mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
185 lines
7 KiB
Python
185 lines
7 KiB
Python
|
from model import *
|
||
|
from dataug import *
|
||
|
#from utils import *
|
||
|
from train_utils import *
|
||
|
|
||
|
import torchvision.models as models
|
||
|
|
||
|
# Use available TF (see transformations.py)
|
||
|
tf_names = [
|
||
|
## Geometric TF ##
|
||
|
'Identity',
|
||
|
'FlipUD',
|
||
|
'FlipLR',
|
||
|
'Rotate',
|
||
|
'TranslateX',
|
||
|
'TranslateY',
|
||
|
'ShearX',
|
||
|
'ShearY',
|
||
|
|
||
|
## Color TF (Expect image in the range of [0, 1]) ##
|
||
|
'Contrast',
|
||
|
'Color',
|
||
|
'Brightness',
|
||
|
'Sharpness',
|
||
|
'Posterize',
|
||
|
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||
|
|
||
|
## Bad Tranformations ##
|
||
|
# Bad Geometric TF #
|
||
|
#'BShearX',
|
||
|
#'BShearY',
|
||
|
#'BTranslateX-',
|
||
|
#'BTranslateX-',
|
||
|
#'BTranslateY',
|
||
|
#'BTranslateY-',
|
||
|
|
||
|
#'BadContrast',
|
||
|
#'BadBrightness',
|
||
|
|
||
|
#'Random',
|
||
|
#'RandBlend'
|
||
|
]
|
||
|
|
||
|
device = torch.device('cuda')
|
||
|
|
||
|
if device == torch.device('cpu'):
|
||
|
device_name = 'CPU'
|
||
|
else:
|
||
|
device_name = torch.cuda.get_device_name(device)
|
||
|
|
||
|
torch.backends.cudnn.benchmark = True #Faster if same input size #Not recommended for reproductibility
|
||
|
|
||
|
#Increase reproductibility
|
||
|
torch.manual_seed(0)
|
||
|
np.random.seed(0)
|
||
|
|
||
|
##########################################
|
||
|
if __name__ == "__main__":
|
||
|
|
||
|
|
||
|
n_inner_iter = 1
|
||
|
epochs = 150
|
||
|
dataug_epoch_start=0
|
||
|
optim_param={
|
||
|
'Meta':{
|
||
|
'optim':'Adam',
|
||
|
'lr':1e-2, #1e-2
|
||
|
},
|
||
|
'Inner':{
|
||
|
'optim': 'SGD',
|
||
|
'lr':1e-1, #1e-2
|
||
|
'momentum':0.9, #0.9
|
||
|
}
|
||
|
}
|
||
|
|
||
|
model=models.resnet18()
|
||
|
|
||
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||
|
|
||
|
####
|
||
|
'''
|
||
|
t0 = time.process_time()
|
||
|
|
||
|
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||
|
|
||
|
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||
|
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None)
|
||
|
|
||
|
exec_time=time.process_time() - t0
|
||
|
####
|
||
|
times = [x["time"] for x in log]
|
||
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||
|
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||
|
with open("res/log/%s.json" % filename, "w+") as f:
|
||
|
json.dump(out, f, indent=True)
|
||
|
print('Log :\"',f.name, '\" saved !')
|
||
|
'''
|
||
|
|
||
|
####
|
||
|
'''
|
||
|
t0 = time.process_time()
|
||
|
|
||
|
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||
|
|
||
|
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||
|
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None)
|
||
|
|
||
|
exec_time=time.process_time() - t0
|
||
|
####
|
||
|
times = [x["time"] for x in log]
|
||
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||
|
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||
|
with open("res/log/%s.json" % filename, "w+") as f:
|
||
|
json.dump(out, f, indent=True)
|
||
|
print('Log :\"',f.name, '\" saved !')
|
||
|
'''
|
||
|
res_folder="../res/brutus-tests2/"
|
||
|
epochs= 150
|
||
|
inner_its = [1]
|
||
|
dist_mix = [0.0, 0.5, 0.8, 1.0]
|
||
|
dataug_epoch_starts= [0]
|
||
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||
|
TF_nb = [len(tf_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
|
||
|
N_seq_TF= [4, 3, 2]
|
||
|
mag_setup = [(True,True), (False, False)] #(Fixed, Shared)
|
||
|
#prob_setup = [True, False]
|
||
|
nb_run= 3
|
||
|
|
||
|
try:
|
||
|
os.mkdir(res_folder)
|
||
|
os.mkdir(res_folder+"log/")
|
||
|
except FileExistsError:
|
||
|
pass
|
||
|
|
||
|
for n_inner_iter in inner_its:
|
||
|
for dataug_epoch_start in dataug_epoch_starts:
|
||
|
for n_tf in N_seq_TF:
|
||
|
for dist in dist_mix:
|
||
|
#for i in TF_nb:
|
||
|
for m_setup in mag_setup:
|
||
|
#for p_setup in prob_setup:
|
||
|
p_setup=False
|
||
|
for run in range(nb_run):
|
||
|
if (n_inner_iter == 0 and (m_setup!=(True,True) and p_setup!=True)) or (p_setup and dist!=0.0): continue #Autres setup inutiles sans meta-opti
|
||
|
#keys = list(TF.TF_dict.keys())[0:i]
|
||
|
#ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
||
|
|
||
|
t0 = time.process_time()
|
||
|
|
||
|
model = ResNet(num_classes=10)
|
||
|
model = Higher_model(model) #run_dist_dataugV3
|
||
|
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device)
|
||
|
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||
|
|
||
|
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||
|
log= run_dist_dataugV3(model=aug_model,
|
||
|
epochs=epochs,
|
||
|
inner_it=n_inner_iter,
|
||
|
dataug_epoch_start=dataug_epoch_start,
|
||
|
opt_param=optim_param,
|
||
|
print_freq=50,
|
||
|
KLdiv=True)
|
||
|
|
||
|
exec_time=time.process_time() - t0
|
||
|
####
|
||
|
print('-'*9)
|
||
|
times = [x["time"] for x in log]
|
||
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||
|
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||
|
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
|
||
|
with open("../res/log/%s.json" % filename, "w+") as f:
|
||
|
try:
|
||
|
json.dump(out, f, indent=True)
|
||
|
print('Log :\"',f.name, '\" saved !')
|
||
|
except:
|
||
|
print("Failed to save logs :",f.name)
|
||
|
try:
|
||
|
plot_resV2(log, fig_name="../res/"+filename, param_names=aug_model.TF_names())
|
||
|
except:
|
||
|
print("Failed to plot res")
|
||
|
|
||
|
print('Execution Time : %.00f '%(exec_time))
|
||
|
print('-'*9)
|
||
|
#'''
|