Ajout RandAugment

This commit is contained in:
Harle, Antoine (Contracteur) 2019-11-27 12:54:19 -05:00
parent 3c2022de32
commit 4a7e73088d
4 changed files with 249 additions and 37 deletions

View file

@ -659,7 +659,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
return w_loss
def reg_loss(self, reg_factor=0.005):
if self._fixed_mag:
if self._fixed_mag: # or self._fixed_prob: #Pas de regularisation si trop peu de DOF
return torch.tensor(0)
else:
#return reg_factor * F.l1_loss(self._params['mag'][self._reg_mask], target=self._reg_tgt, reduction='mean')
@ -692,6 +692,174 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
else:
return "Data_augV5(Mix%.1f%s-%dTFx%d-%s)" % (self._mix_factor,dist_param, self._nb_tf, self._N_seqTF, mag_param)
class RandAug(nn.Module): #RandAugment = UniformFx-MagFxSh
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mag=TF.PARAMETER_MAX):
super(RandAug, self).__init__()
self._data_augmentation = True
self._TF_dict = TF_dict
self._TF= list(self._TF_dict.keys())
self._nb_tf= len(self._TF)
self._N_seqTF = N_TF
self.mag=nn.Parameter(torch.tensor(float(mag)))
self._params = nn.ParameterDict({
"prob": nn.Parameter(torch.ones(self._nb_tf)/self._nb_tf), #pas utilise
"mag" : nn.Parameter(torch.tensor(float(mag))),
})
self._shared_mag = True
self._fixed_mag = True
def forward(self, x):
if self._data_augmentation:# and TF.random.random() < 0.5:
device = x.device
batch_size, h, w = x.shape[0], x.shape[2], x.shape[3]
x = copy.deepcopy(x) #Evite de modifier les echantillons par reference (Problematique pour des utilisations paralleles)
for _ in range(self._N_seqTF):
## Echantillonage ## == sampled_ops = np.random.choice(transforms, N)
uniforme_dist = torch.ones(1,self._nb_tf,device=device).softmax(dim=1)
cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_tf), device=device)*uniforme_dist)
sample = cat_distrib.sample()
## Transformations ##
x = self.apply_TF(x, sample)
return x
def apply_TF(self, x, sampled_TF):
smps_x=[]
for tf_idx in range(self._nb_tf):
mask = sampled_TF==tf_idx #Create selection mask
smp_x = x[mask] #torch.masked_select() ? (NEcessite d'expand le mask au meme dim)
if smp_x.shape[0]!=0: #if there's data to TF
magnitude=self._params["mag"].detach()
tf=self._TF[tf_idx]
#print(magnitude)
#In place
x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude)
return x
def adjust_param(self, soft=False):
pass #Pas de parametre a opti
def loss_weight(self):
return 1 #Pas d'echantillon = pas de ponderation
def reg_loss(self, reg_factor=0.005):
return torch.tensor(0) #Pas de regularisation
def train(self, mode=None):
if mode is None :
mode=self._data_augmentation
self.augment(mode=mode) #Inutile si mode=None
super(RandAug, self).train(mode)
def eval(self):
self.train(mode=False)
def augment(self, mode=True):
self._data_augmentation=mode
def __getitem__(self, key):
return self._params[key]
def __str__(self):
return "RandAug(%dTFx%d-Mag%d)" % (self._nb_tf, self._N_seqTF, self.mag)
class RandAugUDA(nn.Module): #RandAugment = UniformFx-MagFxSh
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mag=TF.PARAMETER_MAX):
super(RandAug, self).__init__()
self._data_augmentation = True
self._TF_dict = TF_dict
self._TF= list(self._TF_dict.keys())
self._nb_tf= len(self._TF)
self._N_seqTF = N_TF
self.mag=nn.Parameter(torch.tensor(float(mag)))
self._params = nn.ParameterDict({
"prob": nn.Parameter(torch.tensor(0.5)),
"mag" : nn.Parameter(torch.tensor(float(TF.PARAMETER_MAX))),
})
self._shared_mag = True
self._fixed_mag = True
self._op_list =[]
for tf in self._TF:
for mag in range(0.1, self._params['mag'], 0.1):
op_list+=[(tf, self._params['prob'], mag)]
self._nb_op = len(self._op_list)
print(self._op_list)
def forward(self, x):
if self._data_augmentation:# and TF.random.random() < 0.5:
device = x.device
batch_size, h, w = x.shape[0], x.shape[2], x.shape[3]
x = copy.deepcopy(x) #Evite de modifier les echantillons par reference (Problematique pour des utilisations paralleles)
for _ in range(self._N_seqTF):
## Echantillonage ## == sampled_ops = np.random.choice(transforms, N)
uniforme_dist = torch.ones(1, self._nb_op, device=device).softmax(dim=1)
cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_op), device=device)*uniforme_dist)
sample = cat_distrib.sample()
## Transformations ##
x = self.apply_TF(x, sample)
return x
def apply_TF(self, x, sampled_TF):
smps_x=[]
for op_idx in range(self._nb_op):
mask = sampled_TF==tf_idx #Create selection mask
smp_x = x[mask] #torch.masked_select() ? (Necessite d'expand le mask au meme dim)
if smp_x.shape[0]!=0: #if there's data to TF
if TF.random.random() < self.op_list[op_idx][1]:
magnitude=self.op_list[op_idx][2]
tf=self.op_list[op_idx][0]
#In place
x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude)
return x
def adjust_param(self, soft=False):
pass #Pas de parametre a opti
def loss_weight(self):
return 1 #Pas d'echantillon = pas de ponderation
def reg_loss(self, reg_factor=0.005):
return torch.tensor(0) #Pas de regularisation
def train(self, mode=None):
if mode is None :
mode=self._data_augmentation
self.augment(mode=mode) #Inutile si mode=None
super(RandAug, self).train(mode)
def eval(self):
self.train(mode=False)
def augment(self, mode=True):
self._data_augmentation=mode
def __getitem__(self, key):
return self._params[key]
def __str__(self):
return "RandAug(%dTFx%d-Mag%d)" % (self._nb_tf, self._N_seqTF, self.mag)
class Augmented_model(nn.Module):
def __init__(self, data_augmenter, model):

View file

@ -14,6 +14,26 @@ tf_names = [
'ShearX',
'ShearY',
## Color TF (Expect image in the range of [0, 1]) ##
'Contrast',
'Color',
'Brightness',
'Sharpness',
'Posterize',
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
#Color TF (Common mag scale)
#'+Contrast',
#'+Color',
#'+Brightness',
#'+Sharpness',
#'-Contrast',
#'-Color',
#'-Brightness',
#'-Sharpness',
#'=Posterize',
#'=Solarize',
#'BRotate',
#'BTranslateX',
#'BTranslateY',
@ -24,14 +44,10 @@ tf_names = [
#'BadTranslateY',
#'BadTranslateY_neg',
## Color TF (Expect image in the range of [0, 1]) ##
'Contrast',
'Color',
'Brightness',
'Sharpness',
'Posterize',
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
#'BadColor',
#'BadSharpness',
#'BadContrast',
#'BadBrightness',
#Non fonctionnel
#'Auto_Contrast', #Pas opti pour des batch (Super lent)
#'Equalize',
@ -47,8 +63,8 @@ else:
##########################################
if __name__ == "__main__":
n_inner_iter = 10
epochs = 100
n_inner_iter = 0
epochs = 150
dataug_epoch_start=0
#### Classic ####
@ -74,12 +90,13 @@ if __name__ == "__main__":
print('-'*9)
'''
#### Augmented Model ####
'''
#'''
t0 = time.process_time()
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
#tf_dict = TF.TF_dict
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=True, fixed_mag=False, shared_mag=False), LeNet(3,10)).to(device)
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.5, fixed_mag=True, shared_mag=True), WideResNet(num_classes=10, wrn_size=160)).to(device)
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), LeNet(3,10)).to(device)
print(str(aug_model), 'on', device_name)
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=None)
@ -98,9 +115,9 @@ if __name__ == "__main__":
print('Execution Time : %.00f '%(time.process_time() - t0))
print('-'*9)
'''
#### TF tests ####
#'''
#### TF tests ####
'''
res_folder="res/brutus-tests/"
epochs= 150
inner_its = [1, 10]
@ -150,4 +167,4 @@ if __name__ == "__main__":
#plot_resV2(log, fig_name=res_folder+filename, param_names=tf_names)
print('-'*9)
#'''
'''

View file

@ -540,6 +540,7 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
val_loss=torch.tensor(0) #Necessaire si pas de metastep sur une epoch
dl_val_it = iter(dl_val)
#if inner_it!=0:
meta_opt = torch.optim.Adam(model['data_aug'].parameters(), lr=1e-2)
inner_opt = torch.optim.SGD(model['model'].parameters(), lr=1e-2, momentum=0.9)
@ -680,5 +681,8 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
model.augment(mode=True)
if inner_it != 0: high_grad_track = True
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
#print("Copy ", countcopy)
return log

View file

@ -64,6 +64,27 @@ TF_dict={ #Dataugv5
'ShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=0))),
'ShearY': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=1))),
## Color TF (Expect image in the range of [0, 1]) ##
'Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Posterize': (lambda x, mag: posterize(x, bits=rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient
'Solarize': (lambda x, mag: solarize(x, thresholds=rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1] #Pas opti pour des batch
#Color TF (Common mag scale)
'+Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
'+Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
'+Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
'+Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.0, maxval=1.9))),
'-Contrast': (lambda x, mag: contrast(x, contrast_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
'-Color':(lambda x, mag: color(x, color_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
'-Brightness':(lambda x, mag: brightness(x, brightness_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
'-Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=invScale_rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.0))),
'=Posterize': (lambda x, mag: posterize(x, bits=invScale_rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient
'=Solarize': (lambda x, mag: solarize(x, thresholds=invScale_rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1] #Pas opti pour des batch
'BRotate': (lambda x, mag: rotate(x, angle=rand_floats(size=x.shape[0], mag=mag, maxval=30*3))),
'BTranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20*3), zero_pos=0))),
'BTranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20*3), zero_pos=1))),
@ -75,13 +96,10 @@ TF_dict={ #Dataugv5
'BadTranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=20*2, maxval=20*3), zero_pos=1))),
'BadTranslateY_neg': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=-20*3, maxval=-20*2), zero_pos=1))),
## Color TF (Expect image in the range of [0, 1]) ##
'Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Posterize': (lambda x, mag: posterize(x, bits=rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient
'Solarize': (lambda x, mag: solarize(x, thresholds=rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1] #Pas opti pour des batch
'BadColor':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))),
'BadSharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))),
'BadContrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))),
'BadBrightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))),
#Non fonctionnel
#'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent)
@ -111,10 +129,15 @@ def float_image(int_image):
# return random.uniform(minval, real_max)
def rand_floats(size, mag, maxval, minval=None): #[(-maxval,minval), maxval]
real_max = float_parameter(mag, maxval=maxval)
if not minval : minval = -real_max
real_mag = float_parameter(mag, maxval=maxval)
if not minval : minval = -real_mag
#return random.uniform(minval, real_max)
return minval +(real_max-minval) * torch.rand(size, device=mag.device)
return minval + (real_mag-minval) * torch.rand(size, device=mag.device) #[min_val, real_mag]
def invScale_rand_floats(size, mag, maxval, minval):
#Mag=[0,PARAMETER_MAX] => [PARAMETER_MAX, 0] = [maxval, minval]
real_mag = float_parameter(float(PARAMETER_MAX) - mag, maxval=maxval-minval)+minval
return real_mag + (maxval-real_mag) * torch.rand(size, device=mag.device) #[real_mag, max_val]
def zero_stack(tensor, zero_pos):
if zero_pos==0:
@ -139,7 +162,7 @@ def float_parameter(level, maxval):
#return float(level) * maxval / PARAMETER_MAX
return (level * maxval / PARAMETER_MAX)#.to(torch.float)
def int_parameter(level, maxval): #Perte de gradient
#def int_parameter(level, maxval): #Perte de gradient
"""Helper function to scale `val` between 0 and maxval .
Args:
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
@ -149,7 +172,7 @@ def int_parameter(level, maxval): #Perte de gradient
An int that results from scaling `maxval` according to `level`.
"""
#return int(level * maxval / PARAMETER_MAX)
return (level * maxval / PARAMETER_MAX)
# return (level * maxval / PARAMETER_MAX)
def flipLR(x):
device = x.device
@ -279,19 +302,19 @@ def solarize(x, thresholds): #PAS OPTIMISE POUR DES BATCH
for idx, t in enumerate(thresholds): #Operation par image
mask = x[idx] > t #Perte du gradient
#In place
#inv_x = 1-x[idx][mask]
#x[idx][mask]=inv_x
inv_x = 1-x[idx][mask]
x[idx][mask]=inv_x
#
#Out of place
im = x[idx]
inv_x = 1-im[mask]
# im = x[idx]
# inv_x = 1-im[mask]
imgs.append(im.masked_scatter(mask,inv_x))
# imgs.append(im.masked_scatter(mask,inv_x))
idxs=torch.tensor(range(x.shape[0]), device=x.device)
idxs=idxs.unsqueeze(dim=1).expand(-1,channels).unsqueeze(dim=2).expand(-1,channels, h).unsqueeze(dim=3).expand(-1,channels, h, w) #Il y a forcement plus simple ...
x=x.scatter(dim=0, index=idxs, src=torch.stack(imgs))
#idxs=torch.tensor(range(x.shape[0]), device=x.device)
#idxs=idxs.unsqueeze(dim=1).expand(-1,channels).unsqueeze(dim=2).expand(-1,channels, h).unsqueeze(dim=3).expand(-1,channels, h, w) #Il y a forcement plus simple ...
#x=x.scatter(dim=0, index=idxs, src=torch.stack(imgs))
#
return x