp_opt=False, - save_sample_freq=None) + save_sample_freq=1) exec_time=time.perf_counter() - t0 - max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() + max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB #### print('-'*9) times = [x["time"] for x in log] @@ -174,7 +178,7 @@ if __name__ == "__main__": "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) - filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)+"(CV)" + filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)+"(CV0.1)" with open("../res/log/%s.json" % filename, "w+") as f: try: json.dump(out, f, indent=True) diff --git a/higher/smart_aug/transformations.py b/higher/smart_aug/transformations.py index a46eb1a..5941270 100755 --- a/higher/smart_aug/transformations.py +++ b/higher/smart_aug/transformations.py @@ -38,8 +38,10 @@ TF_dict={ #Dataugv5+ 'FlipUD' : (lambda x, mag: flipUD(x)), 'FlipLR' : (lambda x, mag: flipLR(x)), 'Rotate': (lambda x, mag: rotate(x, angle=rand_floats(size=x.shape[0], mag=mag, maxval=30))), - 'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=0))), - 'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=1))), + 'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[1]*0.33), zero_pos=0))), + 'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=x.shape[2]*0.33), zero_pos=1))), + 'TranslateXabs': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=0))), + 'TranslateYabs': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=1))), 'ShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=0))), 'ShearY': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=1))),