mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-03 11:40:46 +02:00
Prepartaion dataset benchmark
This commit is contained in:
parent
cdeca24776
commit
2656c7d9be
1 changed files with 27 additions and 6 deletions
|
@ -4,6 +4,7 @@
|
|||
"""
|
||||
import torch
|
||||
from torch.utils.data import SubsetRandomSampler
|
||||
from torch.utils.data.dataset import ConcatDataset
|
||||
import torchvision
|
||||
|
||||
#Train/Validation batch size.
|
||||
|
@ -40,14 +41,34 @@ transform_train = torchvision.transforms.Compose([
|
|||
#transform_train.transforms.insert(0, RandAugment(n=2, m=30))
|
||||
|
||||
### Classic Dataset ###
|
||||
dataroot="../data"
|
||||
|
||||
#MNIST
|
||||
#data_train = torchvision.datasets.MNIST("../data", train=True, download=True, transform=transform_train)
|
||||
#data_val = torchvision.datasets.MNIST("../data", train=True, download=True, transform=transform)
|
||||
#data_test = torchvision.datasets.MNIST("../data", train=False, download=True, transform=transform)
|
||||
#data_train = torchvision.datasets.MNIST(dataroot, train=True, download=True, transform=transform_train)
|
||||
#data_val = torchvision.datasets.MNIST(dataroot, train=True, download=True, transform=transform)
|
||||
#data_test = torchvision.datasets.MNIST(dataroot, train=False, download=True, transform=transform)
|
||||
|
||||
#CIFAR
|
||||
data_train = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform_train)
|
||||
#data_val = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform)
|
||||
data_test = torchvision.datasets.CIFAR10("../data", train=False, download=download_data, transform=transform)
|
||||
data_train = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform_train)
|
||||
#data_val = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform)
|
||||
data_test = torchvision.datasets.CIFAR10(dataroot, train=False, download=download_data, transform=transform)
|
||||
|
||||
#data_train = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform_train)
|
||||
#data_val = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform)
|
||||
#data_test = torchvision.datasets.CIFAR100(dataroot, train=False, download=download_data, transform=transform)
|
||||
|
||||
#SVHN
|
||||
#trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=download_data, transform=transform_train)
|
||||
#extraset = torchvision.datasets.SVHN(root=dataroot, split='extra', download=download_data, transform=transform_train)
|
||||
#data_train = ConcatDataset([trainset, extraset])
|
||||
#data_test = torchvision.datasets.SVHN(dataroot, split='test', download=download_data, transform=transform)
|
||||
|
||||
#ImageNet
|
||||
#Necessite SciPy
|
||||
# Probleme ? : https://github.com/ildoonet/pytorch-randaugment/blob/48b8f509c4bbda93bbe733d98b3fd052b6e4c8ae/RandAugment/imagenet.py#L28
|
||||
#data_train = torchvision.datasets.ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='train', transform=transform_train)
|
||||
#data_test = torchvision.datasets.ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='val', transform=transform_test)
|
||||
|
||||
|
||||
train_subset_indices=range(int(len(data_train)/2))
|
||||
val_subset_indices=range(int(len(data_train)/2),len(data_train))
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue