mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 20:20:46 +02:00
Evite redefinition inutile de prob dist + Fix mineur transformation
This commit is contained in:
parent
923ef7b85e
commit
a2135e4709
2 changed files with 44 additions and 41 deletions
|
@ -19,7 +19,7 @@ import copy
|
||||||
|
|
||||||
import transformations as TF
|
import transformations as TF
|
||||||
|
|
||||||
|
### Data augmenter ###
|
||||||
class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
"""Data augmentation module with learnable parameters.
|
"""Data augmentation module with learnable parameters.
|
||||||
|
|
||||||
|
@ -125,7 +125,6 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
|
|
||||||
x = copy.deepcopy(x) #Evite de modifier les echantillons par reference (Problematique pour des utilisations paralleles)
|
x = copy.deepcopy(x) #Evite de modifier les echantillons par reference (Problematique pour des utilisations paralleles)
|
||||||
|
|
||||||
for _ in range(self._N_seqTF):
|
|
||||||
## Echantillonage ##
|
## Echantillonage ##
|
||||||
uniforme_dist = torch.ones(1,self._nb_tf,device=device).softmax(dim=1)
|
uniforme_dist = torch.ones(1,self._nb_tf,device=device).softmax(dim=1)
|
||||||
|
|
||||||
|
@ -137,6 +136,9 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
self._distrib = (mix_dist*prob+(1-mix_dist)*uniforme_dist)#.softmax(dim=1) #Mix distrib reel / uniforme avec mix_factor
|
self._distrib = (mix_dist*prob+(1-mix_dist)*uniforme_dist)#.softmax(dim=1) #Mix distrib reel / uniforme avec mix_factor
|
||||||
|
|
||||||
cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_tf), device=device)*self._distrib)
|
cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_tf), device=device)*self._distrib)
|
||||||
|
|
||||||
|
for _ in range(self._N_seqTF):
|
||||||
|
|
||||||
sample = cat_distrib.sample()
|
sample = cat_distrib.sample()
|
||||||
self._samples.append(sample)
|
self._samples.append(sample)
|
||||||
|
|
||||||
|
@ -210,7 +212,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
Returns:
|
Returns:
|
||||||
Tensor : Loss weights.
|
Tensor : Loss weights.
|
||||||
"""
|
"""
|
||||||
if len(self._samples)==0 : return 1 #Pas d'echantillon = pas de ponderation
|
if len(self._samples)==0 : return torch.tensor(1, device=self._params["prob"].device) #Pas d'echantillon = pas de ponderation
|
||||||
|
|
||||||
prob = self._params["prob"].detach() if self._fixed_prob else self._params["prob"]
|
prob = self._params["prob"].detach() if self._fixed_prob else self._params["prob"]
|
||||||
|
|
||||||
|
@ -769,6 +771,7 @@ class RandAug(nn.Module): #RandAugment = UniformFx-MagFxSh + rapide
|
||||||
"""
|
"""
|
||||||
return "RandAug(%dTFx%d-Mag%d)" % (self._nb_tf, self._N_seqTF, self.mag)
|
return "RandAug(%dTFx%d-Mag%d)" % (self._nb_tf, self._N_seqTF, self.mag)
|
||||||
|
|
||||||
|
### Models ###
|
||||||
import higher
|
import higher
|
||||||
class Higher_model(nn.Module):
|
class Higher_model(nn.Module):
|
||||||
"""Model wrapper for higher gradient tracking.
|
"""Model wrapper for higher gradient tracking.
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue