RandAugment

This commit is contained in:
Harle, Antoine (Contracteur) 2020-02-05 12:24:20 -05:00
parent 7221142a9a
commit 6277e268c1
3 changed files with 407 additions and 73 deletions

View file

@ -1,3 +1,6 @@
""" Script to run series of experiments.
"""
from dataug import *
#from utils import *
from train_utils import *
@ -13,14 +16,16 @@ optim_param={
},
'Inner':{
'optim': 'SGD',
'lr':1e-1, #1e-2 #1e-1 for ResNet
'lr':1e-2, #1e-2 #1e-1 for ResNet
'momentum':0.9, #0.9
}
}
res_folder="../res/benchmark/CIFAR10/"
epochs= 150
#res_folder="../res/HPsearch/"
epochs= 200
dataug_epoch_start=0
nb_run= 3
# Use available TF (see transformations.py)
tf_names = [
@ -80,60 +85,107 @@ if __name__ == "__main__":
'''
for model_type in model_list.keys():
for model_name in model_list[model_type]:
model = getattr(model_type, model_name)(pretrained=False)
for run in range(nb_run):
t0 = time.process_time()
torch.cuda.reset_max_memory_cached() #reset_peak_stats
t0 = time.perf_counter()
model = Higher_model(model) #run_dist_dataugV3
if n_inner_iter!=0:
aug_model = Augmented_model(
Data_augV5(TF_dict=tf_dict,
N_TF=n_tf,
mix_dist=dist,
fixed_prob=p_setup,
fixed_mag=m_setup[0],
shared_mag=m_setup[1]),
model).to(device)
else:
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=n_tf), model).to(device)
model = getattr(model_type, model_name)(pretrained=False)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_dist_dataugV3(model=aug_model,
epochs=epochs,
inner_it=n_inner_iter,
dataug_epoch_start=dataug_epoch_start,
opt_param=optim_param,
print_freq=epochs/4,
unsup_loss=1,
hp_opt=False,
save_sample_freq=None)
model = Higher_model(model, model_name) #run_dist_dataugV3
if n_inner_iter!=0:
aug_model = Augmented_model(
Data_augV5(TF_dict=tf_dict,
N_TF=n_tf,
mix_dist=dist,
fixed_prob=p_setup,
fixed_mag=m_setup[0],
shared_mag=m_setup[1]),
model).to(device)
else:
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=n_tf), model).to(device)
exec_time=time.process_time() - t0
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
with open("../res/log/%s.json" % filename, "w+") as f:
try:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
except:
print("Failed to save logs :",f.name)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_dist_dataugV3(model=aug_model,
epochs=epochs,
inner_it=n_inner_iter,
dataug_epoch_start=dataug_epoch_start,
opt_param=optim_param,
print_freq=epochs/4,
unsup_loss=1,
hp_opt=False,
save_sample_freq=None)
print('Execution Time : %.00f '%(exec_time))
print('-'*9)
exec_time=time.perf_counter() - t0
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]),
"Time": (np.mean(times),np.std(times), exec_time),
'Optimizer': optim_param,
"Device": device_name,
"Memory": max_cached,
"Param_names": aug_model.TF_names(),
"Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
with open(res_folder+"log/%s.json" % filename, "w+") as f:
try:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
except:
print("Failed to save logs :",f.name)
print('Execution Time : %.00f '%(exec_time))
print('-'*9)
'''
### Benchmark - RandAugment ###
for model_type in model_list.keys():
for model_name in model_list[model_type]:
for run in range(nb_run):
torch.cuda.reset_max_memory_cached() #reset_peak_stats
t0 = time.perf_counter()
model = getattr(model_type, model_name)(pretrained=False).to(device)
print("RandAugment(N{}-M{})-{} on {} for {} epochs".format(rand_aug['N'],rand_aug['M'],model_name, device_name, epochs))
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=epochs/4)
exec_time=time.perf_counter() - t0
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]),
"Time": (np.mean(times),np.std(times), exec_time),
'Optimizer': optim_param,
"Device": device_name,
"Memory": max_cached,
"Rand_Aug": rand_aug,
"Log": log}
print("RandAugment-",model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "RandAugment(N{}-M{})-{}-{} epochs -{}".format(rand_aug['N'],rand_aug['M'],model_name,epochs, run)
with open(res_folder+"log/%s.json" % filename, "w+") as f:
try:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
except:
print("Failed to save logs :",f.name)
#plot_resV2(log, fig_name=res_folder+filename)
print('Execution Time : %.00f '%(exec_time))
print('-'*9)
### HP Search ###
'''
from LeNet import *
inner_its = [1]
dist_mix = [0.0, 0.5, 0.8, 1.0]
N_seq_TF= [2, 3, 4]
N_seq_TF= [3, 2, 4]
mag_setup = [(True,True), (False, False)] #(FxSh, Independant)
#prob_setup = [True, False]
nb_run= 3
try:
os.mkdir(res_folder)
@ -150,9 +202,10 @@ if __name__ == "__main__":
p_setup=False
for run in range(nb_run):
t0 = time.process_time()
t0 = time.perf_counter()
model = getattr(models.resnet, 'resnet18')(pretrained=False)
#model = getattr(models.resnet, 'resnet18')(pretrained=False)
model = LeNet(3,10)
model = Higher_model(model) #run_dist_dataugV3
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
@ -168,7 +221,7 @@ if __name__ == "__main__":
hp_opt=False,
save_sample_freq=None)
exec_time=time.process_time() - t0
exec_time=time.perf_counter() - t0
####
print('-'*9)
times = [x["time"] for x in log]
@ -184,4 +237,4 @@ if __name__ == "__main__":
print('Execution Time : %.00f '%(exec_time))
print('-'*9)
#'''
'''

View file

@ -1,6 +1,6 @@
""" Dataset definition.
MNIST / CIFAR10
MNIST / CIFAR10 / CIFAR100 / SVHN / ImageNet
"""
import torch
from torch.utils.data.dataset import ConcatDataset
@ -37,9 +37,16 @@ transform_train = torchvision.transforms.Compose([
#transforms.RandomVerticalFlip(),
torchvision.transforms.ToTensor(),
])
#from RandAugment import RandAugment
## RandAugment ##
from RandAugment import RandAugment
# Add RandAugment with N, M(hyperparameter)
#transform_train.transforms.insert(0, RandAugment(n=2, m=30))
rand_aug={'N': 2, 'M': 1}
#rand_aug={'N': 2, 'M': 9./30} #RN-ImageNet
#rand_aug={'N': 3, 'M': 5./30} #WRN-CIFAR10
#rand_aug={'N': 2, 'M': 14./30} #WRN-CIFAR100
#rand_aug={'N': 3, 'M': 7./30} #WRN-SVHN
transform_train.transforms.insert(0, RandAugment(n=rand_aug['N'], m=rand_aug['M']))
### Classic Dataset ###
@ -50,7 +57,7 @@ transform_train = torchvision.transforms.Compose([
#CIFAR
data_train = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform_train)
#data_val = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform)
data_val = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform)
data_test = torchvision.datasets.CIFAR10(dataroot, train=False, download=download_data, transform=transform)
#data_train = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform_train)
@ -72,32 +79,18 @@ data_test = torchvision.datasets.CIFAR10(dataroot, train=False, download=downloa
#Validation set size [0, 1]
valid_size=0.1
#train_subset_indices=range(int(len(data_train)*(1-valid_size)))
#val_subset_indices=range(int(len(data_train)*(1-valid_size)),len(data_train))
train_subset_indices=range(int(len(data_train)*(1-valid_size)))
val_subset_indices=range(int(len(data_train)*(1-valid_size)),len(data_train))
#train_subset_indices=range(BATCH_SIZE*10)
#val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20)
#from torch.utils.data import SubsetRandomSampler
#dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
#dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
from torch.utils.data import SubsetRandomSampler
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
dl_val = torch.utils.data.DataLoader(data_val, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False, num_workers=num_workers, pin_memory=pin_memory)
#Cross Validation
'''
from skorch.dataset import CVSplit
import numpy as np
cvs = CVSplit(cv=valid_size, stratified=True) #Stratified =True for unbalanced dataset #ShuffleSplit
def next_CVSplit():
train_subset, val_subset = cvs(data_train, y=np.array(data_train.targets))
dl_train = torch.utils.data.DataLoader(train_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
dl_val = torch.utils.data.DataLoader(val_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
return dl_train, dl_val
dl_train, dl_val = next_CVSplit()
'''
import numpy as np
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import StratifiedShuffleSplit
@ -134,7 +127,7 @@ class CVSplit(object):
else:
cv_cls = ShuffleSplit
self._cv= cv_cls(test_size=val_size, random_state=0)
self._cv= cv_cls(test_size=val_size, random_state=0) #Random state w/ fixed seed
def next_split(self):
""" Get next cross-validation split.
@ -157,4 +150,21 @@ class CVSplit(object):
return dl_train, dl_val
cvs = CVSplit(data_train, val_size=valid_size)
dl_train, dl_val = cvs.next_split()
dl_train, dl_val = cvs.next_split()
'''
'''
from skorch.dataset import CVSplit
import numpy as np
cvs = CVSplit(cv=valid_size, stratified=True) #Stratified =True for unbalanced dataset #ShuffleSplit
def next_CVSplit():
train_subset, val_subset = cvs(data_train, y=np.array(data_train.targets))
dl_train = torch.utils.data.DataLoader(train_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
dl_val = torch.utils.data.DataLoader(val_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
return dl_train, dl_val
dl_train, dl_val = next_CVSplit()
'''