mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
Test Brutus ResNet
This commit is contained in:
parent
3425ba2ceb
commit
7732060eb1
1 changed files with 38 additions and 17 deletions
|
@ -35,16 +35,29 @@ if __name__ == "__main__":
|
|||
|
||||
|
||||
n_inner_iter = 1
|
||||
epochs = 200
|
||||
epochs = 150
|
||||
dataug_epoch_start=0
|
||||
optim_param={
|
||||
'Meta':{
|
||||
'optim':'Adam',
|
||||
'lr':1e-2, #1e-2
|
||||
},
|
||||
'Inner':{
|
||||
'optim': 'SGD',
|
||||
'lr':1e-1, #1e-2
|
||||
'momentum':0.9, #0.9
|
||||
}
|
||||
}
|
||||
|
||||
#model = LeNet(3,10)
|
||||
model = MobileNetV2(num_classes=10)
|
||||
model = ResNet(num_classes=10)
|
||||
#model = MobileNetV2(num_classes=10)
|
||||
#model = WideResNet(num_classes=10, wrn_size=32)
|
||||
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
|
||||
####
|
||||
'''
|
||||
t0 = time.process_time()
|
||||
|
||||
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
@ -60,9 +73,10 @@ if __name__ == "__main__":
|
|||
with open("res/log/%s.json" % filename, "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
|
||||
'''
|
||||
|
||||
####
|
||||
'''
|
||||
t0 = time.process_time()
|
||||
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||||
|
@ -82,11 +96,11 @@ if __name__ == "__main__":
|
|||
res_folder="res/brutus-tests/"
|
||||
epochs= 150
|
||||
inner_its = [1]
|
||||
dist_mix = [1]
|
||||
dist_mix = [0.0, 0.5, 0.8, 1.0]
|
||||
dataug_epoch_starts= [0]
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
TF_nb = [len(tf_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
|
||||
N_seq_TF= [2, 3, 4]
|
||||
N_seq_TF= [2, 3]
|
||||
mag_setup = [(True,True), (False, False)]
|
||||
#prob_setup = [True, False]
|
||||
nb_run= 3
|
||||
|
@ -104,27 +118,34 @@ if __name__ == "__main__":
|
|||
#for i in TF_nb:
|
||||
for m_setup in mag_setup:
|
||||
#for p_setup in prob_setup:
|
||||
p_setup=True
|
||||
for run in range(nb_run):
|
||||
if n_inner_iter == 0 and (m_setup!=(True,True) or p_setup!=True): continue #Autres setup inutiles sans meta-opti
|
||||
if n_tf ==2 and m_setup==(True,True): continue #Deja resultats
|
||||
if n_inner_iter == 0 and (m_setup!=(True,True) and p_setup!=True): continue #Autres setup inutiles sans meta-opti
|
||||
#keys = list(TF.TF_dict.keys())[0:i]
|
||||
#ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
||||
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=False, fixed_mag=m_setup[0], shared_mag=m_setup[1]), LeNet(3,10)).to(device)
|
||||
print(str(aug_model), 'on', device_name)
|
||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=20, loss_patience=None)
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_dist_dataugV2(model=aug_model,
|
||||
epochs=epochs,
|
||||
inner_it=n_inner_iter,
|
||||
dataug_epoch_start=dataug_epoch_start,
|
||||
opt_param=optim_param,
|
||||
print_freq=20,
|
||||
KLdiv=True,
|
||||
loss_patience=None)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in :", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{}epochs(dataug:{})-{}in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter,run)
|
||||
with open(res_folder+"log/%s.json" % filename, "w+") as f:
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||
with open("res/log/%s.json" % filename, "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
|
||||
#plot_resV2(log, fig_name=res_folder+filename, param_names=tf_names)
|
||||
print('-'*9)
|
||||
'''
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue