Fin script example

This commit is contained in:
Harle, Antoine (Contracteur) 2020-01-29 06:36:12 -05:00
parent 96ed9fe2ae
commit 5cd50ca9f3
4 changed files with 198 additions and 103 deletions

View file

@ -919,25 +919,51 @@ class Augmented_model(nn.Module):
self._data_augmentation=mode
self._mods['data_aug'].augment(mode)
#### Encapsulation Meta Opt ####
def start_bilevel_opt(self, inner_it, hp_list, opt_param, dl_val):
""" Set up Augmented Model for bi-level optimisation.
Create and keep in Augmented Model the necessary objects for meta-optimisation.
This allow for an almost transparent use by just hiding the bi-level optimisation (see ''run_dist_dataugV3'') by ::
model.step(loss)
See ''run_simple_smartaug'' for a complete example.
Args:
inner_it (int): Number of inner iteration before a meta-step. 0 inner iteration means there's no meta-step.
hp_list (list): List of hyper-parameters to be learned.
opt_param (dict): Dictionnary containing optimizers parameters.
dl_val (DataLoader): Data loader of validation data.
"""
self._it_count=0
self._in_it=inner_it
self._opt_param=opt_param
#Inner Opt
inner_opt = torch.optim.SGD(self._mods['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
#Validation data
self._dl_val=dl_val
self._dl_val_it=iter(dl_val)
self._val_loss=0.
if inner_it==0 or len(hp_list)==0: #No meta-opt
print("No meta optimization")
self._diffopt = model['model'].get_diffopt(
#Inner Opt
self._diffopt = self._mods['model'].get_diffopt(
inner_opt,
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
track_higher_grads=False)
self._meta_opt=None
else: #Bi-level opt
print("Bi-Level optimization")
self._it_count=0
self._in_it=inner_it
self._opt_param=opt_param
#Inner Opt
inner_opt = torch.optim.SGD(self._mods['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
self._diffopt = self._mods['model'].get_diffopt(
inner_opt,
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
@ -945,15 +971,34 @@ class Augmented_model(nn.Module):
#Meta Opt
self._meta_opt = torch.optim.Adam(hp_list, lr=opt_param['Meta']['lr'])
self._dl_val=dl_val
self._dl_val_it=iter(dl_val)
self._val_loss=0.
self._meta_opt.zero_grad()
def step(self, loss):
""" Perform a model update.
''start_bilevel_opt'' method needs to be called once before using this method.
Perform a step of inner optimization and, if needed, a step of meta optimization.
Replace ::
opt.zero_grad()
loss.backward()
opt.step()
val_loss=...
val_loss.backward()
meta_opt.step()
adjust_param()
detach()
meta_opt.zero_grad()
By ::
model.step(loss)
Args:
loss (Tensor): the training loss tensor.
"""
self._it_count+=1
self._diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
@ -982,6 +1027,22 @@ class Augmented_model(nn.Module):
self._it_count=0
def val_loss(self):
""" Get the validation loss.
Compute, if needed, the validation loss and returns it.
''start_bilevel_opt'' method needs to be called once before using this method.
Returns:
(Tensor) Validation loss on a single batch of data.
"""
if(self._meta_opt): #Bilevel opti
return self._val_loss
else:
return compute_vaLoss(model=self._mods['model'], dl_it=self._dl_val_it, dl=self._dl_val)
##########################
def train(self, mode=True):
""" Set the module training mode.