mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
240 lines
9.5 KiB
Python
240 lines
9.5 KiB
Python
""" Script to run series of experiments.
|
|
|
|
"""
|
|
from dataug import *
|
|
#from utils import *
|
|
from train_utils import *
|
|
|
|
import torchvision.models as models
|
|
|
|
model_list={models.resnet: ['resnet18', 'resnet50','wide_resnet50_2']} #lr=0.1
|
|
|
|
optim_param={
|
|
'Meta':{
|
|
'optim':'Adam',
|
|
'lr':1e-2, #1e-2
|
|
},
|
|
'Inner':{
|
|
'optim': 'SGD',
|
|
'lr':1e-2, #1e-2 #1e-1 for ResNet
|
|
'momentum':0.9, #0.9
|
|
}
|
|
}
|
|
|
|
res_folder="../res/benchmark/CIFAR10/"
|
|
#res_folder="../res/HPsearch/"
|
|
epochs= 200
|
|
dataug_epoch_start=0
|
|
nb_run= 3
|
|
|
|
# Use available TF (see transformations.py)
|
|
tf_names = [
|
|
## Geometric TF ##
|
|
'Identity',
|
|
'FlipUD',
|
|
'FlipLR',
|
|
'Rotate',
|
|
'TranslateX',
|
|
'TranslateY',
|
|
'ShearX',
|
|
'ShearY',
|
|
|
|
## Color TF (Expect image in the range of [0, 1]) ##
|
|
'Contrast',
|
|
'Color',
|
|
'Brightness',
|
|
'Sharpness',
|
|
'Posterize',
|
|
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
|
|
|
## Bad Tranformations ##
|
|
# Bad Geometric TF #
|
|
#'BShearX',
|
|
#'BShearY',
|
|
#'BTranslateX-',
|
|
#'BTranslateX-',
|
|
#'BTranslateY',
|
|
#'BTranslateY-',
|
|
|
|
#'BadContrast',
|
|
#'BadBrightness',
|
|
|
|
#'Random',
|
|
#'RandBlend'
|
|
]
|
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
|
|
|
|
|
device = torch.device('cuda')
|
|
|
|
if device == torch.device('cpu'):
|
|
device_name = 'CPU'
|
|
else:
|
|
device_name = torch.cuda.get_device_name(device)
|
|
|
|
torch.backends.cudnn.benchmark = True #Faster if same input size #Not recommended for reproductibility
|
|
|
|
#Increase reproductibility
|
|
torch.manual_seed(0)
|
|
np.random.seed(0)
|
|
|
|
##########################################
|
|
if __name__ == "__main__":
|
|
|
|
### Benchmark ###
|
|
'''
|
|
for model_type in model_list.keys():
|
|
for model_name in model_list[model_type]:
|
|
for run in range(nb_run):
|
|
|
|
torch.cuda.reset_max_memory_cached() #reset_peak_stats
|
|
t0 = time.perf_counter()
|
|
|
|
model = getattr(model_type, model_name)(pretrained=False)
|
|
|
|
model = Higher_model(model, model_name) #run_dist_dataugV3
|
|
if n_inner_iter!=0:
|
|
aug_model = Augmented_model(
|
|
Data_augV5(TF_dict=tf_dict,
|
|
N_TF=n_tf,
|
|
mix_dist=dist,
|
|
fixed_prob=p_setup,
|
|
fixed_mag=m_setup[0],
|
|
shared_mag=m_setup[1]),
|
|
model).to(device)
|
|
else:
|
|
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=n_tf), model).to(device)
|
|
|
|
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
|
log= run_dist_dataugV3(model=aug_model,
|
|
epochs=epochs,
|
|
inner_it=n_inner_iter,
|
|
dataug_epoch_start=dataug_epoch_start,
|
|
opt_param=optim_param,
|
|
print_freq=epochs/4,
|
|
unsup_loss=1,
|
|
hp_opt=False,
|
|
save_sample_freq=None)
|
|
|
|
exec_time=time.perf_counter() - t0
|
|
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB
|
|
####
|
|
print('-'*9)
|
|
times = [x["time"] for x in log]
|
|
out = {"Accuracy": max([x["acc"] for x in log]),
|
|
"Time": (np.mean(times),np.std(times), exec_time),
|
|
'Optimizer': optim_param,
|
|
"Device": device_name,
|
|
"Memory": max_cached,
|
|
"Param_names": aug_model.TF_names(),
|
|
"Log": log}
|
|
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
|
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
|
|
with open(res_folder+"log/%s.json" % filename, "w+") as f:
|
|
try:
|
|
json.dump(out, f, indent=True)
|
|
print('Log :\"',f.name, '\" saved !')
|
|
except:
|
|
print("Failed to save logs :",f.name)
|
|
|
|
print('Execution Time : %.00f '%(exec_time))
|
|
print('-'*9)
|
|
'''
|
|
### Benchmark - RandAugment ###
|
|
for model_type in model_list.keys():
|
|
for model_name in model_list[model_type]:
|
|
for run in range(nb_run):
|
|
torch.cuda.reset_max_memory_cached() #reset_peak_stats
|
|
t0 = time.perf_counter()
|
|
|
|
model = getattr(model_type, model_name)(pretrained=False).to(device)
|
|
|
|
print("RandAugment(N{}-M{})-{} on {} for {} epochs".format(rand_aug['N'],rand_aug['M'],model_name, device_name, epochs))
|
|
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=epochs/4)
|
|
|
|
exec_time=time.perf_counter() - t0
|
|
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB
|
|
####
|
|
print('-'*9)
|
|
times = [x["time"] for x in log]
|
|
out = {"Accuracy": max([x["acc"] for x in log]),
|
|
"Time": (np.mean(times),np.std(times), exec_time),
|
|
'Optimizer': optim_param,
|
|
"Device": device_name,
|
|
"Memory": max_cached,
|
|
"Rand_Aug": rand_aug,
|
|
"Log": log}
|
|
print("RandAugment-",model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
|
filename = "RandAugment(N{}-M{})-{}-{} epochs -{}".format(rand_aug['N'],rand_aug['M'],model_name,epochs, run)
|
|
with open(res_folder+"log/%s.json" % filename, "w+") as f:
|
|
try:
|
|
json.dump(out, f, indent=True)
|
|
print('Log :\"',f.name, '\" saved !')
|
|
except:
|
|
print("Failed to save logs :",f.name)
|
|
|
|
#plot_resV2(log, fig_name=res_folder+filename)
|
|
|
|
print('Execution Time : %.00f '%(exec_time))
|
|
print('-'*9)
|
|
|
|
### HP Search ###
|
|
'''
|
|
from LeNet import *
|
|
inner_its = [1]
|
|
dist_mix = [0.0, 0.5, 0.8, 1.0]
|
|
N_seq_TF= [3, 2, 4]
|
|
mag_setup = [(True,True), (False, False)] #(FxSh, Independant)
|
|
#prob_setup = [True, False]
|
|
|
|
try:
|
|
os.mkdir(res_folder)
|
|
os.mkdir(res_folder+"log/")
|
|
except FileExistsError:
|
|
pass
|
|
|
|
for n_inner_iter in inner_its:
|
|
for n_tf in N_seq_TF:
|
|
for dist in dist_mix:
|
|
#for i in TF_nb:
|
|
for m_setup in mag_setup:
|
|
#for p_setup in prob_setup:
|
|
p_setup=False
|
|
for run in range(nb_run):
|
|
|
|
t0 = time.perf_counter()
|
|
|
|
#model = getattr(models.resnet, 'resnet18')(pretrained=False)
|
|
model = LeNet(3,10)
|
|
model = Higher_model(model) #run_dist_dataugV3
|
|
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device)
|
|
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
|
|
|
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
|
log= run_dist_dataugV3(model=aug_model,
|
|
epochs=epochs,
|
|
inner_it=n_inner_iter,
|
|
dataug_epoch_start=dataug_epoch_start,
|
|
opt_param=optim_param,
|
|
print_freq=epochs/4,
|
|
unsup_loss=1,
|
|
hp_opt=False,
|
|
save_sample_freq=None)
|
|
|
|
exec_time=time.perf_counter() - t0
|
|
####
|
|
print('-'*9)
|
|
times = [x["time"] for x in log]
|
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
|
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
|
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
|
|
with open(res_folder+"log/%s.json" % filename, "w+") as f:
|
|
try:
|
|
json.dump(out, f, indent=True)
|
|
print('Log :\"',f.name, '\" saved !')
|
|
except:
|
|
print("Failed to save logs :",f.name)
|
|
|
|
print('Execution Time : %.00f '%(exec_time))
|
|
print('-'*9)
|
|
'''
|