mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-03 11:40:46 +02:00
Rangement + Debut Benchmark
This commit is contained in:
parent
561b71b30a
commit
8f89eb0e0a
2 changed files with 377 additions and 0 deletions
193
higher/smart_aug/benchmark.py
Normal file
193
higher/smart_aug/benchmark.py
Normal file
|
@ -0,0 +1,193 @@
|
|||
from model import *
|
||||
from dataug import *
|
||||
#from utils import *
|
||||
from train_utils import *
|
||||
|
||||
import torchvision.models as models
|
||||
|
||||
model_list={models.resnet: ['resnet18', 'resnet50','wide_resnet50_2']} #lr=0.1
|
||||
|
||||
optim_param={
|
||||
'Meta':{
|
||||
'optim':'Adam',
|
||||
'lr':1e-2, #1e-2
|
||||
},
|
||||
'Inner':{
|
||||
'optim': 'SGD',
|
||||
'lr':1e-1, #1e-2
|
||||
'momentum':0.9, #0.9
|
||||
}
|
||||
}
|
||||
|
||||
res_folder="../res/benchmark/CIFAR10"
|
||||
epochs= 200
|
||||
dataug_epoch_starts=0
|
||||
|
||||
# Use available TF (see transformations.py)
|
||||
tf_names = [
|
||||
## Geometric TF ##
|
||||
'Identity',
|
||||
'FlipUD',
|
||||
'FlipLR',
|
||||
'Rotate',
|
||||
'TranslateX',
|
||||
'TranslateY',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
|
||||
## Color TF (Expect image in the range of [0, 1]) ##
|
||||
'Contrast',
|
||||
'Color',
|
||||
'Brightness',
|
||||
'Sharpness',
|
||||
'Posterize',
|
||||
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
|
||||
## Bad Tranformations ##
|
||||
# Bad Geometric TF #
|
||||
#'BShearX',
|
||||
#'BShearY',
|
||||
#'BTranslateX-',
|
||||
#'BTranslateX-',
|
||||
#'BTranslateY',
|
||||
#'BTranslateY-',
|
||||
|
||||
#'BadContrast',
|
||||
#'BadBrightness',
|
||||
|
||||
#'Random',
|
||||
#'RandBlend'
|
||||
]
|
||||
|
||||
device = torch.device('cuda')
|
||||
|
||||
if device == torch.device('cpu'):
|
||||
device_name = 'CPU'
|
||||
else:
|
||||
device_name = torch.cuda.get_device_name(device)
|
||||
|
||||
torch.backends.cudnn.benchmark = True #Faster if same input size #Not recommended for reproductibility
|
||||
|
||||
#Increase reproductibility
|
||||
torch.manual_seed(0)
|
||||
np.random.seed(0)
|
||||
|
||||
##########################################
|
||||
if __name__ == "__main__":
|
||||
|
||||
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
|
||||
for model_type in model_list.keys():
|
||||
for model_name in model_list[model_type]:
|
||||
model = getattr(model_type, model_name)(pretrained=False)
|
||||
|
||||
t0 = time.process_time()
|
||||
|
||||
model = Higher_model(model) #run_dist_dataugV3
|
||||
if n_inner_iter!=0:
|
||||
aug_model = Augmented_model(
|
||||
Data_augV5(TF_dict=tf_dict,
|
||||
N_TF=n_tf,
|
||||
mix_dist=dist,
|
||||
fixed_prob=p_setup,
|
||||
fixed_mag=m_setup[0],
|
||||
shared_mag=m_setup[1]),
|
||||
model).to(device)
|
||||
else:
|
||||
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=n_tf), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_dist_dataugV3(model=aug_model,
|
||||
epochs=epochs,
|
||||
inner_it=n_inner_iter,
|
||||
dataug_epoch_start=dataug_epoch_start,
|
||||
opt_param=optim_param,
|
||||
print_freq=epochs/4,
|
||||
unsup_loss=1,
|
||||
hp_opt=False,
|
||||
save_sample_freq=None)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
|
||||
with open("../res/log/%s.json" % filename, "w+") as f:
|
||||
try:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
except:
|
||||
print("Failed to save logs :",f.name)
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
|
||||
inner_its = [1]
|
||||
dist_mix = [0.0, 0.5, 0.8, 1.0]
|
||||
dataug_epoch_starts= [0]
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
TF_nb = [len(tf_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
|
||||
N_seq_TF= [4, 3, 2]
|
||||
mag_setup = [(True,True), (False, False)] #(Fixed, Shared)
|
||||
#prob_setup = [True, False]
|
||||
nb_run= 3
|
||||
|
||||
try:
|
||||
os.mkdir(res_folder)
|
||||
os.mkdir(res_folder+"log/")
|
||||
except FileExistsError:
|
||||
pass
|
||||
|
||||
for n_inner_iter in inner_its:
|
||||
for n_tf in N_seq_TF:
|
||||
for dist in dist_mix:
|
||||
#for i in TF_nb:
|
||||
for m_setup in mag_setup:
|
||||
#for p_setup in prob_setup:
|
||||
p_setup=False
|
||||
for run in range(nb_run):
|
||||
if (n_inner_iter == 0 and (m_setup!=(True,True) and p_setup!=True)) or (p_setup and dist!=0.0): continue #Autres setup inutiles sans meta-opti
|
||||
#keys = list(TF.TF_dict.keys())[0:i]
|
||||
#ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
||||
|
||||
t0 = time.process_time()
|
||||
|
||||
model = Higher_model(model) #run_dist_dataugV3
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_dist_dataugV3(model=aug_model,
|
||||
epochs=epochs,
|
||||
inner_it=n_inner_iter,
|
||||
dataug_epoch_start=dataug_epoch_start,
|
||||
opt_param=optim_param,
|
||||
print_freq=epochs/4,
|
||||
unsup_loss=1,
|
||||
hp_opt=False,
|
||||
save_sample_freq=None)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
|
||||
with open("../res/log/%s.json" % filename, "w+") as f:
|
||||
try:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
except:
|
||||
print("Failed to save logs :",f.name)
|
||||
try:
|
||||
plot_resV2(log, fig_name="../res/"+filename, param_names=aug_model.TF_names())
|
||||
except:
|
||||
print("Failed to plot res")
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
#'''
|
184
higher/smart_aug/old/test_brutus.py
Executable file
184
higher/smart_aug/old/test_brutus.py
Executable file
|
@ -0,0 +1,184 @@
|
|||
from model import *
|
||||
from dataug import *
|
||||
#from utils import *
|
||||
from train_utils import *
|
||||
|
||||
import torchvision.models as models
|
||||
|
||||
# Use available TF (see transformations.py)
|
||||
tf_names = [
|
||||
## Geometric TF ##
|
||||
'Identity',
|
||||
'FlipUD',
|
||||
'FlipLR',
|
||||
'Rotate',
|
||||
'TranslateX',
|
||||
'TranslateY',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
|
||||
## Color TF (Expect image in the range of [0, 1]) ##
|
||||
'Contrast',
|
||||
'Color',
|
||||
'Brightness',
|
||||
'Sharpness',
|
||||
'Posterize',
|
||||
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
|
||||
## Bad Tranformations ##
|
||||
# Bad Geometric TF #
|
||||
#'BShearX',
|
||||
#'BShearY',
|
||||
#'BTranslateX-',
|
||||
#'BTranslateX-',
|
||||
#'BTranslateY',
|
||||
#'BTranslateY-',
|
||||
|
||||
#'BadContrast',
|
||||
#'BadBrightness',
|
||||
|
||||
#'Random',
|
||||
#'RandBlend'
|
||||
]
|
||||
|
||||
device = torch.device('cuda')
|
||||
|
||||
if device == torch.device('cpu'):
|
||||
device_name = 'CPU'
|
||||
else:
|
||||
device_name = torch.cuda.get_device_name(device)
|
||||
|
||||
torch.backends.cudnn.benchmark = True #Faster if same input size #Not recommended for reproductibility
|
||||
|
||||
#Increase reproductibility
|
||||
torch.manual_seed(0)
|
||||
np.random.seed(0)
|
||||
|
||||
##########################################
|
||||
if __name__ == "__main__":
|
||||
|
||||
|
||||
n_inner_iter = 1
|
||||
epochs = 150
|
||||
dataug_epoch_start=0
|
||||
optim_param={
|
||||
'Meta':{
|
||||
'optim':'Adam',
|
||||
'lr':1e-2, #1e-2
|
||||
},
|
||||
'Inner':{
|
||||
'optim': 'SGD',
|
||||
'lr':1e-1, #1e-2
|
||||
'momentum':0.9, #0.9
|
||||
}
|
||||
}
|
||||
|
||||
model=models.resnet18()
|
||||
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
|
||||
####
|
||||
'''
|
||||
t0 = time.process_time()
|
||||
|
||||
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||
with open("res/log/%s.json" % filename, "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
'''
|
||||
|
||||
####
|
||||
'''
|
||||
t0 = time.process_time()
|
||||
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||
with open("res/log/%s.json" % filename, "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
'''
|
||||
res_folder="../res/brutus-tests2/"
|
||||
epochs= 150
|
||||
inner_its = [1]
|
||||
dist_mix = [0.0, 0.5, 0.8, 1.0]
|
||||
dataug_epoch_starts= [0]
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
TF_nb = [len(tf_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
|
||||
N_seq_TF= [4, 3, 2]
|
||||
mag_setup = [(True,True), (False, False)] #(Fixed, Shared)
|
||||
#prob_setup = [True, False]
|
||||
nb_run= 3
|
||||
|
||||
try:
|
||||
os.mkdir(res_folder)
|
||||
os.mkdir(res_folder+"log/")
|
||||
except FileExistsError:
|
||||
pass
|
||||
|
||||
for n_inner_iter in inner_its:
|
||||
for dataug_epoch_start in dataug_epoch_starts:
|
||||
for n_tf in N_seq_TF:
|
||||
for dist in dist_mix:
|
||||
#for i in TF_nb:
|
||||
for m_setup in mag_setup:
|
||||
#for p_setup in prob_setup:
|
||||
p_setup=False
|
||||
for run in range(nb_run):
|
||||
if (n_inner_iter == 0 and (m_setup!=(True,True) and p_setup!=True)) or (p_setup and dist!=0.0): continue #Autres setup inutiles sans meta-opti
|
||||
#keys = list(TF.TF_dict.keys())[0:i]
|
||||
#ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
||||
|
||||
t0 = time.process_time()
|
||||
|
||||
model = ResNet(num_classes=10)
|
||||
model = Higher_model(model) #run_dist_dataugV3
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_dist_dataugV3(model=aug_model,
|
||||
epochs=epochs,
|
||||
inner_it=n_inner_iter,
|
||||
dataug_epoch_start=dataug_epoch_start,
|
||||
opt_param=optim_param,
|
||||
print_freq=50,
|
||||
KLdiv=True)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
|
||||
with open("../res/log/%s.json" % filename, "w+") as f:
|
||||
try:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
except:
|
||||
print("Failed to save logs :",f.name)
|
||||
try:
|
||||
plot_resV2(log, fig_name="../res/"+filename, param_names=aug_model.TF_names())
|
||||
except:
|
||||
print("Failed to plot res")
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
#'''
|
Loading…
Add table
Add a link
Reference in a new issue