smart_augmentation/higher/test_dataug.py
Harle, Antoine (Contracteur) 4a7e73088d Ajout RandAugment
2019-11-27 12:54:19 -05:00

170 lines
6.4 KiB
Python

from model import *
from dataug import *
#from utils import *
from train_utils import *
tf_names = [
## Geometric TF ##
'Identity',
'FlipUD',
'FlipLR',
'Rotate',
'TranslateX',
'TranslateY',
'ShearX',
'ShearY',
## Color TF (Expect image in the range of [0, 1]) ##
'Contrast',
'Color',
'Brightness',
'Sharpness',
'Posterize',
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
#Color TF (Common mag scale)
#'+Contrast',
#'+Color',
#'+Brightness',
#'+Sharpness',
#'-Contrast',
#'-Color',
#'-Brightness',
#'-Sharpness',
#'=Posterize',
#'=Solarize',
#'BRotate',
#'BTranslateX',
#'BTranslateY',
#'BShearX',
#'BShearY',
#'BadTranslateX',
#'BadTranslateX_neg',
#'BadTranslateY',
#'BadTranslateY_neg',
#'BadColor',
#'BadSharpness',
#'BadContrast',
#'BadBrightness',
#Non fonctionnel
#'Auto_Contrast', #Pas opti pour des batch (Super lent)
#'Equalize',
]
device = torch.device('cuda')
if device == torch.device('cpu'):
device_name = 'CPU'
else:
device_name = torch.cuda.get_device_name(device)
##########################################
if __name__ == "__main__":
n_inner_iter = 0
epochs = 150
dataug_epoch_start=0
#### Classic ####
'''
model = LeNet(3,10).to(device)
#model = WideResNet(num_classes=10, wrn_size=16).to(device)
#model = Augmented_model(Data_augV3(mix_dist=0.0), LeNet(3,10)).to(device)
#model.augment(mode=False)
print(str(model), 'on', device_name)
log= train_classic(model=model, epochs=epochs)
#log= train_classic_higher(model=model, epochs=epochs)
####
plot_res(log, fig_name="res/{}-{} epochs".format(str(model),epochs))
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Log": log}
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
with open("res/log/%s.json" % "{}-{} epochs".format(str(model),epochs), "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
print('-'*9)
'''
#### Augmented Model ####
#'''
t0 = time.process_time()
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
#tf_dict = TF.TF_dict
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.5, fixed_mag=True, shared_mag=True), WideResNet(num_classes=10, wrn_size=160)).to(device)
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), LeNet(3,10)).to(device)
print(str(aug_model), 'on', device_name)
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=None)
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
with open("res/log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
plot_resV2(log, fig_name="res/"+filename, param_names=tf_names)
print('Execution Time : %.00f '%(time.process_time() - t0))
print('-'*9)
#'''
#### TF tests ####
'''
res_folder="res/brutus-tests/"
epochs= 150
inner_its = [1, 10]
dist_mix = [0.0, 0.5, 1]
dataug_epoch_starts= [0]
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
TF_nb = [len(tf_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
N_seq_TF= [1, 2, 3, 4]
mag_setup = [(True,True), (False, False)]
#prob_setup = [True, False]
nb_run= 3
try:
os.mkdir(res_folder)
os.mkdir(res_folder+"log/")
except FileExistsError:
pass
for n_inner_iter in inner_its:
for dataug_epoch_start in dataug_epoch_starts:
for n_tf in N_seq_TF:
for dist in dist_mix:
#for i in TF_nb:
for m_setup in mag_setup:
#for p_setup in prob_setup:
for run in range(nb_run):
if n_inner_iter == 0 and (m_setup!=(True,True) or p_setup!=True): continue #Autres setup inutiles sans meta-opti
if n_inner_iter ==1 and (n_tf==1 or n_tf==2): continue #Deja resultats
#keys = list(TF.TF_dict.keys())[0:i]
#ntf_dict = {k: TF.TF_dict[k] for k in keys}
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=False, fixed_mag=m_setup[0], shared_mag=m_setup[1]), LeNet(3,10)).to(device)
print(str(aug_model), 'on', device_name)
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=20, loss_patience=None)
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in :", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{}epochs(dataug:{})-{}in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter,run)
with open(res_folder+"log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
#plot_resV2(log, fig_name=res_folder+filename, param_names=tf_names)
print('-'*9)
'''