BaxterInterface/ongoing/Visp_tests/learn_tests/tutorial-detection-object-mbt2.cpp
2018-08-13 11:25:26 +02:00

706 lines
22 KiB
C++

//! \example tutorial-detection-object-mbt2.cpp
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/io/vpVideoReader.h>
#include <visp3/mbt/vpMbGenericTracker.h>
#include <visp3/vision/vpKeyPoint.h>
//Options
// #define IMATCHING
#define HYBRID_MATCHING
#define VAR_TRESH
#ifdef HYBRID_MATCHING
enum State
{
WAITING_FOR_INITIALIZATION,
TRACKING,
LOST,
UNCERTAIN //=Tracking OK / Matching FAIL
};
#endif
#if (VISP_HAVE_OPENCV_VERSION >= 0x020400)
void learnCube(const vpImage<unsigned char> &I, vpMbGenericTracker &tracker, vpKeyPoint &keypoint_learning, int id)
{
//! [Keypoints reference detection]
std::vector<cv::KeyPoint> trainKeyPoints;
double elapsedTime;
keypoint_learning.detect(I, trainKeyPoints, elapsedTime);
//! [Keypoints reference detection]
//! [Keypoints selection on faces]
std::vector<vpPolygon> polygons;
std::vector<std::vector<vpPoint> > roisPt;
std::pair<std::vector<vpPolygon>, std::vector<std::vector<vpPoint> > > pair = tracker.getPolygonFaces();
polygons = pair.first;
roisPt = pair.second;
std::vector<cv::Point3f> points3f;
vpHomogeneousMatrix cMo;
tracker.getPose(cMo);
vpCameraParameters cam;
tracker.getCameraParameters(cam);
vpKeyPoint::compute3DForPointsInPolygons(cMo, cam, trainKeyPoints, polygons, roisPt, points3f);
//! [Keypoints selection on faces]
//! [Keypoints build reference]
keypoint_learning.buildReference(I, trainKeyPoints, points3f, true, id);
//! [Keypoints build reference]
//! [Display reference keypoints]
for (std::vector<cv::KeyPoint>::const_iterator it = trainKeyPoints.begin(); it != trainKeyPoints.end(); ++it) {
vpDisplay::displayCross(I, (int)it->pt.y, (int)it->pt.x, 4, vpColor::red);
}
//! [Display reference keypoints]
}
#endif
#ifdef VAR_TRESH
//Compute cummulative variance of a list of vector.
double varVector(std::list< vpArray2D<double> > vector_list)
{
//Attention aux vecteurs vides
double var[3], mean[3];
//Compute means
for (std::list< vpArray2D<double> >::iterator it=vector_list.begin(); it != vector_list.end(); ++it)
{
if((*it).size()!=3)
{
std::cout<<"WARNING varVector : invalid array size"<<std::endl;
return -1;
}
else
{
for(unsigned int j=0; j< 3; j++)
{
mean[j]+=*(*it)[j];
}
}
}
for(unsigned int j=0; j<3; j++)
{
mean[j] /= vector_list.size();
}
//Compute variances
for (std::list< vpArray2D<double> >::iterator it=vector_list.begin(); it != vector_list.end(); ++it)
{
for(unsigned int j=0; j< 3; j++)
{
var[j]+=(*(*it)[j]-mean[j])*(*(*it)[j]-mean[j]);
}
}
for(unsigned int j=0; j<3; j++)
{
var[j] /= vector_list.size();
}
return var[0]+var[1]+var[2];
}
#endif
#ifdef HYBRID_MATCHING
float computeConfidenceLevel(std::list<State> states)
{
float res = 0;
for (std::list<State>::iterator it=states.begin(); it != states.end(); ++it)
{
switch(*it)
{
case TRACKING:
res += 1;
break;
case UNCERTAIN:
res += 0.5;
break;
case LOST:
res -=1;
case WAITING_FOR_INITIALIZATION:
break;
}
}
res = res/states.size();
return res;
}
#endif
int main(int argc, char **argv)
{
#if (VISP_HAVE_OPENCV_VERSION >= 0x020400)
//! [MBT code]
try {
std::string videoname = "book.mpeg";
for (int i = 0; i < argc; i++) {
if (std::string(argv[i]) == "--name")
videoname = std::string(argv[i + 1]);
else if (std::string(argv[i]) == "--help") {
std::cout << "\nUsage: " << argv[0] << " [--name <video name>] [--help]\n" << std::endl;
return 0;
}
}
std::string parentname = vpIoTools::getParent(videoname);
std::string objectname = vpIoTools::getNameWE(videoname);
if (!parentname.empty())
objectname = parentname + "/" + objectname;
std::cout << "Video name: " << videoname << std::endl;
std::cout << "Tracker requested config files: " << objectname << ".[init,"
#ifdef VISP_HAVE_XML2
<< "xml,"
#endif
<< "cao or wrl]" << std::endl;
std::cout << "Tracker optional config files: " << objectname << ".[ppm]" << std::endl;
vpImage<unsigned char> I;
vpHomogeneousMatrix cMo;
vpCameraParameters cam;
vpMbGenericTracker tracker; //Bug lors de la config de type KLT de tracker dans le constructeur.
tracker.setTrackerType(vpMbGenericTracker::EDGE_TRACKER | vpMbGenericTracker::KLT_TRACKER);
bool usexml = false;
#ifdef VISP_HAVE_XML2
if (vpIoTools::checkFilename(objectname + ".xml")) {
tracker.loadConfigFile(objectname + ".xml");
tracker.getCameraParameters(cam);
usexml = true;
}
#endif
if (!usexml) {
vpMe me;
me.setMaskSize(5);
me.setMaskNumber(180);
me.setRange(7);
me.setThreshold(5000);
me.setMu1(0.5);
me.setMu2(0.5);
me.setSampleStep(4);
me.setNbTotalSample(250);
tracker.setMovingEdge(me);
cam.initPersProjWithoutDistortion(547, 542, 339, 235);
tracker.setCameraParameters(cam);
tracker.setAngleAppear(vpMath::rad(89));
tracker.setAngleDisappear(vpMath::rad(89));
tracker.setNearClippingDistance(0.01);
tracker.setFarClippingDistance(10.0);
tracker.setClipping(tracker.getClipping() | vpMbtPolygon::FOV_CLIPPING);
vpKltOpencv klt_settings;
klt_settings.setMaxFeatures(300);
klt_settings.setWindowSize(5);
klt_settings.setQuality(0.015);
klt_settings.setMinDistance(8);
klt_settings.setHarrisFreeParameter(0.01);
klt_settings.setBlockSize(3);
klt_settings.setPyramidLevels(3);
tracker.setKltOpencv(klt_settings);
tracker.setKltMaskBorder(5);
}
tracker.setOgreVisibilityTest(false);
if (vpIoTools::checkFilename(objectname + ".cao"))
tracker.loadModel(objectname + ".cao");
else if (vpIoTools::checkFilename(objectname + ".wrl"))
tracker.loadModel(objectname + ".wrl");
tracker.setDisplayFeatures(true);
//! [MBT code]
//! [Keypoint declaration]
vpKeyPoint keypoint_learning("ORB", "ORB", "BruteForce-Hamming");
#if (VISP_HAVE_OPENCV_VERSION < 0x030000)
keypoint_learning.setDetectorParameter("ORB", "nLevels", 1);
#else
cv::Ptr<cv::ORB> orb_learning = keypoint_learning.getDetector("ORB").dynamicCast<cv::ORB>();
if (orb_learning != NULL) {
orb_learning->setNLevels(1);
}
#endif
//! [Keypoint declaration]
#if defined(VISP_HAVE_X11)
vpDisplayX display;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI display;
#elif defined(VISP_HAVE_OPENCV)
vpDisplayOpenCV display;
#else
std::cout << "No image viewer is available..." << std::endl;
return 0;
#endif
videoname = "data_test5/%03d.jpg";
/*
* Start the part of the code dedicated to object learning from 3 images
*/
unsigned int init_data_nb = 11;
// vpVideoReader g;
// g.setFileName("book_training/train_image_%03d.png");
std::string trainData[] = {
"book_training/train_image_000",
"book_training/train_image_001",
"book_training/train_image_002",
"book_training/train_image_003",
"book_training/train_image_004",
"book_training/train_image_005",
"book_training/train_image_006",
"book_training/train_image_007",
"book_training/train_image_008",
"book_training/train_image_009",
"book_training/train_image_010"};
// std::string trainData[] = {
// "book2_training/train_image_000",
// "book2_training/train_image_001",
// "book2_training/train_image_002",
// "book2_training/train_image_003"};
// std::string trainData[] = {
// "box_training/train_image_000",
// "box_training/train_image_001",
// "box_training/train_image_002",
// "box_training/train_image_003",
// "box_training/train_image_004",
// "box_training/train_image_005"};
vpHomogeneousMatrix initPoseTab[init_data_nb];
// std::cout<<"Load init cMo"<<std::endl;
// vpArray2D<double>::loadYAML(cMoName[0],initPoseTab[0]);
// initPoseTab[0].print();
//Acquisition des cMo d'intialisation
for (int i = 0; i < init_data_nb; i++)
{
// std::cout<<i<<std::endl;
vpArray2D<double>::loadYAML(trainData[i]+".yml",initPoseTab[i]);
}
for (int i = 0; i < init_data_nb; i++) {
//Acquisition des images d'initialisation
vpImageIo::read(I, trainData[i]+".png");
// if(i==0 || !g.end())
// g.acquire(I);
// else
// std::cout<<"Missing training image !"<<std::endl;
// vpArray2D<double>::loadYAML(cMoName[i],initPoseTab[i]);
if (i == 0) {
display.init(I, 10, 10);
}
std::stringstream title;
title << "Learning cube on image: " << trainData[i];
// title << "Learning cube on image: " << g.getFrameIndex();
vpDisplay::setTitle(I, title.str().c_str());
vpDisplay::display(I);
//! [Set tracker pose]
// tracker.setPose(I, initPoseTab[i]);
tracker.initFromPose(I,initPoseTab[i]);
//! [Set tracker pose]
// std::cout<<"Refine"<<std::endl;
//! [Refine pose]
tracker.track(I);
//! [Refine pose]
// std::cout<<"Display"<<std::endl;
//! [Display tracker pose]
tracker.getPose(cMo);
tracker.display(I, cMo, cam, vpColor::red);
//! [Display tracker pose]
// std::cout<<"Learn"<<std::endl;
//! [Learn cube call]
learnCube(I, tracker, keypoint_learning, i);
//! [Learn cube call]
vpDisplay::displayText(I, 10, 10, "Learning step: keypoints are detected on visible cube faces", vpColor::red);
if (i < 2) {
vpDisplay::displayText(I, 30, 10, "Click to continue the learning...", vpColor::red);
} else {
vpDisplay::displayText(I, 30, 10, "Click to continue with the detection...", vpColor::red);
}
vpDisplay::flush(I);
// vpDisplay::getClick(I, true);
std::cout<<trainData[i]<<" learned !"<<std::endl;
}
// g.close();
//! [Save learning data]
#ifdef IMATCHING
keypoint_learning.saveLearningData("book_learning_data.bin", true, true); //+sauvegarde des images d'entrainement pour l'affichage
#else
keypoint_learning.saveLearningData("book_learning_data.bin", true, false);
#endif
//! [Save learning data]
/*
* Start the part of the code dedicated to detection and localization
*/
//! [Init keypoint detection]
vpKeyPoint keypoint_detection("ORB", "ORB", "BruteForce-Hamming");
#if (VISP_HAVE_OPENCV_VERSION < 0x030000)
keypoint_detection.setDetectorParameter("ORB", "nLevels", 1);
#else
cv::Ptr<cv::ORB> orb_detector = keypoint_detection.getDetector("ORB").dynamicCast<cv::ORB>();
orb_detector = keypoint_detection.getDetector("ORB").dynamicCast<cv::ORB>();
if (orb_detector != NULL) {
orb_detector->setNLevels(1);
}
#endif
//! [Init keypoint detection]
//! [Load teabox learning data]
keypoint_detection.loadLearningData("book_learning_data.bin", true);
//! [Load teabox learning data]
#ifdef IMATCHING
//! [Create image matching]
vpImage<unsigned char> IMatching;
keypoint_detection.createImageMatching(I, IMatching);
//! [Create image matching]
#endif
// std::cout<<"Reading : "<<videoname<<std::endl;
vpVideoReader g;
g.setFileName(videoname);
g.open(I);
#if defined VISP_HAVE_X11
vpDisplayX display2;
#elif defined VISP_HAVE_GTK
vpDisplayGTK display2;
#elif defined VISP_HAVE_GDI
vpDisplayGDI display2;
#else
vpDisplayOpenCV display2;
#endif
#ifdef IMATCHING
display2.init(IMatching, 50, 50, "Display matching between learned and current images");
#endif
vpDisplay::setTitle(I, "Cube detection and localization");
///// TEST ////
// if(rect_roi==NULL)
// rect_roi = new vpRect();
// double time=0, nb=0;
// display.init(I, 10, 10);
#ifdef VAR_TRESH
//Var Treshold
std::list< vpArray2D<double> > translation_mem;
std::list< vpArray2D<double> > rotation_mem;
unsigned int var_mem_length = 15; // + = stabilité / - = rapidité
double tvar_treshold = 0.3;
double rvar_treshold = 0.5;
double tvar, rvar;
//Var Treshold
#endif
#ifdef HYBRID_MATCHING
vpRect* rect_roi = new vpRect();
State track_state = WAITING_FOR_INITIALIZATION;
std::list<State> state_mem;
unsigned int state_mem_length = 10;
#endif
///////////////
double error;
bool click_done = false;
while (!g.end()) {
g.acquire(I);
vpDisplay::display(I);
#ifdef IMATCHING
//! [Insert image matching]
keypoint_detection.insertImageMatching(I, IMatching);
//! [Insert image matching]
vpDisplay::display(IMatching);
#endif
// vpDisplay::displayText(I, 10, 10, "Detection and localization in process...", vpColor::red);
double elapsedTime;
// ! [Matching and pose estimation]
// if (keypoint_detection.matchPoint(I, cam, cMo, error, elapsedTime,NULL,*rect_roi)) {
if (keypoint_detection.matchPoint(I, cam, cMo, error, elapsedTime)) {
//! [Matching and pose estimation]
// std::cout<<"Match !"<<std::endl;
// std::cout<<"T :"<<std::endl<<cMo.getTranslationVector()<<std::endl<<"R :"<<std::endl<<cMo.getThetaUVector()<<std::endl;
#ifdef VAR_TRESH
//Var Treshold
translation_mem.push_front(cMo.getTranslationVector());
rotation_mem.push_front(cMo.getThetaUVector());
if(translation_mem.size()==var_mem_length)
{
// tvar = varVector(translation_mem);
// std::cout<<"Var trans : "<<tvar<<std::endl;
translation_mem.pop_back();
}
if(rotation_mem.size()==var_mem_length)
{
// rvar=varVector(rotation_mem);
// std::cout<<"Var rot : "<<rvar<<std::endl;
rotation_mem.pop_back();
}
tvar = varVector(translation_mem);
rvar=varVector(rotation_mem);
if(tvar < tvar_treshold && rvar < rvar_treshold)
{
//Var Treshold
#endif
#ifdef HYBRID_MATCHING
//Init ou Reinit du tracker après perte ou après incertitude
if(track_state != TRACKING || (tvar<0.1 && rvar<0.1))
{
tracker.initFromPose(I,cMo);
track_state = TRACKING;
}
#endif
//! [Tracker set pose]
// tracker.setPose(I, cMo);
//! [Tracker set pose]
/////TEST/////
// time+=elapsedTime; nb++;
// std::vector<vpImagePoint> roi;
// for(unsigned int i=0; i<tracker.getNbPolygon();i++)
// {
// std::vector<vpImagePoint> temp = tracker.getPolygon(i)->getRoi(cam);
// roi.insert(roi.end(), temp.begin(), temp.end());
// }
// delete rect_roi;
// rect_roi = new vpRect(roi);
//Affichage de l'origine pointée par cMo
// vpPoint origine;
// origine.setWorldCoordinates(0,0,0) ;
// // std::cout <<"Origne (o):"<< origine.oP << std::endl ;
// origine.changeFrame(cMo) ;
// // std::cout << "Origine (c) : "<< origine.cP << std::endl ;
// origine.project(cMo);
// // std::cout << "Origine (2D) : "<< origine.p << std::endl ;
// vpImagePoint ImRes;
// vpMeterPixelConversion::convertPoint(cam,origine.p[0],origine.p[1],ImRes);
// // std::cout<<"Point : ";
// // std::cout<<ImRes.get_u()<<" / "<<ImRes.get_v();
// // std::cout<<std::endl;
// vpDisplay::displayPoint(I,ImRes,vpColor::blue,10);
/////////////
//! [Display]
// tracker.display(I, cMo, cam, vpColor::red, 2);
vpDisplay::displayFrame(I, cMo, cam, 0.05, vpColor::none, 3);
#ifdef VAR_TRESH
}
else
{
std::cout<<"Object detection uncertain in frame : "<<g.getFrameIndex()<<std::endl;
#ifdef HYBRID_MATCHING
//Tentative d'améliorationde la détédction avec ROI
if(track_state == TRACKING || track_state == UNCERTAIN) //Tracker initialisé
{
std::vector<vpImagePoint> roi;
for(unsigned int i=0; i<tracker.getNbPolygon();i++)
{
std::vector<vpImagePoint> temp = tracker.getPolygon(i)->getRoi(cam);
roi.insert(roi.end(), temp.begin(), temp.end());
}
delete rect_roi;
rect_roi = new vpRect(roi);
if (keypoint_detection.matchPoint(I, cam, cMo, error, elapsedTime,NULL,*rect_roi))
{
//Remplace previous result
translation_mem.pop_front();
rotation_mem.pop_front();
translation_mem.push_front(cMo.getTranslationVector());
rotation_mem.push_front(cMo.getThetaUVector());
tvar = varVector(translation_mem);
rvar=varVector(rotation_mem);
if(tvar < tvar_treshold && rvar < rvar_treshold)
{
std::cout<<"Object detection improved : "<<g.getFrameIndex()<<std::endl;
vpDisplay::displayFrame(I, cMo, cam, 0.05, vpColor::none, 3);
track_state = TRACKING;
}
else
{
track_state = UNCERTAIN;
}
}
//BoF BOF
// else if( track_state = WAITING_FOR_INITIALIZATION )
// {
// track_state = UNCERTAIN;
// }
}
#endif
}
#endif
//! [Display]
// unsigned int nbMatch = keypoint_detection.matchPoint(I);
// std::cout<<"Nb KeyPoint : "<<nbMatch<<std::endl;
// if(nbMatch > 20)
// {
#ifdef IMATCHING
keypoint_detection.displayMatching(I, IMatching);
#endif
//! [Get RANSAC inliers outliers]
std::vector<vpImagePoint> ransacInliers = keypoint_detection.getRansacInliers();
std::vector<vpImagePoint> ransacOutliers = keypoint_detection.getRansacOutliers();
//! [Get RANSAC inliers outliers]
//! [Display RANSAC inliers]
for (std::vector<vpImagePoint>::const_iterator it = ransacInliers.begin(); it != ransacInliers.end(); ++it) {
vpDisplay::displayCircle(I, *it, 4, vpColor::green);
#ifdef IMATCHING
vpImagePoint imPt(*it);
imPt.set_u(imPt.get_u() + I.getWidth());
imPt.set_v(imPt.get_v() + I.getHeight());
vpDisplay::displayCircle(IMatching, imPt, 4, vpColor::green);
#endif
}
//! [Display RANSAC inliers]
//! [Display RANSAC outliers]
for (std::vector<vpImagePoint>::const_iterator it = ransacOutliers.begin(); it != ransacOutliers.end(); ++it) {
vpDisplay::displayCircle(I, *it, 4, vpColor::red);
#ifdef IMATCHING
vpImagePoint imPt(*it);
imPt.set_u(imPt.get_u() + I.getWidth());
imPt.set_v(imPt.get_v() + I.getHeight());
vpDisplay::displayCircle(IMatching, imPt, 4, vpColor::red);
#endif
}
//! [Display RANSAC outliers]
#ifdef IMATCHING
//! [Display image matching]
keypoint_detection.displayMatching(I, IMatching);
//! [Display image matching]
//! [Display model image matching]
// vpCameraParameters cam2;
// cam2.initPersProjWithoutDistortion(cam.get_px(), cam.get_py(), cam.get_u0() + I.getWidth(),
// cam.get_v0() + I.getHeight());
// tracker.setCameraParameters(cam2);
// tracker.setPose(IMatching, cMo);
// tracker.display(IMatching, cMo, cam2, vpColor::red, 2);
// vpDisplay::displayFrame(IMatching, cMo, cam2, 0.05, vpColor::none, 3);
//! [Display model image matching]
#endif
}
else
{
std::cout<<"Object Lost in frame : "<<g.getFrameIndex()<<std::endl;
#ifdef HYBRID_MATCHING
track_state = UNCERTAIN;
#endif
}
#ifdef HYBRID_MATCHING
if(track_state == TRACKING || track_state == UNCERTAIN) //Tracker intialisé
{
try
{
tracker.track(I);
// tracker.testTracking();
}
catch(...)
{
track_state = LOST;
std::cout<<"Tracker : Object Lost in frame : "<<g.getFrameIndex()<<std::endl;
}
if(track_state !=LOST)
{
tracker.getPose(cMo);
tracker.display(I, cMo, cam, vpColor::blue, 4);
}
}
state_mem.push_front(track_state);
if(state_mem.size()==state_mem_length)
{
std::stringstream title2;
title2 << "Confidence level :"<<computeConfidenceLevel(state_mem);
// vpDisplay::displayText(I, 10, 10, "Confidence Level : "+std::to_string(computeConfidenceLevel(state_mem)), vpColor::red); //C++11
vpDisplay::displayText(I, 10, 10, title2.str().c_str(), vpColor::red);
// std::cout<<"Confidence level :"<<computeConfidenceLevel(state_mem)<<std::endl;
state_mem.pop_back();
}
#endif
vpDisplay::flush(I);
if (vpDisplay::getClick(I, false)) {
click_done = true;
break;
}
// vpDisplay::getClick(I, true);
#ifdef IMATCHING
vpDisplay::displayText(IMatching, 30, 10, "A click to exit.", vpColor::red);
vpDisplay::flush(IMatching);
if (vpDisplay::getClick(IMatching, false)) {
click_done = true;
break;
}
// vpDisplay::getClick(IMatching, true);
#endif
}
// std::cout<<"Moyenne temps execution : "<<time/nb<<std::endl;
// delete rect_roi;
#if defined IMATCHING
if (!click_done)
vpDisplay::getClick(IMatching);
#endif
#ifdef VISP_HAVE_XML2
vpXmlParser::cleanup();
#endif
#if defined(VISP_HAVE_COIN3D) && (COIN_MAJOR_VERSION == 3)
SoDB::finish();
#endif
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
}
#else
(void)argc;
(void)argv;
std::cout << "Install OpenCV and rebuild ViSP to use this example." << std::endl;
#endif
return 0;
}