diff --git a/higher/test_brutus.py b/higher/test_brutus.py index 88de3ca..046df89 100755 --- a/higher/test_brutus.py +++ b/higher/test_brutus.py @@ -35,16 +35,29 @@ if __name__ == "__main__": n_inner_iter = 1 - epochs = 200 + epochs = 150 dataug_epoch_start=0 + optim_param={ + 'Meta':{ + 'optim':'Adam', + 'lr':1e-2, #1e-2 + }, + 'Inner':{ + 'optim': 'SGD', + 'lr':1e-1, #1e-2 + 'momentum':0.9, #0.9 + } + } #model = LeNet(3,10) - model = MobileNetV2(num_classes=10) + model = ResNet(num_classes=10) + #model = MobileNetV2(num_classes=10) #model = WideResNet(num_classes=10, wrn_size=32) tf_dict = {k: TF.TF_dict[k] for k in tf_names} #### + ''' t0 = time.process_time() aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device) @@ -60,9 +73,10 @@ if __name__ == "__main__": with open("res/log/%s.json" % filename, "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') - + ''' #### + ''' t0 = time.process_time() aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device) @@ -82,11 +96,11 @@ if __name__ == "__main__": res_folder="res/brutus-tests/" epochs= 150 inner_its = [1] - dist_mix = [1] + dist_mix = [0.0, 0.5, 0.8, 1.0] dataug_epoch_starts= [0] tf_dict = {k: TF.TF_dict[k] for k in tf_names} TF_nb = [len(tf_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)] - N_seq_TF= [2, 3, 4] + N_seq_TF= [2, 3] mag_setup = [(True,True), (False, False)] #prob_setup = [True, False] nb_run= 3 @@ -104,27 +118,34 @@ if __name__ == "__main__": #for i in TF_nb: for m_setup in mag_setup: #for p_setup in prob_setup: + p_setup=True for run in range(nb_run): - if n_inner_iter == 0 and (m_setup!=(True,True) or p_setup!=True): continue #Autres setup inutiles sans meta-opti - if n_tf ==2 and m_setup==(True,True): continue #Deja resultats + if n_inner_iter == 0 and (m_setup!=(True,True) and p_setup!=True): continue #Autres setup inutiles sans meta-opti #keys = list(TF.TF_dict.keys())[0:i] #ntf_dict = {k: TF.TF_dict[k] for k in keys} - aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=False, fixed_mag=m_setup[0], shared_mag=m_setup[1]), LeNet(3,10)).to(device) - print(str(aug_model), 'on', device_name) - #run_simple_dataug(inner_it=n_inner_iter, epochs=epochs) - log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=20, loss_patience=None) + aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device) + #aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device) + print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) + log= run_dist_dataugV2(model=aug_model, + epochs=epochs, + inner_it=n_inner_iter, + dataug_epoch_start=dataug_epoch_start, + opt_param=optim_param, + print_freq=20, + KLdiv=True, + loss_patience=None) + + exec_time=time.process_time() - t0 #### print('-'*9) times = [x["time"] for x in log] - out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} - print(str(aug_model),": acc", out["Accuracy"], "in :", out["Time"][0], "+/-", out["Time"][1]) - filename = "{}-{}epochs(dataug:{})-{}in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter,run) - with open(res_folder+"log/%s.json" % filename, "w+") as f: + out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} + print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) + filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter) + with open("res/log/%s.json" % filename, "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') - - #plot_resV2(log, fig_name=res_folder+filename, param_names=tf_names) print('-'*9) '''