diff --git a/higher/smart_aug/datasets.py b/higher/smart_aug/datasets.py index 963d96b..2f0b32d 100755 --- a/higher/smart_aug/datasets.py +++ b/higher/smart_aug/datasets.py @@ -4,6 +4,7 @@ """ import torch from torch.utils.data import SubsetRandomSampler +from torch.utils.data.dataset import ConcatDataset import torchvision #Train/Validation batch size. @@ -40,14 +41,34 @@ transform_train = torchvision.transforms.Compose([ #transform_train.transforms.insert(0, RandAugment(n=2, m=30)) ### Classic Dataset ### +dataroot="../data" + #MNIST -#data_train = torchvision.datasets.MNIST("../data", train=True, download=True, transform=transform_train) -#data_val = torchvision.datasets.MNIST("../data", train=True, download=True, transform=transform) -#data_test = torchvision.datasets.MNIST("../data", train=False, download=True, transform=transform) +#data_train = torchvision.datasets.MNIST(dataroot, train=True, download=True, transform=transform_train) +#data_val = torchvision.datasets.MNIST(dataroot, train=True, download=True, transform=transform) +#data_test = torchvision.datasets.MNIST(dataroot, train=False, download=True, transform=transform) + #CIFAR -data_train = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform_train) -#data_val = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform) -data_test = torchvision.datasets.CIFAR10("../data", train=False, download=download_data, transform=transform) +data_train = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform_train) +#data_val = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform) +data_test = torchvision.datasets.CIFAR10(dataroot, train=False, download=download_data, transform=transform) + +#data_train = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform_train) +#data_val = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform) +#data_test = torchvision.datasets.CIFAR100(dataroot, train=False, download=download_data, transform=transform) + +#SVHN +#trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=download_data, transform=transform_train) +#extraset = torchvision.datasets.SVHN(root=dataroot, split='extra', download=download_data, transform=transform_train) +#data_train = ConcatDataset([trainset, extraset]) +#data_test = torchvision.datasets.SVHN(dataroot, split='test', download=download_data, transform=transform) + +#ImageNet +#Necessite SciPy +# Probleme ? : https://github.com/ildoonet/pytorch-randaugment/blob/48b8f509c4bbda93bbe733d98b3fd052b6e4c8ae/RandAugment/imagenet.py#L28 +#data_train = torchvision.datasets.ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='train', transform=transform_train) +#data_test = torchvision.datasets.ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='val', transform=transform_test) + train_subset_indices=range(int(len(data_train)/2)) val_subset_indices=range(int(len(data_train)/2),len(data_train))