smart_augmentation/higher/test_brutus.py

154 lines
6.1 KiB
Python
Raw Normal View History

2019-12-04 12:28:32 -05:00
from model import *
from dataug import *
#from utils import *
from train_utils import *
tf_names = [
## Geometric TF ##
'Identity',
'FlipUD',
'FlipLR',
'Rotate',
'TranslateX',
'TranslateY',
'ShearX',
'ShearY',
## Color TF (Expect image in the range of [0, 1]) ##
'Contrast',
'Color',
'Brightness',
'Sharpness',
'Posterize',
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
]
device = torch.device('cuda')
if device == torch.device('cpu'):
device_name = 'CPU'
else:
device_name = torch.cuda.get_device_name(device)
##########################################
if __name__ == "__main__":
2019-12-04 16:34:02 -05:00
n_inner_iter = 1
2020-01-13 10:58:27 -05:00
epochs = 150
2019-12-04 16:34:02 -05:00
dataug_epoch_start=0
2020-01-13 10:58:27 -05:00
optim_param={
'Meta':{
'optim':'Adam',
'lr':1e-2, #1e-2
},
'Inner':{
'optim': 'SGD',
'lr':1e-1, #1e-2
'momentum':0.9, #0.9
}
}
2019-12-04 16:34:02 -05:00
2019-12-06 14:19:05 -05:00
#model = LeNet(3,10)
2020-01-13 10:58:27 -05:00
model = ResNet(num_classes=10)
#model = MobileNetV2(num_classes=10)
2019-12-06 14:19:05 -05:00
#model = WideResNet(num_classes=10, wrn_size=32)
2019-12-04 16:34:02 -05:00
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
2019-12-09 10:46:53 -05:00
####
2020-01-13 10:58:27 -05:00
'''
2019-12-04 16:34:02 -05:00
t0 = time.process_time()
2019-12-09 10:46:53 -05:00
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
2019-12-06 14:19:05 -05:00
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None)
2019-12-04 16:34:02 -05:00
exec_time=time.process_time() - t0
####
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
with open("res/log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
2020-01-13 10:58:27 -05:00
'''
2019-12-09 10:46:53 -05:00
2019-12-04 16:34:02 -05:00
####
2020-01-13 10:58:27 -05:00
'''
2019-12-04 16:34:02 -05:00
t0 = time.process_time()
2019-12-09 10:46:53 -05:00
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
2019-12-06 14:19:05 -05:00
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None)
2019-12-04 16:34:02 -05:00
exec_time=time.process_time() - t0
####
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
with open("res/log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
'''
2020-01-13 18:02:36 -05:00
res_folder="res/brutus-tests2/"
2019-12-04 12:28:32 -05:00
epochs= 150
inner_its = [1]
2020-01-13 10:58:27 -05:00
dist_mix = [0.0, 0.5, 0.8, 1.0]
2019-12-04 12:28:32 -05:00
dataug_epoch_starts= [0]
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
TF_nb = [len(tf_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
2020-01-13 18:02:36 -05:00
N_seq_TF= [2, 3, 4]
mag_setup = [(True,True), (False, False)] #(Fixed, Shared)
2019-12-04 12:28:32 -05:00
#prob_setup = [True, False]
nb_run= 3
try:
os.mkdir(res_folder)
os.mkdir(res_folder+"log/")
except FileExistsError:
pass
for n_inner_iter in inner_its:
for dataug_epoch_start in dataug_epoch_starts:
for n_tf in N_seq_TF:
for dist in dist_mix:
#for i in TF_nb:
for m_setup in mag_setup:
#for p_setup in prob_setup:
2020-01-13 18:02:36 -05:00
p_setup=False
2019-12-04 12:28:32 -05:00
for run in range(nb_run):
2020-01-13 18:02:36 -05:00
if (n_inner_iter == 0 and (m_setup!=(True,True) and p_setup!=True)) or (p_setup and dist!=0.0): continue #Autres setup inutiles sans meta-opti
2019-12-04 12:28:32 -05:00
#keys = list(TF.TF_dict.keys())[0:i]
#ntf_dict = {k: TF.TF_dict[k] for k in keys}
2020-01-13 18:02:36 -05:00
t0 = time.process_time()
2020-01-13 10:58:27 -05:00
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_dist_dataugV2(model=aug_model,
epochs=epochs,
inner_it=n_inner_iter,
dataug_epoch_start=dataug_epoch_start,
opt_param=optim_param,
print_freq=20,
KLdiv=True,
loss_patience=None)
2019-12-04 12:28:32 -05:00
2020-01-13 10:58:27 -05:00
exec_time=time.process_time() - t0
2019-12-04 12:28:32 -05:00
####
print('-'*9)
times = [x["time"] for x in log]
2020-01-13 10:58:27 -05:00
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
2020-01-13 18:02:36 -05:00
filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run)
with open(res_folder+"log/%s.json" % filename, "w+") as f:
2019-12-04 12:28:32 -05:00
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
2019-12-04 16:34:02 -05:00
print('-'*9)
2020-01-13 18:02:36 -05:00
#'''