mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
Fin script example
This commit is contained in:
parent
96ed9fe2ae
commit
5cd50ca9f3
4 changed files with 198 additions and 103 deletions
77
higher/smart_aug/smart_aug_example.py
Normal file
77
higher/smart_aug/smart_aug_example.py
Normal file
|
@ -0,0 +1,77 @@
|
|||
""" Example use of smart augmentation.
|
||||
|
||||
"""
|
||||
|
||||
from model import *
|
||||
from dataug import *
|
||||
from train_utils import *
|
||||
|
||||
# Use available TF (see transformations.py)
|
||||
tf_names = [
|
||||
## Geometric TF ##
|
||||
'Identity',
|
||||
'FlipUD',
|
||||
'FlipLR',
|
||||
'Rotate',
|
||||
'TranslateX',
|
||||
'TranslateY',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
|
||||
## Color TF (Expect image in the range of [0, 1]) ##
|
||||
'Contrast',
|
||||
'Color',
|
||||
'Brightness',
|
||||
'Sharpness',
|
||||
'Posterize',
|
||||
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
]
|
||||
|
||||
|
||||
device = torch.device('cuda') #Select device to use
|
||||
|
||||
if device == torch.device('cpu'):
|
||||
device_name = 'CPU'
|
||||
else:
|
||||
device_name = torch.cuda.get_device_name(device)
|
||||
|
||||
##########################################
|
||||
if __name__ == "__main__":
|
||||
|
||||
#Parameters
|
||||
n_inner_iter = 1
|
||||
epochs = 150
|
||||
optim_param={
|
||||
'Meta':{
|
||||
'optim':'Adam',
|
||||
'lr':1e-2, #1e-2
|
||||
},
|
||||
'Inner':{
|
||||
'optim': 'SGD',
|
||||
'lr':1e-2, #1e-2
|
||||
'momentum':0.9, #0.9
|
||||
}
|
||||
}
|
||||
|
||||
#Models
|
||||
model = LeNet(3,10)
|
||||
#model = ResNet(num_classes=10)
|
||||
#model = MobileNetV2(num_classes=10)
|
||||
#model = WideResNet(num_classes=10, wrn_size=32)
|
||||
|
||||
#Smart_aug initialisation
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
model = Higher_model(model) #run_dist_dataugV3
|
||||
aug_model = Augmented_model(
|
||||
Data_augV5(TF_dict=tf_dict,
|
||||
N_TF=3,
|
||||
mix_dist=0.8,
|
||||
fixed_prob=False,
|
||||
fixed_mag=False,
|
||||
shared_mag=False),
|
||||
model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
|
||||
# Training
|
||||
trained_model = run_simple_smartaug(model=aug_model, epochs=epochs, inner_it=n_inner_iter, opt_param=optim_param)
|
Loading…
Add table
Add a link
Reference in a new issue