mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
RandAugment
This commit is contained in:
parent
7221142a9a
commit
6277e268c1
3 changed files with 407 additions and 73 deletions
|
@ -1,3 +1,6 @@
|
|||
""" Script to run series of experiments.
|
||||
|
||||
"""
|
||||
from dataug import *
|
||||
#from utils import *
|
||||
from train_utils import *
|
||||
|
@ -13,14 +16,16 @@ optim_param={
|
|||
},
|
||||
'Inner':{
|
||||
'optim': 'SGD',
|
||||
'lr':1e-1, #1e-2 #1e-1 for ResNet
|
||||
'lr':1e-2, #1e-2 #1e-1 for ResNet
|
||||
'momentum':0.9, #0.9
|
||||
}
|
||||
}
|
||||
|
||||
res_folder="../res/benchmark/CIFAR10/"
|
||||
epochs= 150
|
||||
#res_folder="../res/HPsearch/"
|
||||
epochs= 200
|
||||
dataug_epoch_start=0
|
||||
nb_run= 3
|
||||
|
||||
# Use available TF (see transformations.py)
|
||||
tf_names = [
|
||||
|
@ -80,60 +85,107 @@ if __name__ == "__main__":
|
|||
'''
|
||||
for model_type in model_list.keys():
|
||||
for model_name in model_list[model_type]:
|
||||
model = getattr(model_type, model_name)(pretrained=False)
|
||||
for run in range(nb_run):
|
||||
|
||||
t0 = time.process_time()
|
||||
torch.cuda.reset_max_memory_cached() #reset_peak_stats
|
||||
t0 = time.perf_counter()
|
||||
|
||||
model = Higher_model(model) #run_dist_dataugV3
|
||||
if n_inner_iter!=0:
|
||||
aug_model = Augmented_model(
|
||||
Data_augV5(TF_dict=tf_dict,
|
||||
N_TF=n_tf,
|
||||
mix_dist=dist,
|
||||
fixed_prob=p_setup,
|
||||
fixed_mag=m_setup[0],
|
||||
shared_mag=m_setup[1]),
|
||||
model).to(device)
|
||||
else:
|
||||
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=n_tf), model).to(device)
|
||||
model = getattr(model_type, model_name)(pretrained=False)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_dist_dataugV3(model=aug_model,
|
||||
epochs=epochs,
|
||||
inner_it=n_inner_iter,
|
||||
dataug_epoch_start=dataug_epoch_start,
|
||||
opt_param=optim_param,
|
||||
print_freq=epochs/4,
|
||||
unsup_loss=1,
|
||||
hp_opt=False,
|
||||
save_sample_freq=None)
|
||||
model = Higher_model(model, model_name) #run_dist_dataugV3
|
||||
if n_inner_iter!=0:
|
||||
aug_model = Augmented_model(
|
||||
Data_augV5(TF_dict=tf_dict,
|
||||
N_TF=n_tf,
|
||||
mix_dist=dist,
|
||||
fixed_prob=p_setup,
|
||||
fixed_mag=m_setup[0],
|
||||
shared_mag=m_setup[1]),
|
||||
model).to(device)
|
||||
else:
|
||||
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=n_tf), model).to(device)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
|
||||
with open("../res/log/%s.json" % filename, "w+") as f:
|
||||
try:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
except:
|
||||
print("Failed to save logs :",f.name)
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_dist_dataugV3(model=aug_model,
|
||||
epochs=epochs,
|
||||
inner_it=n_inner_iter,
|
||||
dataug_epoch_start=dataug_epoch_start,
|
||||
opt_param=optim_param,
|
||||
print_freq=epochs/4,
|
||||
unsup_loss=1,
|
||||
hp_opt=False,
|
||||
save_sample_freq=None)
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
|
||||
exec_time=time.perf_counter() - t0
|
||||
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]),
|
||||
"Time": (np.mean(times),np.std(times), exec_time),
|
||||
'Optimizer': optim_param,
|
||||
"Device": device_name,
|
||||
"Memory": max_cached,
|
||||
"Param_names": aug_model.TF_names(),
|
||||
"Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
|
||||
with open(res_folder+"log/%s.json" % filename, "w+") as f:
|
||||
try:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
except:
|
||||
print("Failed to save logs :",f.name)
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
'''
|
||||
### Benchmark - RandAugment ###
|
||||
for model_type in model_list.keys():
|
||||
for model_name in model_list[model_type]:
|
||||
for run in range(nb_run):
|
||||
torch.cuda.reset_max_memory_cached() #reset_peak_stats
|
||||
t0 = time.perf_counter()
|
||||
|
||||
model = getattr(model_type, model_name)(pretrained=False).to(device)
|
||||
|
||||
print("RandAugment(N{}-M{})-{} on {} for {} epochs".format(rand_aug['N'],rand_aug['M'],model_name, device_name, epochs))
|
||||
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=epochs/4)
|
||||
|
||||
exec_time=time.perf_counter() - t0
|
||||
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]),
|
||||
"Time": (np.mean(times),np.std(times), exec_time),
|
||||
'Optimizer': optim_param,
|
||||
"Device": device_name,
|
||||
"Memory": max_cached,
|
||||
"Rand_Aug": rand_aug,
|
||||
"Log": log}
|
||||
print("RandAugment-",model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "RandAugment(N{}-M{})-{}-{} epochs -{}".format(rand_aug['N'],rand_aug['M'],model_name,epochs, run)
|
||||
with open(res_folder+"log/%s.json" % filename, "w+") as f:
|
||||
try:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
except:
|
||||
print("Failed to save logs :",f.name)
|
||||
|
||||
#plot_resV2(log, fig_name=res_folder+filename)
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
|
||||
### HP Search ###
|
||||
'''
|
||||
from LeNet import *
|
||||
inner_its = [1]
|
||||
dist_mix = [0.0, 0.5, 0.8, 1.0]
|
||||
N_seq_TF= [2, 3, 4]
|
||||
N_seq_TF= [3, 2, 4]
|
||||
mag_setup = [(True,True), (False, False)] #(FxSh, Independant)
|
||||
#prob_setup = [True, False]
|
||||
nb_run= 3
|
||||
|
||||
try:
|
||||
os.mkdir(res_folder)
|
||||
|
@ -150,9 +202,10 @@ if __name__ == "__main__":
|
|||
p_setup=False
|
||||
for run in range(nb_run):
|
||||
|
||||
t0 = time.process_time()
|
||||
t0 = time.perf_counter()
|
||||
|
||||
model = getattr(models.resnet, 'resnet18')(pretrained=False)
|
||||
#model = getattr(models.resnet, 'resnet18')(pretrained=False)
|
||||
model = LeNet(3,10)
|
||||
model = Higher_model(model) #run_dist_dataugV3
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
@ -168,7 +221,7 @@ if __name__ == "__main__":
|
|||
hp_opt=False,
|
||||
save_sample_freq=None)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
exec_time=time.perf_counter() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
|
@ -184,4 +237,4 @@ if __name__ == "__main__":
|
|||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
#'''
|
||||
'''
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
""" Dataset definition.
|
||||
|
||||
MNIST / CIFAR10
|
||||
MNIST / CIFAR10 / CIFAR100 / SVHN / ImageNet
|
||||
"""
|
||||
import torch
|
||||
from torch.utils.data.dataset import ConcatDataset
|
||||
|
@ -37,9 +37,16 @@ transform_train = torchvision.transforms.Compose([
|
|||
#transforms.RandomVerticalFlip(),
|
||||
torchvision.transforms.ToTensor(),
|
||||
])
|
||||
#from RandAugment import RandAugment
|
||||
|
||||
## RandAugment ##
|
||||
from RandAugment import RandAugment
|
||||
# Add RandAugment with N, M(hyperparameter)
|
||||
#transform_train.transforms.insert(0, RandAugment(n=2, m=30))
|
||||
rand_aug={'N': 2, 'M': 1}
|
||||
#rand_aug={'N': 2, 'M': 9./30} #RN-ImageNet
|
||||
#rand_aug={'N': 3, 'M': 5./30} #WRN-CIFAR10
|
||||
#rand_aug={'N': 2, 'M': 14./30} #WRN-CIFAR100
|
||||
#rand_aug={'N': 3, 'M': 7./30} #WRN-SVHN
|
||||
transform_train.transforms.insert(0, RandAugment(n=rand_aug['N'], m=rand_aug['M']))
|
||||
|
||||
### Classic Dataset ###
|
||||
|
||||
|
@ -50,7 +57,7 @@ transform_train = torchvision.transforms.Compose([
|
|||
|
||||
#CIFAR
|
||||
data_train = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform_train)
|
||||
#data_val = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform)
|
||||
data_val = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform)
|
||||
data_test = torchvision.datasets.CIFAR10(dataroot, train=False, download=download_data, transform=transform)
|
||||
|
||||
#data_train = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform_train)
|
||||
|
@ -72,32 +79,18 @@ data_test = torchvision.datasets.CIFAR10(dataroot, train=False, download=downloa
|
|||
|
||||
#Validation set size [0, 1]
|
||||
valid_size=0.1
|
||||
#train_subset_indices=range(int(len(data_train)*(1-valid_size)))
|
||||
#val_subset_indices=range(int(len(data_train)*(1-valid_size)),len(data_train))
|
||||
train_subset_indices=range(int(len(data_train)*(1-valid_size)))
|
||||
val_subset_indices=range(int(len(data_train)*(1-valid_size)),len(data_train))
|
||||
#train_subset_indices=range(BATCH_SIZE*10)
|
||||
#val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20)
|
||||
|
||||
#from torch.utils.data import SubsetRandomSampler
|
||||
#dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
#dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
from torch.utils.data import SubsetRandomSampler
|
||||
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_val = torch.utils.data.DataLoader(data_val, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False, num_workers=num_workers, pin_memory=pin_memory)
|
||||
|
||||
#Cross Validation
|
||||
'''
|
||||
from skorch.dataset import CVSplit
|
||||
import numpy as np
|
||||
cvs = CVSplit(cv=valid_size, stratified=True) #Stratified =True for unbalanced dataset #ShuffleSplit
|
||||
|
||||
def next_CVSplit():
|
||||
|
||||
train_subset, val_subset = cvs(data_train, y=np.array(data_train.targets))
|
||||
dl_train = torch.utils.data.DataLoader(train_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_val = torch.utils.data.DataLoader(val_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
|
||||
|
||||
return dl_train, dl_val
|
||||
|
||||
dl_train, dl_val = next_CVSplit()
|
||||
'''
|
||||
import numpy as np
|
||||
from sklearn.model_selection import ShuffleSplit
|
||||
from sklearn.model_selection import StratifiedShuffleSplit
|
||||
|
@ -134,7 +127,7 @@ class CVSplit(object):
|
|||
else:
|
||||
cv_cls = ShuffleSplit
|
||||
|
||||
self._cv= cv_cls(test_size=val_size, random_state=0)
|
||||
self._cv= cv_cls(test_size=val_size, random_state=0) #Random state w/ fixed seed
|
||||
|
||||
def next_split(self):
|
||||
""" Get next cross-validation split.
|
||||
|
@ -157,4 +150,21 @@ class CVSplit(object):
|
|||
return dl_train, dl_val
|
||||
|
||||
cvs = CVSplit(data_train, val_size=valid_size)
|
||||
dl_train, dl_val = cvs.next_split()
|
||||
dl_train, dl_val = cvs.next_split()
|
||||
'''
|
||||
|
||||
'''
|
||||
from skorch.dataset import CVSplit
|
||||
import numpy as np
|
||||
cvs = CVSplit(cv=valid_size, stratified=True) #Stratified =True for unbalanced dataset #ShuffleSplit
|
||||
|
||||
def next_CVSplit():
|
||||
|
||||
train_subset, val_subset = cvs(data_train, y=np.array(data_train.targets))
|
||||
dl_train = torch.utils.data.DataLoader(train_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_val = torch.utils.data.DataLoader(val_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
|
||||
|
||||
return dl_train, dl_val
|
||||
|
||||
dl_train, dl_val = next_CVSplit()
|
||||
'''
|
Loading…
Add table
Add a link
Reference in a new issue