BaxterInterface/Visp_tests/tutorial-tracking-mb/object/tutorial-detection-object-mbt2.cpp
2018-07-17 13:32:04 +02:00

392 lines
14 KiB
C++

//! \example tutorial-detection-object-mbt2.cpp
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/io/vpVideoReader.h>
#include <visp3/mbt/vpMbGenericTracker.h>
#include <visp3/vision/vpKeyPoint.h>
#if (VISP_HAVE_OPENCV_VERSION >= 0x020400)
void learnCube(const vpImage<unsigned char> &I, vpMbGenericTracker &tracker, vpKeyPoint &keypoint_learning, int id)
{
//! [Keypoints reference detection]
std::vector<cv::KeyPoint> trainKeyPoints;
double elapsedTime;
keypoint_learning.detect(I, trainKeyPoints, elapsedTime);
//! [Keypoints reference detection]
//! [Keypoints selection on faces]
std::vector<vpPolygon> polygons;
std::vector<std::vector<vpPoint> > roisPt;
std::pair<std::vector<vpPolygon>, std::vector<std::vector<vpPoint> > > pair = tracker.getPolygonFaces();
polygons = pair.first;
roisPt = pair.second;
std::vector<cv::Point3f> points3f;
vpHomogeneousMatrix cMo;
tracker.getPose(cMo);
vpCameraParameters cam;
tracker.getCameraParameters(cam);
vpKeyPoint::compute3DForPointsInPolygons(cMo, cam, trainKeyPoints, polygons, roisPt, points3f);
//! [Keypoints selection on faces]
//! [Keypoints build reference]
keypoint_learning.buildReference(I, trainKeyPoints, points3f, true, id);
//! [Keypoints build reference]
//! [Display reference keypoints]
for (std::vector<cv::KeyPoint>::const_iterator it = trainKeyPoints.begin(); it != trainKeyPoints.end(); ++it) {
vpDisplay::displayCross(I, (int)it->pt.y, (int)it->pt.x, 4, vpColor::red);
}
//! [Display reference keypoints]
}
#endif
int main(int argc, char **argv)
{
#if (VISP_HAVE_OPENCV_VERSION >= 0x020400)
//! [MBT code]
try {
std::string videoname = "cube.mpeg";
for (int i = 0; i < argc; i++) {
if (std::string(argv[i]) == "--name")
videoname = std::string(argv[i + 1]);
else if (std::string(argv[i]) == "--help") {
std::cout << "\nUsage: " << argv[0] << " [--name <video name>] [--help]\n" << std::endl;
return 0;
}
}
std::string parentname = vpIoTools::getParent(videoname);
std::string objectname = vpIoTools::getNameWE(videoname);
if (!parentname.empty())
objectname = parentname + "/" + objectname;
std::cout << "Video name: " << videoname << std::endl;
std::cout << "Tracker requested config files: " << objectname << ".[init,"
#ifdef VISP_HAVE_XML2
<< "xml,"
#endif
<< "cao or wrl]" << std::endl;
std::cout << "Tracker optional config files: " << objectname << ".[ppm]" << std::endl;
vpImage<unsigned char> I;
vpHomogeneousMatrix cMo;
vpCameraParameters cam;
vpMbGenericTracker tracker(vpMbGenericTracker::EDGE_TRACKER);
bool usexml = false;
#ifdef VISP_HAVE_XML2
if (vpIoTools::checkFilename(objectname + ".xml")) {
tracker.loadConfigFile(objectname + ".xml");
tracker.getCameraParameters(cam);
usexml = true;
}
#endif
if (!usexml) {
vpMe me;
me.setMaskSize(5);
me.setMaskNumber(180);
me.setRange(7);
me.setThreshold(5000);
me.setMu1(0.5);
me.setMu2(0.5);
me.setSampleStep(4);
me.setNbTotalSample(250);
tracker.setMovingEdge(me);
cam.initPersProjWithoutDistortion(547, 542, 339, 235);
tracker.setCameraParameters(cam);
tracker.setAngleAppear(vpMath::rad(89));
tracker.setAngleDisappear(vpMath::rad(89));
tracker.setNearClippingDistance(0.01);
tracker.setFarClippingDistance(10.0);
tracker.setClipping(tracker.getClipping() | vpMbtPolygon::FOV_CLIPPING);
}
tracker.setOgreVisibilityTest(false);
if (vpIoTools::checkFilename(objectname + ".cao"))
tracker.loadModel(objectname + ".cao");
else if (vpIoTools::checkFilename(objectname + ".wrl"))
tracker.loadModel(objectname + ".wrl");
tracker.setDisplayFeatures(true);
//! [MBT code]
//! [Keypoint declaration]
vpKeyPoint keypoint_learning("ORB", "ORB", "BruteForce-Hamming");
#if (VISP_HAVE_OPENCV_VERSION < 0x030000)
keypoint_learning.setDetectorParameter("ORB", "nLevels", 1);
#else
cv::Ptr<cv::ORB> orb_learning = keypoint_learning.getDetector("ORB").dynamicCast<cv::ORB>();
if (orb_learning != NULL) {
orb_learning->setNLevels(1);
}
#endif
//! [Keypoint declaration]
#if defined(VISP_HAVE_X11)
vpDisplayX display;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI display;
#elif defined(VISP_HAVE_OPENCV)
vpDisplayOpenCV display;
#else
std::cout << "No image viewer is available..." << std::endl;
return 0;
#endif
/*
* Start the part of the code dedicated to object learning from 3 images
*/
// std::string imageName[] = {"cube0001.png", "cube0150.png", "cube0200.png"};
// vpHomogeneousMatrix initPoseTab[] = {
// vpHomogeneousMatrix(0.02143385294, 0.1098083886, 0.5127439561, 2.087159614, 1.141775176, -0.4701291124),
// vpHomogeneousMatrix(0.02651282185, -0.03713587374, 0.6873765919, 2.314744454, 0.3492296488, -0.1226054828),
// vpHomogeneousMatrix(0.02965448956, -0.07283091786, 0.7253526051, 2.300529617, -0.4286674806, 0.1788761025)};
// // vpHomogeneousMatrix initPoseTab[] = {
// // vpHomogeneousMatrix(0.02, 0.10, 0.51, 2.08, 1.14, -0.47),
// // vpHomogeneousMatrix(0.02, -0.03, 0.68, 2.31, 0.34, -0.12),
// // vpHomogeneousMatrix(0.02, -0.07, 0.72, 2.30, -0.42, 0.17)};
// for (int i = 0; i < 3; i++) {
// vpImageIo::read(I, imageName[i]);
// if (i == 0) {
// display.init(I, 10, 10);
// }
// std::stringstream title;
// title << "Learning cube on image: " << imageName[i];
// vpDisplay::setTitle(I, title.str().c_str());
// vpDisplay::display(I);
// //! [Set tracker pose]
// tracker.setPose(I, initPoseTab[i]);
// //! [Set tracker pose]
// // std::cout<<"Refine"<<std::endl;
// //! [Refine pose]
// tracker.track(I);
// //! [Refine pose]
// // std::cout<<"Display"<<std::endl;
// //! [Display tracker pose]
// tracker.getPose(cMo);
// tracker.display(I, cMo, cam, vpColor::red);
// //! [Display tracker pose]
// // std::cout<<"Learn"<<std::endl;
// //! [Learn cube call]
// learnCube(I, tracker, keypoint_learning, i);
// //! [Learn cube call]
// vpDisplay::displayText(I, 10, 10, "Learning step: keypoints are detected on visible cube faces", vpColor::red);
// if (i < 2) {
// vpDisplay::displayText(I, 30, 10, "Click to continue the learning...", vpColor::red);
// } else {
// vpDisplay::displayText(I, 30, 10, "Click to continue with the detection...", vpColor::red);
// }
// vpDisplay::flush(I);
// vpDisplay::getClick(I, true);
// }
// ! [Save learning data]
// keypoint_learning.saveLearningData("cube_learning_data.bin", true);
// ! [Save learning data]
/*
* Start the part of the code dedicated to detection and localization
*/
//! [Init keypoint detection]
vpKeyPoint keypoint_detection("ORB", "ORB", "BruteForce-Hamming");
#if (VISP_HAVE_OPENCV_VERSION < 0x030000)
keypoint_detection.setDetectorParameter("ORB", "nLevels", 1);
#else
cv::Ptr<cv::ORB> orb_detector = keypoint_detection.getDetector("ORB").dynamicCast<cv::ORB>();
orb_detector = keypoint_detection.getDetector("ORB").dynamicCast<cv::ORB>();
if (orb_detector != NULL) {
orb_detector->setNLevels(1);
}
#endif
//! [Init keypoint detection]
//! [Load teabox learning data]
keypoint_detection.loadLearningData("cube_learning_data.bin", true);
//! [Load teabox learning data]
//! [Create image matching]
vpImage<unsigned char> IMatching;
keypoint_detection.createImageMatching(I, IMatching);
//! [Create image matching]
vpVideoReader g;
g.setFileName(videoname);
g.open(I);
#if defined VISP_HAVE_X11
vpDisplayX display2;
#elif defined VISP_HAVE_GTK
vpDisplayGTK display2;
#elif defined VISP_HAVE_GDI
vpDisplayGDI display2;
#else
vpDisplayOpenCV display2;
#endif
display2.init(IMatching, 50, 50, "Display matching between learned and current images");
vpDisplay::setTitle(I, "Cube detection and localization");
///// TEST ////
// vpRect* rect_roi = NULL;
// if(rect_roi==NULL)
// rect_roi = new vpRect();
// double time=0, nb=0;
display.init(I, 10, 10);
///////////////
double error;
bool click_done = false;
while (!g.end()) {
// for(unsigned int i=0; i<20;i++)
// {
// if(!g.end())
// g.acquire(I);
// else
// break;
// }
g.acquire(I);
vpDisplay::display(I);
//! [Insert image matching]
keypoint_detection.insertImageMatching(I, IMatching);
//! [Insert image matching]
vpDisplay::display(IMatching);
vpDisplay::displayText(I, 10, 10, "Detection and localization in process...", vpColor::red);
double elapsedTime;
// ! [Matching and pose estimation]
// if (keypoint_detection.matchPoint(I, cam, cMo, error, elapsedTime,NULL,*rect_roi)) {
if (keypoint_detection.matchPoint(I, cam, cMo, error, elapsedTime)) {
//! [Matching and pose estimation]
// std::cout<<"Match !"<<std::endl;
//! [Tracker set pose]
// tracker.setPose(I, cMo);
//! [Tracker set pose]
/////TEST/////
// time+=elapsedTime; nb++;
// std::vector<vpImagePoint> roi;
// for(unsigned int i=0; i<tracker.getNbPolygon();i++)
// {
// std::vector<vpImagePoint> temp = tracker.getPolygon(i)->getRoi(cam);
// roi.insert(roi.end(), temp.begin(), temp.end());
// }
// delete rect_roi;
// rect_roi = new vpRect(roi);
//Affichage de l'origine pointée par cMo
// vpPoint origine;
// origine.setWorldCoordinates(0,0,0) ;
// // std::cout <<"Origne (o):"<< origine.oP << std::endl ;
// origine.changeFrame(cMo) ;
// // std::cout << "Origine (c) : "<< origine.cP << std::endl ;
// origine.project(cMo);
// // std::cout << "Origine (2D) : "<< origine.p << std::endl ;
// vpImagePoint ImRes;
// vpMeterPixelConversion::convertPoint(cam,origine.p[0],origine.p[1],ImRes);
// // std::cout<<"Point : ";
// // std::cout<<ImRes.get_u()<<" / "<<ImRes.get_v();
// // std::cout<<std::endl;
// vpDisplay::displayPoint(I,ImRes,vpColor::blue,10);
/////////////
//! [Display]
// tracker.display(I, cMo, cam, vpColor::red, 2);
vpDisplay::displayFrame(I, cMo, cam, 0.05, vpColor::none, 3);
//! [Display]
// unsigned int nbMatch = keypoint_detection.matchPoint(I);
// std::cout<<"Nb KeyPoint : "<<nbMatch<<std::endl;
// if(nbMatch > 20)
// {
keypoint_detection.displayMatching(I, IMatching);
//! [Get RANSAC inliers outliers]
std::vector<vpImagePoint> ransacInliers = keypoint_detection.getRansacInliers();
std::vector<vpImagePoint> ransacOutliers = keypoint_detection.getRansacOutliers();
//! [Get RANSAC inliers outliers]
//! [Display RANSAC inliers]
for (std::vector<vpImagePoint>::const_iterator it = ransacInliers.begin(); it != ransacInliers.end(); ++it) {
vpDisplay::displayCircle(I, *it, 4, vpColor::green);
vpImagePoint imPt(*it);
imPt.set_u(imPt.get_u() + I.getWidth());
imPt.set_v(imPt.get_v() + I.getHeight());
vpDisplay::displayCircle(IMatching, imPt, 4, vpColor::green);
}
//! [Display RANSAC inliers]
//! [Display RANSAC outliers]
for (std::vector<vpImagePoint>::const_iterator it = ransacOutliers.begin(); it != ransacOutliers.end(); ++it) {
vpDisplay::displayCircle(I, *it, 4, vpColor::red);
vpImagePoint imPt(*it);
imPt.set_u(imPt.get_u() + I.getWidth());
imPt.set_v(imPt.get_v() + I.getHeight());
vpDisplay::displayCircle(IMatching, imPt, 4, vpColor::red);
}
//! [Display RANSAC outliers]
//! [Display image matching]
keypoint_detection.displayMatching(I, IMatching);
//! [Display image matching]
//! [Display model image matching]
// vpCameraParameters cam2;
// cam2.initPersProjWithoutDistortion(cam.get_px(), cam.get_py(), cam.get_u0() + I.getWidth(),
// cam.get_v0() + I.getHeight());
// tracker.setCameraParameters(cam2);
// tracker.setPose(IMatching, cMo);
// tracker.display(IMatching, cMo, cam2, vpColor::red, 2);
// vpDisplay::displayFrame(IMatching, cMo, cam2, 0.05, vpColor::none, 3);
//! [Display model image matching]
}
vpDisplay::flush(I);
vpDisplay::displayText(IMatching, 30, 10, "A click to exit.", vpColor::red);
vpDisplay::flush(IMatching);
if (vpDisplay::getClick(I, false)) {
click_done = true;
break;
}
if (vpDisplay::getClick(IMatching, false)) {
click_done = true;
break;
}
}
// std::cout<<"Moyenne temps execution : "<<time/nb<<std::endl;
// delete rect_roi;
if (!click_done)
vpDisplay::getClick(IMatching);
#ifdef VISP_HAVE_XML2
vpXmlParser::cleanup();
#endif
#if defined(VISP_HAVE_COIN3D) && (COIN_MAJOR_VERSION == 3)
SoDB::finish();
#endif
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
}
#else
(void)argc;
(void)argv;
std::cout << "Install OpenCV and rebuild ViSP to use this example." << std::endl;
#endif
return 0;
}