Debut Tests ASIFT + Essai VISP simplifié

This commit is contained in:
Unknown 2018-07-23 17:30:57 +02:00
parent a41f1ba991
commit fbafece5af
1339 changed files with 153161 additions and 56 deletions

View file

@ -0,0 +1,7 @@
file(GLOB Eigen_src_subdirectories "*")
escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}")
foreach(f ${Eigen_src_subdirectories})
if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" )
add_subdirectory(${f})
endif()
endforeach()

View file

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Cholesky_SRCS "*.h")
INSTALL(FILES
${Eigen_Cholesky_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Cholesky COMPONENT Devel
)

View file

@ -0,0 +1,461 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H
namespace internal {
template<typename MatrixType, int UpLo> struct LDLT_Traits;
}
/** \ingroup cholesky_Module
*
* \class LDLT
*
* \brief Robust Cholesky decomposition of a matrix with pivoting
*
* \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
*
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
* matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
* is lower triangular with a unit diagonal and D is a diagonal matrix.
*
* The decomposition uses pivoting to ensure stability, so that L will have
* zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
* on D also stabilizes the computation.
*
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
* decomposition to determine whether a system of equations has a solution.
*
* \sa MatrixBase::ldlt(), class LLT
*/
/* THIS PART OF THE DOX IS CURRENTLY DISABLED BECAUSE INACCURATE BECAUSE OF BUG IN THE DECOMPOSITION CODE
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
template<typename _MatrixType, int _UpLo> class LDLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
UpLo = _UpLo
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LDLT::compute(const MatrixType&).
*/
LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LDLT()
*/
LDLT(Index size)
: m_matrix(size, size),
m_transpositions(size),
m_temporary(size),
m_isInitialized(false)
{}
LDLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_transpositions(matrix.rows()),
m_temporary(matrix.rows()),
m_isInitialized(false)
{
compute(matrix);
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Traits::getL(m_matrix);
}
/** \returns the permutation matrix P as a transposition sequence.
*/
inline const TranspositionType& transpositionsP() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_transpositions;
}
/** \returns the coefficients of the diagonal matrix D */
inline Diagonal<const MatrixType> vectorD(void) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix.diagonal();
}
/** \returns true if the matrix is positive (semidefinite) */
inline bool isPositive(void) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == 1;
}
#ifdef EIGEN2_SUPPORT
inline bool isPositiveDefinite() const
{
return isPositive();
}
#endif
/** \returns true if the matrix is negative (semidefinite) */
inline bool isNegative(void) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == -1;
}
/** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \note_about_checking_solutions
*
* \sa solveInPlace(), MatrixBase::ldlt()
*/
template<typename Rhs>
inline const internal::solve_retval<LDLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LDLT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = this->solve(b);
return true;
}
#endif
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
LDLT& compute(const MatrixType& matrix);
/** \returns the internal LDLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLDLT() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
protected:
/** \internal
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
* The strict upper part is used during the decomposition, the strict lower
* part correspond to the coefficients of L (its diagonal is equal to 1 and
* is not stored), and the diagonal entries correspond to D.
*/
MatrixType m_matrix;
TranspositionType m_transpositions;
TmpMatrixType m_temporary;
int m_sign;
bool m_isInitialized;
};
namespace internal {
template<int UpLo> struct ldlt_inplace;
template<> struct ldlt_inplace<Lower>
{
template<typename MatrixType, typename TranspositionType, typename Workspace>
static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
if (size <= 1)
{
transpositions.setIdentity();
if(sign)
*sign = real(mat.coeff(0,0))>0 ? 1:-1;
return true;
}
RealScalar cutoff = 0, biggest_in_corner;
for (Index k = 0; k < size; ++k)
{
// Find largest diagonal element
Index index_of_biggest_in_corner;
biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += k;
if(k == 0)
{
// The biggest overall is the point of reference to which further diagonals
// are compared; if any diagonal is negligible compared
// to the largest overall, the algorithm bails.
cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
if(sign)
*sign = real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
}
// Finish early if the matrix is not full rank.
if(biggest_in_corner < cutoff)
{
for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
break;
}
transpositions.coeffRef(k) = index_of_biggest_in_corner;
if(k != index_of_biggest_in_corner)
{
// apply the transposition while taking care to consider only
// the lower triangular part
Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
for(int i=k+1;i<index_of_biggest_in_corner;++i)
{
Scalar tmp = mat.coeffRef(i,k);
mat.coeffRef(i,k) = conj(mat.coeffRef(index_of_biggest_in_corner,i));
mat.coeffRef(index_of_biggest_in_corner,i) = conj(tmp);
}
if(NumTraits<Scalar>::IsComplex)
mat.coeffRef(index_of_biggest_in_corner,k) = conj(mat.coeff(index_of_biggest_in_corner,k));
}
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index rs = size - k - 1;
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
if(k>0)
{
temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
if(rs>0)
A21.noalias() -= A20 * temp.head(k);
}
if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
A21 /= mat.coeffRef(k,k);
}
return true;
}
};
template<> struct ldlt_inplace<Upper>
{
template<typename MatrixType, typename TranspositionType, typename Workspace>
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0)
{
Transpose<MatrixType> matt(mat);
return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
}
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
{
typedef TriangularView<MatrixType, UnitLower> MatrixL;
typedef TriangularView<typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
inline static MatrixL getL(const MatrixType& m) { return m; }
inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
{
typedef TriangularView<typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
typedef TriangularView<MatrixType, UnitUpper> MatrixU;
inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); }
inline static MatrixU getU(const MatrixType& m) { return m; }
};
} // end namespace internal
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
*/
template<typename MatrixType, int _UpLo>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix = a;
m_transpositions.resize(size);
m_isInitialized = false;
m_temporary.resize(size);
internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign);
m_isInitialized = true;
return *this;
}
namespace internal {
template<typename _MatrixType, int _UpLo, typename Rhs>
struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
: solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
{
typedef LDLT<_MatrixType,_UpLo> LDLTType;
EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
// dst = P b
dst = dec().transpositionsP() * rhs();
// dst = L^-1 (P b)
dec().matrixL().solveInPlace(dst);
// dst = D^-1 (L^-1 P b)
dst = dec().vectorD().asDiagonal().inverse() * dst;
// dst = L^-T (D^-1 L^-1 P b)
dec().matrixU().solveInPlace(dst);
// dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
dst = dec().transpositionsP().transpose() * dst;
}
};
}
/** \internal use x = ldlt_object.solve(x);
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LDLT::solve(), MatrixBase::ldlt()
*/
template<typename MatrixType,int _UpLo>
template<typename Derived>
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows();
eigen_assert(size == bAndX.rows());
bAndX = this->solve(bAndX);
return true;
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^T L D L^* P.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows();
MatrixType res(size,size);
// P
res.setIdentity();
res = transpositionsP() * res;
// L^* P
res = matrixU() * res;
// D(L^*P)
res = vectorD().asDiagonal() * res;
// L(DL^*P)
res = matrixL() * res;
// P^T (LDL^*P)
res = transpositionsP().transpose() * res;
return res;
}
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/
template<typename MatrixType, unsigned int UpLo>
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::ldlt() const
{
return LDLT<PlainObject,UpLo>(m_matrix);
}
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::ldlt() const
{
return LDLT<PlainObject>(derived());
}
#endif // EIGEN_LDLT_H

View file

@ -0,0 +1,386 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_LLT_H
#define EIGEN_LLT_H
namespace internal{
template<typename MatrixType, int UpLo> struct LLT_Traits;
}
/** \ingroup cholesky_Module
*
* \class LLT
*
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
*
* \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
*
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
*
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
* situations like generalised eigen problems with hermitian matrices.
*
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
* has a solution.
*
* \sa MatrixBase::llt(), class LDLT
*/
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
template<typename _MatrixType, int _UpLo> class LLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
enum {
PacketSize = internal::packet_traits<Scalar>::size,
AlignmentMask = int(PacketSize)-1,
UpLo = _UpLo
};
typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LLT::compute(const MatrixType&).
*/
LLT() : m_matrix(), m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LLT()
*/
LLT(Index size) : m_matrix(size, size),
m_isInitialized(false) {}
LLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_isInitialized(false)
{
compute(matrix);
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getL(m_matrix);
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* Since this LLT class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* Example: \include LLT_solve.cpp
* Output: \verbinclude LLT_solve.out
*
* \sa solveInPlace(), MatrixBase::llt()
*/
template<typename Rhs>
inline const internal::solve_retval<LLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LLT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<LLT, Rhs>(*this, b.derived());
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = this->solve(b);
return true;
}
bool isPositiveDefinite() const { return true; }
#endif
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &bAndX) const;
LLT& compute(const MatrixType& matrix);
/** \returns the LLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLLT() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_info;
}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
protected:
/** \internal
* Used to compute and store L
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
bool m_isInitialized;
ComputationInfo m_info;
};
namespace internal {
template<int UpLo> struct llt_inplace;
template<> struct llt_inplace<Lower>
{
template<typename MatrixType>
static typename MatrixType::Index unblocked(MatrixType& mat)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
for(Index k = 0; k < size; ++k)
{
Index rs = size-k-1; // remaining size
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
RealScalar x = real(mat.coeff(k,k));
if (k>0) x -= A10.squaredNorm();
if (x<=RealScalar(0))
return k;
mat.coeffRef(k,k) = x = sqrt(x);
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
if (rs>0) A21 *= RealScalar(1)/x;
}
return -1;
}
template<typename MatrixType>
static typename MatrixType::Index blocked(MatrixType& m)
{
typedef typename MatrixType::Index Index;
eigen_assert(m.rows()==m.cols());
Index size = m.rows();
if(size<32)
return unblocked(m);
Index blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = std::min(std::max(blockSize,Index(8)), Index(128));
for (Index k=0; k<size; k+=blockSize)
{
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index bs = std::min(blockSize, size-k);
Index rs = size - k - bs;
Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
Index ret;
if((ret=unblocked(A11))>=0) return k+ret;
if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck
}
return -1;
}
};
template<> struct llt_inplace<Upper>
{
template<typename MatrixType>
static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Lower>::unblocked(matt);
}
template<typename MatrixType>
static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Lower>::blocked(matt);
}
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
{
typedef TriangularView<MatrixType, Lower> MatrixL;
typedef TriangularView<typename MatrixType::AdjointReturnType, Upper> MatrixU;
inline static MatrixL getL(const MatrixType& m) { return m; }
inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<Lower>::blocked(m)==-1; }
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
{
typedef TriangularView<typename MatrixType::AdjointReturnType, Lower> MatrixL;
typedef TriangularView<MatrixType, Upper> MatrixU;
inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); }
inline static MatrixU getU(const MatrixType& m) { return m; }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<Upper>::blocked(m)==-1; }
};
} // end namespace internal
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
*
*
* \returns a reference to *this
*/
template<typename MatrixType, int _UpLo>
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix.resize(size, size);
m_matrix = a;
m_isInitialized = true;
bool ok = Traits::inplace_decomposition(m_matrix);
m_info = ok ? Success : NumericalIssue;
return *this;
}
namespace internal {
template<typename _MatrixType, int UpLo, typename Rhs>
struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
: solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
{
typedef LLT<_MatrixType,UpLo> LLTType;
EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dst = rhs();
dec().solveInPlace(dst);
}
};
}
/** \internal use x = llt_object.solve(x);
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LLT::solve(), MatrixBase::llt()
*/
template<typename MatrixType, int _UpLo>
template<typename Derived>
void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==bAndX.rows());
matrixL().solveInPlace(bAndX);
matrixU().solveInPlace(bAndX);
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: L L^*.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return matrixL() * matrixL().adjoint().toDenseMatrix();
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
*/
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::llt() const
{
return LLT<PlainObject>(derived());
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
*/
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::llt() const
{
return LLT<PlainObject,UpLo>(m_matrix);
}
#endif // EIGEN_LLT_H

View file

@ -0,0 +1,322 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ARRAY_H
#define EIGEN_ARRAY_H
/** \class Array
* \ingroup Core_Module
*
* \brief General-purpose arrays with easy API for coefficient-wise operations
*
* The %Array class is very similar to the Matrix class. It provides
* general-purpose one- and two-dimensional arrays. The difference between the
* %Array and the %Matrix class is primarily in the API: the API for the
* %Array class provides easy access to coefficient-wise operations, while the
* API for the %Matrix class provides easy access to linear-algebra
* operations.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
*
* \sa \ref TutorialArrayClass, \ref TopicClassHierarchy
*/
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef ArrayXpr XprKind;
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
};
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Array
: public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
public:
typedef PlainObjectBase<Array> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Array)
enum { Options = _Options };
typedef typename Base::PlainObject PlainObject;
protected:
template <typename Derived, typename OtherDerived, bool IsVector>
friend struct internal::conservative_resize_like_impl;
using Base::m_storage;
public:
enum { NeedsToAlign = (!(Options&DontAlign))
&& SizeAtCompileTime!=Dynamic && ((static_cast<int>(sizeof(Scalar))*SizeAtCompileTime)%16)==0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
using Base::base;
using Base::coeff;
using Base::coeffRef;
/**
* The usage of
* using Base::operator=;
* fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
* the usage of 'using'. This should be done only for operator=.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other)
{
return Base::operator=(other);
}
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array& operator=(const ArrayBase<OtherDerived>& other)
{
return Base::_set(other);
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_STRONG_INLINE Array& operator=(const Array& other)
{
return Base::_set(other);
}
/** Default constructor.
*
* For fixed-size matrices, does nothing.
*
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
* a matrix to 0 is not supported.
*
* \sa resize(Index,Index)
*/
EIGEN_STRONG_INLINE explicit Array() : Base()
{
Base::_check_template_params();
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ??
/** \internal */
Array(internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert())
{
Base::_check_template_params();
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#endif
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
EIGEN_STRONG_INLINE explicit Array(Index dim)
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array)
eigen_assert(dim >= 0);
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T0, typename T1>
EIGEN_STRONG_INLINE Array(const T0& x, const T1& y)
{
Base::_check_template_params();
this->template _init2<T0,T1>(x, y);
}
#else
/** constructs an uninitialized matrix with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead. */
Array(Index rows, Index cols);
/** constructs an initialized 2D vector with given coefficients */
Array(const Scalar& x, const Scalar& y);
#endif
/** constructs an initialized 3D vector with given coefficients */
EIGEN_STRONG_INLINE Array(const Scalar& x, const Scalar& y, const Scalar& z)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
}
/** constructs an initialized 4D vector with given coefficients */
EIGEN_STRONG_INLINE Array(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
m_storage.data()[3] = w;
}
explicit Array(const Scalar *data);
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const ArrayBase<OtherDerived>& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** Copy constructor */
EIGEN_STRONG_INLINE Array(const Array& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** Copy constructor with in-place evaluation */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const ReturnByValue<OtherDerived>& other)
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
other.evalTo(*this);
}
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other)
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
*this = other;
}
/** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
template<typename OtherDerived>
void swap(ArrayBase<OtherDerived> const & other)
{ this->_swap(other.derived()); }
inline Index innerStride() const { return 1; }
inline Index outerStride() const { return this->innerSize(); }
#ifdef EIGEN_ARRAY_PLUGIN
#include EIGEN_ARRAY_PLUGIN
#endif
private:
template<typename MatrixType, typename OtherDerived, bool SwapPointers>
friend struct internal::matrix_swap_impl;
};
/** \defgroup arraytypedefs Global array typedefs
* \ingroup Core_Module
*
* Eigen defines several typedef shortcuts for most common 1D and 2D array types.
*
* The general patterns are the following:
*
* \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats.
*
* There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is
* a fixed-size 1D array of 4 complex floats.
*
* \sa class Array
*/
#define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix;
#define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_ARRAY_TYPEDEFS
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_ARRAY_TYPEDEFS \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd)
#endif // EIGEN_ARRAY_H

View file

@ -0,0 +1,239 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ARRAYBASE_H
#define EIGEN_ARRAYBASE_H
template<typename ExpressionType> class MatrixWrapper;
/** \class ArrayBase
* \ingroup Core_Module
*
* \brief Base class for all 1D and 2D array, and related expressions
*
* An array is similar to a dense vector or matrix. While matrices are mathematical
* objects with well defined linear algebra operators, an array is just a collection
* of scalar values arranged in a one or two dimensionnal fashion. As the main consequence,
* all operations applied to an array are performed coefficient wise. Furthermore,
* arrays support scalar math functions of the c++ standard library (e.g., std::sin(x)), and convenient
* constructors allowing to easily write generic code working for both scalar values
* and arrays.
*
* This class is the base that is inherited by all array expression types.
*
* \tparam Derived is the derived type, e.g., an array or an expression type.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN.
*
* \sa class MatrixBase, \ref TopicClassHierarchy
*/
template<typename Derived> class ArrayBase
: public DenseBase<Derived>
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** The base class for a given storage type. */
typedef ArrayBase StorageBaseType;
typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl;
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseBase<Derived> Base;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::CoeffReadCost;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::lazyAssign;
using Base::operator=;
using Base::operator+=;
using Base::operator-=;
using Base::operator*=;
using Base::operator/=;
typedef typename Base::CoeffReturnType CoeffReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal the plain matrix type corresponding to this expression. Note that is not necessarily
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
* reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either
* PlainObject or const PlainObject&.
*/
typedef Array<typename internal::traits<Derived>::Scalar,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime,
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime
> PlainObject;
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
# include "../plugins/ArrayCwiseUnaryOps.h"
# include "../plugins/CommonCwiseBinaryOps.h"
# include "../plugins/MatrixCwiseBinaryOps.h"
# include "../plugins/ArrayCwiseBinaryOps.h"
# ifdef EIGEN_ARRAYBASE_PLUGIN
# include EIGEN_ARRAYBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
Derived& operator=(const ArrayBase& other)
{
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
}
Derived& operator+=(const Scalar& scalar)
{ return *this = derived() + scalar; }
Derived& operator-=(const Scalar& scalar)
{ return *this = derived() - scalar; }
template<typename OtherDerived>
Derived& operator+=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator*=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator/=(const ArrayBase<OtherDerived>& other);
public:
ArrayBase<Derived>& array() { return *this; }
const ArrayBase<Derived>& array() const { return *this; }
/** \returns an \link MatrixBase Matrix \endlink expression of this array
* \sa MatrixBase::array() */
MatrixWrapper<Derived> matrix() { return derived(); }
const MatrixWrapper<Derived> matrix() const { return derived(); }
// template<typename Dest>
// inline void evalTo(Dest& dst) const { dst = matrix(); }
protected:
ArrayBase() : Base() {}
private:
explicit ArrayBase(Index);
ArrayBase(Index,Index);
template<typename OtherDerived> explicit ArrayBase(const ArrayBase<OtherDerived>&);
protected:
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator+=(const MatrixBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(sizeof(typename OtherDerived::Scalar)==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES);}
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator-=(const MatrixBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(sizeof(typename OtherDerived::Scalar)==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES);}
};
/** replaces \c *this by \c *this - \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
{
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
/** replaces \c *this by \c *this + \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
{
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
/** replaces \c *this by \c *this * \a other coefficient wise.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
{
SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
/** replaces \c *this by \c *this / \a other coefficient wise.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator/=(const ArrayBase<OtherDerived>& other)
{
SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
#endif // EIGEN_ARRAYBASE_H

View file

@ -0,0 +1,221 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ARRAYWRAPPER_H
#define EIGEN_ARRAYWRAPPER_H
/** \class ArrayWrapper
* \ingroup Core_Module
*
* \brief Expression of a mathematical vector or matrix as an array object
*
* This class is the return type of MatrixBase::array(), and most of the time
* this is the only way it is use.
*
* \sa MatrixBase::array(), class MatrixWrapper
*/
namespace internal {
template<typename ExpressionType>
struct traits<ArrayWrapper<ExpressionType> >
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
{
typedef ArrayXpr XprKind;
};
}
template<typename ExpressionType>
class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
{
public:
typedef ArrayBase<ArrayWrapper> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper)
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
inline ArrayWrapper(const ExpressionType& matrix) : m_expression(matrix) {}
inline Index rows() const { return m_expression.rows(); }
inline Index cols() const { return m_expression.cols(); }
inline Index outerStride() const { return m_expression.outerStride(); }
inline Index innerStride() const { return m_expression.innerStride(); }
inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
inline const Scalar& coeffRef(Index row, Index col) const
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
inline const Scalar& coeffRef(Index index) const
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return m_expression.template packet<LoadMode>(row, col);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(row, col, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
}
template<typename Dest>
inline void evalTo(Dest& dst) const { dst = m_expression; }
protected:
const NestedExpressionType m_expression;
};
/** \class MatrixWrapper
* \ingroup Core_Module
*
* \brief Expression of an array as a mathematical vector or matrix
*
* This class is the return type of ArrayBase::matrix(), and most of the time
* this is the only way it is use.
*
* \sa MatrixBase::matrix(), class ArrayWrapper
*/
namespace internal {
template<typename ExpressionType>
struct traits<MatrixWrapper<ExpressionType> >
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
{
typedef MatrixXpr XprKind;
};
}
template<typename ExpressionType>
class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
{
public:
typedef MatrixBase<MatrixWrapper<ExpressionType> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper)
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
inline MatrixWrapper(const ExpressionType& matrix) : m_expression(matrix) {}
inline Index rows() const { return m_expression.rows(); }
inline Index cols() const { return m_expression.cols(); }
inline Index outerStride() const { return m_expression.outerStride(); }
inline Index innerStride() const { return m_expression.innerStride(); }
inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
inline const Scalar& coeffRef(Index row, Index col) const
{
return m_expression.derived().coeffRef(row, col);
}
inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
inline const Scalar& coeffRef(Index index) const
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return m_expression.template packet<LoadMode>(row, col);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(row, col, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
}
protected:
const NestedExpressionType m_expression;
};
#endif // EIGEN_ARRAYWRAPPER_H

View file

@ -0,0 +1,593 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Michael Olbrich <michael.olbrich@gmx.net>
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ASSIGN_H
#define EIGEN_ASSIGN_H
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
template <typename Derived, typename OtherDerived>
struct assign_traits
{
public:
enum {
DstIsAligned = Derived::Flags & AlignedBit,
DstHasDirectAccess = Derived::Flags & DirectAccessBit,
SrcIsAligned = OtherDerived::Flags & AlignedBit,
JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned
};
private:
enum {
InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
: int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
: int(Derived::RowsAtCompileTime),
InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
: int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
: int(Derived::MaxRowsAtCompileTime),
MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
PacketSize = packet_traits<typename Derived::Scalar>::size
};
enum {
StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
MightVectorize = StorageOrdersAgree
&& (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
&& int(DstIsAligned) && int(SrcIsAligned),
MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
&& (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
MaySliceVectorize = MightVectorize && DstHasDirectAccess
&& (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix */
};
public:
enum {
Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal
|| int(Traversal) == LinearVectorizedTraversal
|| int(Traversal) == SliceVectorizedTraversal
};
private:
enum {
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
&& int(OtherDerived::CoeffReadCost) != Dynamic
&& int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
&& int(OtherDerived::CoeffReadCost) != Dynamic
&& int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
};
public:
enum {
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
? (
int(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling)
)
: int(Traversal) == int(LinearVectorizedTraversal)
? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
: int(Traversal) == int(LinearTraversal)
? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) : int(NoUnrolling) )
: int(NoUnrolling)
};
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
EIGEN_DEBUG_VAR(DstIsAligned)
EIGEN_DEBUG_VAR(SrcIsAligned)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(PacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
EIGEN_DEBUG_VAR(Traversal)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
EIGEN_DEBUG_VAR(Unrolling)
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_DefaultTraversal_CompleteUnrolling
{
enum {
outer = Index / Derived1::InnerSizeAtCompileTime,
inner = Index % Derived1::InnerSizeAtCompileTime
};
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
{
dst.copyCoeffByOuterInner(outer, inner, src);
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_DefaultTraversal_InnerUnrolling
{
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src, int outer)
{
dst.copyCoeffByOuterInner(outer, Index, src);
assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src, outer);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(Derived1 &, const Derived2 &, int) {}
};
/***********************
*** Linear traversal ***
***********************/
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_LinearTraversal_CompleteUnrolling
{
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
{
dst.copyCoeff(Index, src);
assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(Derived1 &, const Derived2 &) {}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_innervec_CompleteUnrolling
{
enum {
outer = Index / Derived1::InnerSizeAtCompileTime,
inner = Index % Derived1::InnerSizeAtCompileTime,
JointAlignment = assign_traits<Derived1,Derived2>::JointAlignment
};
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
{
dst.template copyPacketByOuterInner<Derived2, Aligned, JointAlignment>(outer, inner, src);
assign_innervec_CompleteUnrolling<Derived1, Derived2,
Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_innervec_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_innervec_InnerUnrolling
{
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src, int outer)
{
dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, Index, src);
assign_innervec_InnerUnrolling<Derived1, Derived2,
Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src, outer);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_innervec_InnerUnrolling<Derived1, Derived2, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(Derived1 &, const Derived2 &, int) {}
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
template<typename Derived1, typename Derived2,
int Traversal = assign_traits<Derived1, Derived2>::Traversal,
int Unrolling = assign_traits<Derived1, Derived2>::Unrolling>
struct assign_impl;
/************************
*** Default traversal ***
************************/
template<typename Derived1, typename Derived2, int Unrolling>
struct assign_impl<Derived1, Derived2, InvalidTraversal, Unrolling>
{
inline static void run(Derived1 &, const Derived2 &) { }
};
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, DefaultTraversal, NoUnrolling>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; ++inner)
dst.copyCoeffByOuterInner(outer, inner, src);
}
};
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, DefaultTraversal, CompleteUnrolling>
{
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
{
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
::run(dst, src);
}
};
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, DefaultTraversal, InnerUnrolling>
{
typedef typename Derived1::Index Index;
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
{
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
::run(dst, src, outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, LinearTraversal, NoUnrolling>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
const Index size = dst.size();
for(Index i = 0; i < size; ++i)
dst.copyCoeff(i, src);
}
};
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, LinearTraversal, CompleteUnrolling>
{
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
{
assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
::run(dst, src);
}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, NoUnrolling>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
const Index packetSize = packet_traits<typename Derived1::Scalar>::size;
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; inner+=packetSize)
dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, inner, src);
}
};
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, CompleteUnrolling>
{
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
{
assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
::run(dst, src);
}
};
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, InnerUnrolling>
{
typedef typename Derived1::Index Index;
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
{
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
assign_innervec_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
::run(dst, src, outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
template <bool IsAligned = false>
struct unaligned_assign_impl
{
template <typename Derived, typename OtherDerived>
static EIGEN_STRONG_INLINE void run(const Derived&, OtherDerived&, typename Derived::Index, typename Derived::Index) {}
};
template <>
struct unaligned_assign_impl<false>
{
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
#ifdef _MSC_VER
template <typename Derived, typename OtherDerived>
static EIGEN_DONT_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
#else
template <typename Derived, typename OtherDerived>
static EIGEN_STRONG_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
#endif
{
for (typename Derived::Index index = start; index < end; ++index)
dst.copyCoeff(index, src);
}
};
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, NoUnrolling>
{
typedef typename Derived1::Index Index;
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
{
const Index size = dst.size();
typedef packet_traits<typename Derived1::Scalar> PacketTraits;
enum {
packetSize = PacketTraits::size,
dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
};
const Index alignedStart = assign_traits<Derived1,Derived2>::DstIsAligned ? 0
: first_aligned(&dst.coeffRef(0), size);
const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
unaligned_assign_impl<assign_traits<Derived1,Derived2>::DstIsAligned!=0>::run(src,dst,0,alignedStart);
for(Index index = alignedStart; index < alignedEnd; index += packetSize)
{
dst.template copyPacket<Derived2, dstAlignment, srcAlignment>(index, src);
}
unaligned_assign_impl<>::run(src,dst,alignedEnd,size);
}
};
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, CompleteUnrolling>
{
typedef typename Derived1::Index Index;
EIGEN_STRONG_INLINE static void run(Derived1 &dst, const Derived2 &src)
{
enum { size = Derived1::SizeAtCompileTime,
packetSize = packet_traits<typename Derived1::Scalar>::size,
alignedSize = (size/packetSize)*packetSize };
assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, alignedSize>::run(dst, src);
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, alignedSize, size>::run(dst, src);
}
};
/**************************
*** Slice vectorization ***
***************************/
template<typename Derived1, typename Derived2>
struct assign_impl<Derived1, Derived2, SliceVectorizedTraversal, NoUnrolling>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
typedef packet_traits<typename Derived1::Scalar> PacketTraits;
enum {
packetSize = PacketTraits::size,
alignable = PacketTraits::AlignedOnScalar,
dstAlignment = alignable ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
};
const Index packetAlignedMask = packetSize - 1;
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
Index alignedStart = ((!alignable) || assign_traits<Derived1,Derived2>::DstIsAligned) ? 0
: first_aligned(&dst.coeffRef(0,0), innerSize);
for(Index outer = 0; outer < outerSize; ++outer)
{
const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
// do the non-vectorizable part of the assignment
for(Index inner = 0; inner<alignedStart ; ++inner)
dst.copyCoeffByOuterInner(outer, inner, src);
// do the vectorizable part of the assignment
for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
dst.template copyPacketByOuterInner<Derived2, dstAlignment, Unaligned>(outer, inner, src);
// do the non-vectorizable part of the assignment
for(Index inner = alignedEnd; inner<innerSize ; ++inner)
dst.copyCoeffByOuterInner(outer, inner, src);
alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
}
}
};
} // end namespace internal
/***************************************************************************
* Part 4 : implementation of DenseBase methods
***************************************************************************/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
::lazyAssign(const DenseBase<OtherDerived>& other)
{
enum{
SameType = internal::is_same<typename Derived::Scalar,typename OtherDerived::Scalar>::value
};
EIGEN_STATIC_ASSERT_LVALUE(Derived)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
#ifdef EIGEN_DEBUG_ASSIGN
internal::assign_traits<Derived, OtherDerived>::debug();
#endif
eigen_assert(rows() == other.rows() && cols() == other.cols());
internal::assign_impl<Derived, OtherDerived, int(SameType) ? int(internal::assign_traits<Derived, OtherDerived>::Traversal)
: int(InvalidTraversal)>::run(derived(),other.derived());
#ifndef EIGEN_NO_DEBUG
checkTransposeAliasing(other.derived());
#endif
return derived();
}
namespace internal {
template<typename Derived, typename OtherDerived,
bool EvalBeforeAssigning = (int(OtherDerived::Flags) & EvalBeforeAssigningBit) != 0,
bool NeedToTranspose = Derived::IsVectorAtCompileTime
&& OtherDerived::IsVectorAtCompileTime
&& ((int(Derived::RowsAtCompileTime) == 1 && int(OtherDerived::ColsAtCompileTime) == 1)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(int(Derived::ColsAtCompileTime) == 1 && int(OtherDerived::RowsAtCompileTime) == 1))
&& int(Derived::SizeAtCompileTime) != 1>
struct assign_selector;
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,false,false> {
EIGEN_STRONG_INLINE static Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.derived()); }
};
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,true,false> {
EIGEN_STRONG_INLINE static Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.eval()); }
};
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,false,true> {
EIGEN_STRONG_INLINE static Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose()); }
};
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,true,true> {
EIGEN_STRONG_INLINE static Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose().eval()); }
};
} // end namespace internal
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
}
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase& other)
{
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
}
template<typename Derived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const MatrixBase& other)
{
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
}
template<typename Derived>
template <typename OtherDerived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
}
template<typename Derived>
template <typename OtherDerived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const EigenBase<OtherDerived>& other)
{
other.derived().evalTo(derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
{
other.evalTo(derived());
return derived();
}
#endif // EIGEN_ASSIGN_H

View file

@ -0,0 +1,345 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_BANDMATRIX_H
#define EIGEN_BANDMATRIX_H
namespace internal {
template<typename Derived>
class BandMatrixBase : public EigenBase<Derived>
{
public:
enum {
Flags = internal::traits<Derived>::Flags,
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
Supers = internal::traits<Derived>::Supers,
Subs = internal::traits<Derived>::Subs,
Options = internal::traits<Derived>::Options
};
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> DenseMatrixType;
typedef typename DenseMatrixType::Index Index;
typedef typename internal::traits<Derived>::CoefficientsType CoefficientsType;
typedef EigenBase<Derived> Base;
protected:
enum {
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic))
? 1 + Supers + Subs
: Dynamic,
SizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime)
};
public:
using Base::derived;
using Base::rows;
using Base::cols;
/** \returns the number of super diagonals */
inline Index supers() const { return derived().supers(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return derived().subs(); }
/** \returns an expression of the underlying coefficient matrix */
inline const CoefficientsType& coeffs() const { return derived().coeffs(); }
/** \returns an expression of the underlying coefficient matrix */
inline CoefficientsType& coeffs() { return derived().coeffs(); }
/** \returns a vector expression of the \a i -th column,
* only the meaningful part is returned.
* \warning the internal storage must be column major. */
inline Block<CoefficientsType,Dynamic,1> col(Index i)
{
EIGEN_STATIC_ASSERT((Options&RowMajor)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
Index start = 0;
Index len = coeffs().rows();
if (i<=supers())
{
start = supers()-i;
len = std::min(rows(),std::max<Index>(0,coeffs().rows() - (supers()-i)));
}
else if (i>=rows()-subs())
len = std::max<Index>(0,coeffs().rows() - (i + 1 - rows() + subs()));
return Block<CoefficientsType,Dynamic,1>(coeffs(), start, i, len, 1);
}
/** \returns a vector expression of the main diagonal */
inline Block<CoefficientsType,1,SizeAtCompileTime> diagonal()
{ return Block<CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,std::min(rows(),cols())); }
/** \returns a vector expression of the main diagonal (const version) */
inline const Block<const CoefficientsType,1,SizeAtCompileTime> diagonal() const
{ return Block<const CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,std::min(rows(),cols())); }
template<int Index> struct DiagonalIntReturnType {
enum {
ReturnOpposite = (Options&SelfAdjoint) && (((Index)>0 && Supers==0) || ((Index)<0 && Subs==0)),
Conjugate = ReturnOpposite && NumTraits<Scalar>::IsComplex,
ActualIndex = ReturnOpposite ? -Index : Index,
DiagonalSize = (RowsAtCompileTime==Dynamic || ColsAtCompileTime==Dynamic)
? Dynamic
: (ActualIndex<0
? EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime + ActualIndex)
: EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime - ActualIndex))
};
typedef Block<CoefficientsType,1, DiagonalSize> BuildType;
typedef typename internal::conditional<Conjugate,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>,BuildType >,
BuildType>::type Type;
};
/** \returns a vector expression of the \a N -th sub or super diagonal */
template<int N> inline typename DiagonalIntReturnType<N>::Type diagonal()
{
return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, std::max(0,N), 1, diagonalLength(N));
}
/** \returns a vector expression of the \a N -th sub or super diagonal */
template<int N> inline const typename DiagonalIntReturnType<N>::Type diagonal() const
{
return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, std::max(0,N), 1, diagonalLength(N));
}
/** \returns a vector expression of the \a i -th sub or super diagonal */
inline Block<CoefficientsType,1,Dynamic> diagonal(Index i)
{
eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
return Block<CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
}
/** \returns a vector expression of the \a i -th sub or super diagonal */
inline const Block<const CoefficientsType,1,Dynamic> diagonal(Index i) const
{
eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
return Block<const CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
}
template<typename Dest> inline void evalTo(Dest& dst) const
{
dst.resize(rows(),cols());
dst.setZero();
dst.diagonal() = diagonal();
for (Index i=1; i<=supers();++i)
dst.diagonal(i) = diagonal(i);
for (Index i=1; i<=subs();++i)
dst.diagonal(-i) = diagonal(-i);
}
DenseMatrixType toDenseMatrix() const
{
DenseMatrixType res(rows(),cols());
evalTo(res);
return res;
}
protected:
inline Index diagonalLength(Index i) const
{ return i<0 ? std::min(cols(),rows()+i) : std::min(rows(),cols()-i); }
};
/**
* \class BandMatrix
* \ingroup Core_Module
*
* \brief Represents a rectangular matrix with a banded storage
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param Rows Number of rows, or \b Dynamic
* \param Cols Number of columns, or \b Dynamic
* \param Supers Number of super diagonal
* \param Subs Number of sub diagonal
* \param _Options A combination of either \b RowMajor or \b ColMajor, and of \b SelfAdjoint
* The former controls \ref TopicStorageOrders "storage order", and defaults to
* column-major. The latter controls whether the matrix represents a selfadjoint
* matrix in which case either Supers of Subs have to be null.
*
* \sa class TridiagonalMatrix
*/
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
struct traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef DenseIndex Index;
enum {
CoeffReadCost = NumTraits<Scalar>::ReadCost,
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _Rows,
MaxColsAtCompileTime = _Cols,
Flags = LvalueBit,
Supers = _Supers,
Subs = _Subs,
Options = _Options,
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
};
typedef Matrix<Scalar,DataRowsAtCompileTime,ColsAtCompileTime,Options&RowMajor?RowMajor:ColMajor> CoefficientsType;
};
template<typename _Scalar, int Rows, int Cols, int Supers, int Subs, int Options>
class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Subs,Options> >
{
public:
typedef typename internal::traits<BandMatrix>::Scalar Scalar;
typedef typename internal::traits<BandMatrix>::Index Index;
typedef typename internal::traits<BandMatrix>::CoefficientsType CoefficientsType;
inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs)
: m_coeffs(1+supers+subs,cols),
m_rows(rows), m_supers(supers), m_subs(subs)
{
}
/** \returns the number of columns */
inline Index rows() const { return m_rows.value(); }
/** \returns the number of rows */
inline Index cols() const { return m_coeffs.cols(); }
/** \returns the number of super diagonals */
inline Index supers() const { return m_supers.value(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return m_subs.value(); }
inline const CoefficientsType& coeffs() const { return m_coeffs; }
inline CoefficientsType& coeffs() { return m_coeffs; }
protected:
CoefficientsType m_coeffs;
internal::variable_if_dynamic<Index, Rows> m_rows;
internal::variable_if_dynamic<Index, Supers> m_supers;
internal::variable_if_dynamic<Index, Subs> m_subs;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
class BandMatrixWrapper;
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
struct traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef typename _CoefficientsType::Scalar Scalar;
typedef typename _CoefficientsType::StorageKind StorageKind;
typedef typename _CoefficientsType::Index Index;
enum {
CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost,
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _Rows,
MaxColsAtCompileTime = _Cols,
Flags = LvalueBit,
Supers = _Supers,
Subs = _Subs,
Options = _Options,
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
};
typedef _CoefficientsType CoefficientsType;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
public:
typedef typename internal::traits<BandMatrixWrapper>::Scalar Scalar;
typedef typename internal::traits<BandMatrixWrapper>::CoefficientsType CoefficientsType;
typedef typename internal::traits<BandMatrixWrapper>::Index Index;
inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
: m_coeffs(coeffs),
m_rows(rows), m_supers(supers), m_subs(subs)
{
//internal::assert(coeffs.cols()==cols() && (supers()+subs()+1)==coeffs.rows());
}
/** \returns the number of columns */
inline Index rows() const { return m_rows.value(); }
/** \returns the number of rows */
inline Index cols() const { return m_coeffs.cols(); }
/** \returns the number of super diagonals */
inline Index supers() const { return m_supers.value(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return m_subs.value(); }
inline const CoefficientsType& coeffs() const { return m_coeffs; }
protected:
const CoefficientsType& m_coeffs;
internal::variable_if_dynamic<Index, _Rows> m_rows;
internal::variable_if_dynamic<Index, _Supers> m_supers;
internal::variable_if_dynamic<Index, _Subs> m_subs;
};
/**
* \class TridiagonalMatrix
* \ingroup Core_Module
*
* \brief Represents a tridiagonal matrix with a compact banded storage
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param Size Number of rows and cols, or \b Dynamic
* \param _Options Can be 0 or \b SelfAdjoint
*
* \sa class BandMatrix
*/
template<typename Scalar, int Size, int Options>
class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor>
{
typedef BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor> Base;
typedef typename Base::Index Index;
public:
TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
inline typename Base::template DiagonalIntReturnType<1>::Type super()
{ return Base::template diagonal<1>(); }
inline const typename Base::template DiagonalIntReturnType<1>::Type super() const
{ return Base::template diagonal<1>(); }
inline typename Base::template DiagonalIntReturnType<-1>::Type sub()
{ return Base::template diagonal<-1>(); }
inline const typename Base::template DiagonalIntReturnType<-1>::Type sub() const
{ return Base::template diagonal<-1>(); }
protected:
};
} // end namespace internal
#endif // EIGEN_BANDMATRIX_H

View file

@ -0,0 +1,349 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_BLOCK_H
#define EIGEN_BLOCK_H
/** \class Block
* \ingroup Core_Module
*
* \brief Expression of a fixed-size or dynamic-size block
*
* \param XprType the type of the expression in which we are taking a block
* \param BlockRows the number of rows of the block we are taking at compile time (optional)
* \param BlockCols the number of columns of the block we are taking at compile time (optional)
* \param _DirectAccessStatus \internal used for partial specialization
*
* This class represents an expression of either a fixed-size or dynamic-size block. It is the return
* type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block<int,int>(Index,Index) and
* most of the time this is the only way it is used.
*
* However, if you want to directly maniputate block expressions,
* for instance if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating the dynamic case:
* \include class_Block.cpp
* Output: \verbinclude class_Block.out
*
* \note Even though this expression has dynamic size, in the case where \a XprType
* has fixed size, this expression inherits a fixed maximal size which means that evaluating
* it does not cause a dynamic memory allocation.
*
* Here is an example illustrating the fixed-size case:
* \include class_FixedBlock.cpp
* Output: \verbinclude class_FixedBlock.out
*
* \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock
*/
namespace internal {
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool HasDirectAccess>
struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel, HasDirectAccess> > : traits<XprType>
{
typedef typename traits<XprType>::Scalar Scalar;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::XprKind XprKind;
typedef typename nested<XprType>::type XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum{
MatrixRows = traits<XprType>::RowsAtCompileTime,
MatrixCols = traits<XprType>::ColsAtCompileTime,
RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows,
ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols,
MaxRowsAtCompileTime = BlockRows==0 ? 0
: RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime)
: int(traits<XprType>::MaxRowsAtCompileTime),
MaxColsAtCompileTime = BlockCols==0 ? 0
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
: int(traits<XprType>::MaxColsAtCompileTime),
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
: XprTypeIsRowMajor,
HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(inner_stride_at_compile_time<XprType>::ret)
: int(outer_stride_at_compile_time<XprType>::ret),
OuterStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(outer_stride_at_compile_time<XprType>::ret)
: int(inner_stride_at_compile_time<XprType>::ret),
MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits<Scalar>::size) == 0)
&& (InnerStrideAtCompileTime == 1)
? PacketAccessBit : 0,
MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && ((OuterStrideAtCompileTime % packet_traits<Scalar>::size) == 0)) ? AlignedBit : 0,
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1) ? LinearAccessBit : 0,
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
DirectAccessBit |
MaskPacketAccessBit |
MaskAlignedBit),
Flags = Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit
};
};
}
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool HasDirectAccess> class Block
: public internal::dense_xpr_base<Block<XprType, BlockRows, BlockCols, InnerPanel, HasDirectAccess> >::type
{
public:
typedef typename internal::dense_xpr_base<Block>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Block)
class InnerIterator;
/** Column or Row constructor
*/
inline Block(XprType& xpr, Index i)
: m_xpr(xpr),
// It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime,
// and it is a column if and only if BlockRows==XprType::RowsAtCompileTime and BlockCols==1,
// all other cases are invalid.
// The case a 1x1 matrix seems ambiguous, but the result is the same anyway.
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
{
eigen_assert( (i>=0) && (
((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i<xpr.rows())
||((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && i<xpr.cols())));
}
/** Fixed-size constructor
*/
inline Block(XprType& xpr, Index startRow, Index startCol)
: m_xpr(xpr), m_startRow(startRow), m_startCol(startCol),
m_blockRows(BlockRows), m_blockCols(BlockCols)
{
EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE)
eigen_assert(startRow >= 0 && BlockRows >= 1 && startRow + BlockRows <= xpr.rows()
&& startCol >= 0 && BlockCols >= 1 && startCol + BlockCols <= xpr.cols());
}
/** Dynamic-size constructor
*/
inline Block(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
: m_xpr(xpr), m_startRow(startRow), m_startCol(startCol),
m_blockRows(blockRows), m_blockCols(blockCols)
{
eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
eigen_assert(startRow >= 0 && blockRows >= 0 && startRow + blockRows <= xpr.rows()
&& startCol >= 0 && blockCols >= 0 && startCol + blockCols <= xpr.cols());
}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
inline Index rows() const { return m_blockRows.value(); }
inline Index cols() const { return m_blockCols.value(); }
inline Scalar& coeffRef(Index row, Index col)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
return m_xpr.const_cast_derived()
.coeffRef(row + m_startRow.value(), col + m_startCol.value());
}
inline const Scalar& coeffRef(Index row, Index col) const
{
return m_xpr.derived()
.coeffRef(row + m_startRow.value(), col + m_startCol.value());
}
EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const
{
return m_xpr.coeff(row + m_startRow.value(), col + m_startCol.value());
}
inline Scalar& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
return m_xpr.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const Scalar& coeffRef(Index index) const
{
return m_xpr.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const CoeffReturnType coeff(Index index) const
{
return m_xpr
.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
template<int LoadMode>
inline PacketScalar packet(Index row, Index col) const
{
return m_xpr.template packet<Unaligned>
(row + m_startRow.value(), col + m_startCol.value());
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_xpr.const_cast_derived().template writePacket<Unaligned>
(row + m_startRow.value(), col + m_startCol.value(), x);
}
template<int LoadMode>
inline PacketScalar packet(Index index) const
{
return m_xpr.template packet<Unaligned>
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_xpr.const_cast_derived().template writePacket<Unaligned>
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), x);
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \sa MapBase::data() */
inline const Scalar* data() const;
inline Index innerStride() const;
inline Index outerStride() const;
#endif
protected:
const typename XprType::Nested m_xpr;
const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
};
/** \internal */
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class Block<XprType,BlockRows,BlockCols, InnerPanel,true>
: public MapBase<Block<XprType, BlockRows, BlockCols, InnerPanel, true> >
{
public:
typedef MapBase<Block> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Block)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
/** Column or Row constructor
*/
inline Block(XprType& xpr, Index i)
: Base(internal::const_cast_ptr(&xpr.coeffRef(
(BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0,
(BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)),
BlockRows==1 ? 1 : xpr.rows(),
BlockCols==1 ? 1 : xpr.cols()),
m_xpr(xpr)
{
eigen_assert( (i>=0) && (
((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i<xpr.rows())
||((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && i<xpr.cols())));
init();
}
/** Fixed-size constructor
*/
inline Block(XprType& xpr, Index startRow, Index startCol)
: Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol))), m_xpr(xpr)
{
eigen_assert(startRow >= 0 && BlockRows >= 1 && startRow + BlockRows <= xpr.rows()
&& startCol >= 0 && BlockCols >= 1 && startCol + BlockCols <= xpr.cols());
init();
}
/** Dynamic-size constructor
*/
inline Block(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
: Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol)), blockRows, blockCols),
m_xpr(xpr)
{
eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
eigen_assert(startRow >= 0 && blockRows >= 0 && startRow + blockRows <= xpr.rows()
&& startCol >= 0 && blockCols >= 0 && startCol + blockCols <= xpr.cols());
init();
}
/** \sa MapBase::innerStride() */
inline Index innerStride() const
{
return internal::traits<Block>::HasSameStorageOrderAsXprType
? m_xpr.innerStride()
: m_xpr.outerStride();
}
/** \sa MapBase::outerStride() */
inline Index outerStride() const
{
return m_outerStride;
}
#ifndef __SUNPRO_CC
// FIXME sunstudio is not friendly with the above friend...
// META-FIXME there is no 'friend' keyword around here. Is this obsolete?
protected:
#endif
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal used by allowAligned() */
inline Block(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols)
: Base(data, blockRows, blockCols), m_xpr(xpr)
{
init();
}
#endif
protected:
void init()
{
m_outerStride = internal::traits<Block>::HasSameStorageOrderAsXprType
? m_xpr.outerStride()
: m_xpr.innerStride();
}
const typename XprType::Nested m_xpr;
int m_outerStride;
};
#endif // EIGEN_BLOCK_H

View file

@ -0,0 +1,149 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ALLANDANY_H
#define EIGEN_ALLANDANY_H
namespace internal {
template<typename Derived, int UnrollCount>
struct all_unroller
{
enum {
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
inline static bool run(const Derived &mat)
{
return all_unroller<Derived, UnrollCount-1>::run(mat) && mat.coeff(row, col);
}
};
template<typename Derived>
struct all_unroller<Derived, 1>
{
inline static bool run(const Derived &mat) { return mat.coeff(0, 0); }
};
template<typename Derived>
struct all_unroller<Derived, Dynamic>
{
inline static bool run(const Derived &) { return false; }
};
template<typename Derived, int UnrollCount>
struct any_unroller
{
enum {
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
inline static bool run(const Derived &mat)
{
return any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
}
};
template<typename Derived>
struct any_unroller<Derived, 1>
{
inline static bool run(const Derived &mat) { return mat.coeff(0, 0); }
};
template<typename Derived>
struct any_unroller<Derived, Dynamic>
{
inline static bool run(const Derived &) { return false; }
};
} // end namespace internal
/** \returns true if all coefficients are true
*
* Example: \include MatrixBase_all.cpp
* Output: \verbinclude MatrixBase_all.out
*
* \sa any(), Cwise::operator<()
*/
template<typename Derived>
inline bool DenseBase<Derived>::all() const
{
enum {
unroll = SizeAtCompileTime != Dynamic
&& CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
&& SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
if(unroll)
return internal::all_unroller<Derived,
unroll ? int(SizeAtCompileTime) : Dynamic
>::run(derived());
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if (!coeff(i, j)) return false;
return true;
}
}
/** \returns true if at least one coefficient is true
*
* \sa all()
*/
template<typename Derived>
inline bool DenseBase<Derived>::any() const
{
enum {
unroll = SizeAtCompileTime != Dynamic
&& CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
&& SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
if(unroll)
return internal::any_unroller<Derived,
unroll ? int(SizeAtCompileTime) : Dynamic
>::run(derived());
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if (coeff(i, j)) return true;
return false;
}
}
/** \returns the number of coefficients which evaluate to true
*
* \sa all(), any()
*/
template<typename Derived>
inline typename DenseBase<Derived>::Index DenseBase<Derived>::count() const
{
return derived().template cast<bool>().template cast<Index>().sum();
}
#endif // EIGEN_ALLANDANY_H

View file

@ -0,0 +1,10 @@
FILE(GLOB Eigen_Core_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core COMPONENT Devel
)
ADD_SUBDIRECTORY(products)
ADD_SUBDIRECTORY(util)
ADD_SUBDIRECTORY(arch)

View file

@ -0,0 +1,150 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_COMMAINITIALIZER_H
#define EIGEN_COMMAINITIALIZER_H
/** \class CommaInitializer
* \ingroup Core_Module
*
* \brief Helper class used by the comma initializer operator
*
* This class is internally used to implement the comma initializer feature. It is
* the return type of MatrixBase::operator<<, and most of the time this is the only
* way it is used.
*
* \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
*/
template<typename XprType>
struct CommaInitializer
{
typedef typename XprType::Scalar Scalar;
typedef typename XprType::Index Index;
inline CommaInitializer(XprType& xpr, const Scalar& s)
: m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
{
m_xpr.coeffRef(0,0) = s;
}
template<typename OtherDerived>
inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
: m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
{
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
}
/* inserts a scalar value in the target matrix */
CommaInitializer& operator,(const Scalar& s)
{
if (m_col==m_xpr.cols())
{
m_row+=m_currentBlockRows;
m_col = 0;
m_currentBlockRows = 1;
eigen_assert(m_row<m_xpr.rows()
&& "Too many rows passed to comma initializer (operator<<)");
}
eigen_assert(m_col<m_xpr.cols()
&& "Too many coefficients passed to comma initializer (operator<<)");
eigen_assert(m_currentBlockRows==1);
m_xpr.coeffRef(m_row, m_col++) = s;
return *this;
}
/* inserts a matrix expression in the target matrix */
template<typename OtherDerived>
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
{
if (m_col==m_xpr.cols())
{
m_row+=m_currentBlockRows;
m_col = 0;
m_currentBlockRows = other.rows();
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
&& "Too many rows passed to comma initializer (operator<<)");
}
eigen_assert(m_col<m_xpr.cols()
&& "Too many coefficients passed to comma initializer (operator<<)");
eigen_assert(m_currentBlockRows==other.rows());
if (OtherDerived::SizeAtCompileTime != Dynamic)
m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
(m_row, m_col) = other;
else
m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
m_col += other.cols();
return *this;
}
inline ~CommaInitializer()
{
eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
&& m_col == m_xpr.cols()
&& "Too few coefficients passed to comma initializer (operator<<)");
}
/** \returns the built matrix once all its coefficients have been set.
* Calling finished is 100% optional. Its purpose is to write expressions
* like this:
* \code
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
* \endcode
*/
inline XprType& finished() { return m_xpr; }
XprType& m_xpr; // target expression
Index m_row; // current row id
Index m_col; // current col id
Index m_currentBlockRows; // current block height
};
/** \anchor MatrixBaseCommaInitRef
* Convenient operator to set the coefficients of a matrix.
*
* The coefficients must be provided in a row major order and exactly match
* the size of the matrix. Otherwise an assertion is raised.
*
* Example: \include MatrixBase_set.cpp
* Output: \verbinclude MatrixBase_set.out
*
* \sa CommaInitializer::finished(), class CommaInitializer
*/
template<typename Derived>
inline CommaInitializer<Derived> DenseBase<Derived>::operator<< (const Scalar& s)
{
return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
}
/** \sa operator<<(const Scalar&) */
template<typename Derived>
template<typename OtherDerived>
inline CommaInitializer<Derived>
DenseBase<Derived>::operator<<(const DenseBase<OtherDerived>& other)
{
return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
}
#endif // EIGEN_COMMAINITIALIZER_H

View file

@ -0,0 +1,240 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CWISE_BINARY_OP_H
#define EIGEN_CWISE_BINARY_OP_H
/** \class CwiseBinaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise binary operator is applied to two expressions
*
* \param BinaryOp template functor implementing the operator
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
*
* This class represents an expression where a coefficient-wise binary operator is applied to two expressions.
* It is the return type of binary operators, by which we mean only those binary operators where
* both the left-hand side and the right-hand side are Eigen expressions.
* For example, the return type of matrix1+matrix2 is a CwiseBinaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseBinaryOp types explicitly.
*
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
namespace internal {
template<typename BinaryOp, typename Lhs, typename Rhs>
struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
// we must not inherit from traits<Lhs> since it has
// the potential to cause problems with MSVC
typedef typename remove_all<Lhs>::type Ancestor;
typedef typename traits<Ancestor>::XprKind XprKind;
enum {
RowsAtCompileTime = traits<Ancestor>::RowsAtCompileTime,
ColsAtCompileTime = traits<Ancestor>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Ancestor>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Ancestor>::MaxColsAtCompileTime
};
// even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor),
// we still want to handle the case when the result type is different.
typedef typename result_of<
BinaryOp(
typename Lhs::Scalar,
typename Rhs::Scalar
)
>::type Scalar;
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
typedef typename Lhs::Nested LhsNested;
typedef typename Rhs::Nested RhsNested;
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
enum {
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
StorageOrdersAgree = (int(Lhs::Flags)&RowMajorBit)==(int(Rhs::Flags)&RowMajorBit),
Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
HereditaryBits
| (int(LhsFlags) & int(RhsFlags) &
( AlignedBit
| (StorageOrdersAgree ? LinearAccessBit : 0)
| (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
)
)
),
Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + functor_traits<BinaryOp>::Cost
};
};
} // end namespace internal
// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
// that would take two operands of different types. If there were such an example, then this check should be
// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
// currently they take only one typename Scalar template parameter.
// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
// add together a float matrix and a double matrix.
#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
EIGEN_STATIC_ASSERT((internal::functor_allows_mixing_real_and_complex<BINOP>::ret \
? int(internal::is_same<typename NumTraits<LHS>::Real, typename NumTraits<RHS>::Real>::value) \
: int(internal::is_same<LHS, RHS>::value)), \
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl;
template<typename BinaryOp, typename Lhs, typename Rhs>
class CwiseBinaryOp : internal::no_assignment_operator,
public CwiseBinaryOpImpl<
BinaryOp, Lhs, Rhs,
typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
typename internal::traits<Rhs>::StorageKind>::ret>
{
public:
typedef typename CwiseBinaryOpImpl<
BinaryOp, Lhs, Rhs,
typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
typename internal::traits<Rhs>::StorageKind>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
typedef typename internal::nested<Lhs>::type LhsNested;
typedef typename internal::nested<Rhs>::type RhsNested;
typedef typename internal::remove_reference<LhsNested>::type _LhsNested;
typedef typename internal::remove_reference<RhsNested>::type _RhsNested;
EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& lhs, const Rhs& rhs, const BinaryOp& func = BinaryOp())
: m_lhs(lhs), m_rhs(rhs), m_functor(func)
{
EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar);
// require the sizes to match
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs)
eigen_assert(lhs.rows() == rhs.rows() && lhs.cols() == rhs.cols());
}
EIGEN_STRONG_INLINE Index rows() const {
// return the fixed size type if available to enable compile time optimizations
if (internal::traits<typename internal::remove_all<LhsNested>::type>::RowsAtCompileTime==Dynamic)
return m_rhs.rows();
else
return m_lhs.rows();
}
EIGEN_STRONG_INLINE Index cols() const {
// return the fixed size type if available to enable compile time optimizations
if (internal::traits<typename internal::remove_all<LhsNested>::type>::ColsAtCompileTime==Dynamic)
return m_rhs.cols();
else
return m_lhs.cols();
}
/** \returns the left hand side nested expression */
const _LhsNested& lhs() const { return m_lhs; }
/** \returns the right hand side nested expression */
const _RhsNested& rhs() const { return m_rhs; }
/** \returns the functor representing the binary operation */
const BinaryOp& functor() const { return m_functor; }
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
const BinaryOp m_functor;
};
template<typename BinaryOp, typename Lhs, typename Rhs>
class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Dense>
: public internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
public:
typedef typename internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE( Derived )
EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
{
return derived().functor()(derived().lhs().coeff(row, col),
derived().rhs().coeff(row, col));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
{
return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(row, col),
derived().rhs().template packet<LoadMode>(row, col));
}
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
return derived().functor()(derived().lhs().coeff(index),
derived().rhs().coeff(index));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(index),
derived().rhs().template packet<LoadMode>(index));
}
};
/** replaces \c *this by \c *this - \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
{
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
/** replaces \c *this by \c *this + \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
{
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
#endif // EIGEN_CWISE_BINARY_OP_H

View file

@ -0,0 +1,851 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CWISE_NULLARY_OP_H
#define EIGEN_CWISE_NULLARY_OP_H
/** \class CwiseNullaryOp
* \ingroup Core_Module
*
* \brief Generic expression of a matrix where all coefficients are defined by a functor
*
* \param NullaryOp template functor implementing the operator
* \param PlainObjectType the underlying plain matrix/array type
*
* This class represents an expression of a generic nullary operator.
* It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods,
* and most of the time this is the only way it is used.
*
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr()
*/
namespace internal {
template<typename NullaryOp, typename PlainObjectType>
struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
{
enum {
Flags = (traits<PlainObjectType>::Flags
& ( HereditaryBits
| (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
| (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
| (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
CoeffReadCost = functor_traits<NullaryOp>::Cost
};
};
}
template<typename NullaryOp, typename PlainObjectType>
class CwiseNullaryOp : internal::no_assignment_operator,
public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type
{
public:
typedef typename internal::dense_xpr_base<CwiseNullaryOp>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp)
CwiseNullaryOp(Index rows, Index cols, const NullaryOp& func = NullaryOp())
: m_rows(rows), m_cols(cols), m_functor(func)
{
eigen_assert(rows >= 0
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols >= 0
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
}
EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); }
EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); }
EIGEN_STRONG_INLINE const Scalar coeff(Index rows, Index cols) const
{
return m_functor(rows, cols);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
{
return m_functor.packetOp(row, col);
}
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
return m_functor(index);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return m_functor.packetOp(index);
}
protected:
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
const NullaryOp m_functor;
};
/** \returns an expression of a matrix defined by a custom functor \a func
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
DenseBase<Derived>::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, Derived>(rows, cols, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
DenseBase<Derived>::NullaryExpr(Index size, const CustomNullaryOp& func)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
if(RowsAtCompileTime == 1) return CwiseNullaryOp<CustomNullaryOp, Derived>(1, size, func);
else return CwiseNullaryOp<CustomNullaryOp, Derived>(size, 1, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
*
* This variant is only for fixed-size DenseBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
DenseBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, Derived>(RowsAtCompileTime, ColsAtCompileTime, func);
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this DenseBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(Index rows, Index cols, const Scalar& value)
{
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this DenseBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(Index size, const Scalar& value)
{
return DenseBase<Derived>::NullaryExpr(size, internal::scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
*
* This variant is only for fixed-size DenseBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(const Scalar& value)
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op<Scalar>(value));
}
/**
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* This particular version of LinSpaced() uses sequential access, i.e. vector access is
* assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization
* and yields faster code than the random access version.
*
* \only_for_vectors
*
* Example: \include DenseBase_LinSpaced_seq.cpp
* Output: \verbinclude DenseBase_LinSpaced_seq.out
*
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,false>(low,high,size));
}
/**
* \copydoc DenseBase::LinSpaced(Sequential_t, Index, const Scalar&, const Scalar&)
* Special version for fixed size types which does not require the size parameter.
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,false>(low,high,Derived::SizeAtCompileTime));
}
/**
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
*
* \only_for_vectors
*
* Example: \include DenseBase_LinSpaced.cpp
* Output: \verbinclude DenseBase_LinSpaced.out
*
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,true>(low,high,size));
}
/**
* \copydoc DenseBase::LinSpaced(Index, const Scalar&, const Scalar&)
* Special version for fixed size types which does not require the size parameter.
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,true>(low,high,Derived::SizeAtCompileTime));
}
/** \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
template<typename Derived>
bool DenseBase<Derived>::isApproxToConstant
(const Scalar& value, RealScalar prec) const
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if(!internal::isApprox(this->coeff(i, j), value, prec))
return false;
return true;
}
/** This is just an alias for isApproxToConstant().
*
* \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
template<typename Derived>
bool DenseBase<Derived>::isConstant
(const Scalar& value, RealScalar prec) const
{
return isApproxToConstant(value, prec);
}
/** Alias for setConstant(): sets all coefficients in this expression to \a value.
*
* \sa setConstant(), Constant(), class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& value)
{
setConstant(value);
}
/** Sets all coefficients in this expression to \a value.
*
* \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& value)
{
return derived() = Constant(rows(), cols(), value);
}
/** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value.
*
* \only_for_vectors
*
* Example: \include Matrix_setConstant_int.cpp
* Output: \verbinclude Matrix_setConstant_int.out
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index size, const Scalar& value)
{
resize(size);
return setConstant(value);
}
/** Resizes to the given size, and sets all coefficients in this expression to the given \a value.
*
* \param rows the new number of rows
* \param cols the new number of columns
* \param value the value to which all coefficients are set
*
* Example: \include Matrix_setConstant_int_int.cpp
* Output: \verbinclude Matrix_setConstant_int_int.out
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index rows, Index cols, const Scalar& value)
{
resize(rows, cols);
return setConstant(value);
}
/**
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
*
* \only_for_vectors
*
* Example: \include DenseBase_setLinSpaced.cpp
* Output: \verbinclude DenseBase_setLinSpaced.out
*
* \sa CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return derived() = Derived::NullaryExpr(size, internal::linspaced_op<Scalar,false>(low,high,size));
}
// zero:
/** \returns an expression of a zero matrix.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int_int.cpp
* Output: \verbinclude MatrixBase_zero_int_int.out
*
* \sa Zero(), Zero(Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index rows, Index cols)
{
return Constant(rows, cols, Scalar(0));
}
/** \returns an expression of a zero vector.
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int.cpp
* Output: \verbinclude MatrixBase_zero_int.out
*
* \sa Zero(), Zero(Index,Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index size)
{
return Constant(size, Scalar(0));
}
/** \returns an expression of a fixed-size zero matrix or vector.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_zero.cpp
* Output: \verbinclude MatrixBase_zero.out
*
* \sa Zero(Index), Zero(Index,Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero()
{
return Constant(Scalar(0));
}
/** \returns true if *this is approximately equal to the zero matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isZero.cpp
* Output: \verbinclude MatrixBase_isZero.out
*
* \sa class CwiseNullaryOp, Zero()
*/
template<typename Derived>
bool DenseBase<Derived>::isZero(RealScalar prec) const
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast<Scalar>(1), prec))
return false;
return true;
}
/** Sets all coefficients in this expression to zero.
*
* Example: \include MatrixBase_setZero.cpp
* Output: \verbinclude MatrixBase_setZero.out
*
* \sa class CwiseNullaryOp, Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
{
return setConstant(Scalar(0));
}
/** Resizes to the given \a size, and sets all coefficients in this expression to zero.
*
* \only_for_vectors
*
* Example: \include Matrix_setZero_int.cpp
* Output: \verbinclude Matrix_setZero_int.out
*
* \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index size)
{
resize(size);
return setConstant(Scalar(0));
}
/** Resizes to the given size, and sets all coefficients in this expression to zero.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setZero_int_int.cpp
* Output: \verbinclude Matrix_setZero_int_int.out
*
* \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index rows, Index cols)
{
resize(rows, cols);
return setConstant(Scalar(0));
}
// ones:
/** \returns an expression of a matrix where all coefficients equal one.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Ones() should be used
* instead.
*
* Example: \include MatrixBase_ones_int_int.cpp
* Output: \verbinclude MatrixBase_ones_int_int.out
*
* \sa Ones(), Ones(Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index rows, Index cols)
{
return Constant(rows, cols, Scalar(1));
}
/** \returns an expression of a vector where all coefficients equal one.
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Ones() should be used
* instead.
*
* Example: \include MatrixBase_ones_int.cpp
* Output: \verbinclude MatrixBase_ones_int.out
*
* \sa Ones(), Ones(Index,Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index size)
{
return Constant(size, Scalar(1));
}
/** \returns an expression of a fixed-size matrix or vector where all coefficients equal one.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_ones.cpp
* Output: \verbinclude MatrixBase_ones.out
*
* \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones()
{
return Constant(Scalar(1));
}
/** \returns true if *this is approximately equal to the matrix where all coefficients
* are equal to 1, within the precision given by \a prec.
*
* Example: \include MatrixBase_isOnes.cpp
* Output: \verbinclude MatrixBase_isOnes.out
*
* \sa class CwiseNullaryOp, Ones()
*/
template<typename Derived>
bool DenseBase<Derived>::isOnes
(RealScalar prec) const
{
return isApproxToConstant(Scalar(1), prec);
}
/** Sets all coefficients in this expression to one.
*
* Example: \include MatrixBase_setOnes.cpp
* Output: \verbinclude MatrixBase_setOnes.out
*
* \sa class CwiseNullaryOp, Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
{
return setConstant(Scalar(1));
}
/** Resizes to the given \a size, and sets all coefficients in this expression to one.
*
* \only_for_vectors
*
* Example: \include Matrix_setOnes_int.cpp
* Output: \verbinclude Matrix_setOnes_int.out
*
* \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index size)
{
resize(size);
return setConstant(Scalar(1));
}
/** Resizes to the given size, and sets all coefficients in this expression to one.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setOnes_int_int.cpp
* Output: \verbinclude Matrix_setOnes_int_int.out
*
* \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index rows, Index cols)
{
resize(rows, cols);
return setConstant(Scalar(1));
}
// Identity:
/** \returns an expression of the identity matrix (not necessarily square).
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Identity() should be used
* instead.
*
* Example: \include MatrixBase_identity_int_int.cpp
* Output: \verbinclude MatrixBase_identity_int_int.out
*
* \sa Identity(), setIdentity(), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity(Index rows, Index cols)
{
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_identity_op<Scalar>());
}
/** \returns an expression of the identity matrix (not necessarily square).
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variant taking size arguments.
*
* Example: \include MatrixBase_identity.cpp
* Output: \verbinclude MatrixBase_identity.out
*
* \sa Identity(Index,Index), setIdentity(), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity()
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return MatrixBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_identity_op<Scalar>());
}
/** \returns true if *this is approximately equal to the identity matrix
* (not necessarily square),
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isIdentity.cpp
* Output: \verbinclude MatrixBase_isIdentity.out
*
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()
*/
template<typename Derived>
bool MatrixBase<Derived>::isIdentity
(RealScalar prec) const
{
for(Index j = 0; j < cols(); ++j)
{
for(Index i = 0; i < rows(); ++i)
{
if(i == j)
{
if(!internal::isApprox(this->coeff(i, j), static_cast<Scalar>(1), prec))
return false;
}
else
{
if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast<RealScalar>(1), prec))
return false;
}
}
}
return true;
}
namespace internal {
template<typename Derived, bool Big = (Derived::SizeAtCompileTime>=16)>
struct setIdentity_impl
{
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
{
return m = Derived::Identity(m.rows(), m.cols());
}
};
template<typename Derived>
struct setIdentity_impl<Derived, true>
{
typedef typename Derived::Index Index;
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
{
m.setZero();
const Index size = std::min(m.rows(), m.cols());
for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1);
return m;
}
};
} // end namespace internal
/** Writes the identity expression (not necessarily square) into *this.
*
* Example: \include MatrixBase_setIdentity.cpp
* Output: \verbinclude MatrixBase_setIdentity.out
*
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
{
return internal::setIdentity_impl<Derived>::run(derived());
}
/** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setIdentity_int_int.cpp
* Output: \verbinclude Matrix_setIdentity_int_int.out
*
* \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index rows, Index cols)
{
derived().resize(rows, cols);
return setIdentity();
}
/** \returns an expression of the i-th unit (basis) vector.
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index size, Index i)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return BasisReturnType(SquareMatrixType::Identity(size,size), i);
}
/** \returns an expression of the i-th unit (basis) vector.
*
* \only_for_vectors
*
* This variant is for fixed-size vector only.
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index i)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return BasisReturnType(SquareMatrixType::Identity(),i);
}
/** \returns an expression of the X axis unit vector (1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
{ return Derived::Unit(0); }
/** \returns an expression of the Y axis unit vector (0,1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
{ return Derived::Unit(1); }
/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
{ return Derived::Unit(2); }
/** \returns an expression of the W axis unit vector (0,0,0,1)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
{ return Derived::Unit(3); }
#endif // EIGEN_CWISE_NULLARY_OP_H

View file

@ -0,0 +1,137 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CWISE_UNARY_OP_H
#define EIGEN_CWISE_UNARY_OP_H
/** \class CwiseUnaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise unary operator is applied to an expression
*
* \param UnaryOp template functor implementing the operator
* \param XprType the type of the expression to which we are applying the unary operator
*
* This class represents an expression where a unary operator is applied to an expression.
* It is the return type of all operations taking exactly 1 input expression, regardless of the
* presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix
* is considered unary, because only the right-hand side is an expression, and its
* return type is a specialization of CwiseUnaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseUnaryOp types explicitly.
*
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
*/
namespace internal {
template<typename UnaryOp, typename XprType>
struct traits<CwiseUnaryOp<UnaryOp, XprType> >
: traits<XprType>
{
typedef typename result_of<
UnaryOp(typename XprType::Scalar)
>::type Scalar;
typedef typename XprType::Nested XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum {
Flags = _XprTypeNested::Flags & (
HereditaryBits | LinearAccessBit | AlignedBit
| (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
CoeffReadCost = _XprTypeNested::CoeffReadCost + functor_traits<UnaryOp>::Cost
};
};
}
template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl;
template<typename UnaryOp, typename XprType>
class CwiseUnaryOp : internal::no_assignment_operator,
public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>
{
public:
typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
: m_xpr(xpr), m_functor(func) {}
EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); }
/** \returns the functor representing the unary operation */
const UnaryOp& functor() const { return m_functor; }
/** \returns the nested expression */
const typename internal::remove_all<typename XprType::Nested>::type&
nestedExpression() const { return m_xpr; }
/** \returns the nested expression */
typename internal::remove_all<typename XprType::Nested>::type&
nestedExpression() { return m_xpr.const_cast_derived(); }
protected:
const typename XprType::Nested m_xpr;
const UnaryOp m_functor;
};
// This is the generic implementation for dense storage.
// It can be used for any expression types implementing the dense concept.
template<typename UnaryOp, typename XprType>
class CwiseUnaryOpImpl<UnaryOp,XprType,Dense>
: public internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
{
public:
typedef CwiseUnaryOp<UnaryOp, XprType> Derived;
typedef typename internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
{
return derived().functor()(derived().nestedExpression().coeff(row, col));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
{
return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(row, col));
}
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
return derived().functor()(derived().nestedExpression().coeff(index));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(index));
}
};
#endif // EIGEN_CWISE_UNARY_OP_H

View file

@ -0,0 +1,148 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CWISE_UNARY_VIEW_H
#define EIGEN_CWISE_UNARY_VIEW_H
/** \class CwiseUnaryView
* \ingroup Core_Module
*
* \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector
*
* \param ViewOp template functor implementing the view
* \param MatrixType the type of the matrix we are applying the unary operator
*
* This class represents a lvalue expression of a generic unary view operator of a matrix or a vector.
* It is the return type of real() and imag(), and most of the time this is the only way it is used.
*
* \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp
*/
namespace internal {
template<typename ViewOp, typename MatrixType>
struct traits<CwiseUnaryView<ViewOp, MatrixType> >
: traits<MatrixType>
{
typedef typename result_of<
ViewOp(typename traits<MatrixType>::Scalar)
>::type Scalar;
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
enum {
Flags = (traits<_MatrixTypeNested>::Flags & (HereditaryBits | LvalueBit | LinearAccessBit | DirectAccessBit)),
CoeffReadCost = traits<_MatrixTypeNested>::CoeffReadCost + functor_traits<ViewOp>::Cost,
MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
// need to cast the sizeof's from size_t to int explicitly, otherwise:
// "error: no integral type can represent all of the enumerator values
InnerStrideAtCompileTime = MatrixTypeInnerStride == Dynamic
? int(Dynamic)
: int(MatrixTypeInnerStride)
* int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar)),
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret
};
};
}
template<typename ViewOp, typename MatrixType, typename StorageKind>
class CwiseUnaryViewImpl;
template<typename ViewOp, typename MatrixType>
class CwiseUnaryView : internal::no_assignment_operator,
public CwiseUnaryViewImpl<ViewOp, MatrixType, typename internal::traits<MatrixType>::StorageKind>
{
public:
typedef typename CwiseUnaryViewImpl<ViewOp, MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView)
inline CwiseUnaryView(const MatrixType& mat, const ViewOp& func = ViewOp())
: m_matrix(mat), m_functor(func) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryView)
EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
/** \returns the functor representing unary operation */
const ViewOp& functor() const { return m_functor; }
/** \returns the nested expression */
const typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() const { return m_matrix; }
/** \returns the nested expression */
typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() { return m_matrix.const_cast_derived(); }
protected:
// FIXME changed from MatrixType::Nested because of a weird compilation error with sun CC
const typename internal::nested<MatrixType>::type m_matrix;
ViewOp m_functor;
};
template<typename ViewOp, typename MatrixType>
class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
: public internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type
{
public:
typedef CwiseUnaryView<ViewOp, MatrixType> Derived;
typedef typename internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
inline Index innerStride() const
{
return derived().nestedExpression().innerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
}
inline Index outerStride() const
{
return derived().nestedExpression().outerStride();
}
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
{
return derived().functor()(derived().nestedExpression().coeff(row, col));
}
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
return derived().functor()(derived().nestedExpression().coeff(index));
}
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
return derived().functor()(const_cast_derived().nestedExpression().coeffRef(row, col));
}
EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
{
return derived().functor()(const_cast_derived().nestedExpression().coeffRef(index));
}
};
#endif // EIGEN_CWISE_UNARY_VIEW_H

View file

@ -0,0 +1,543 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DENSEBASE_H
#define EIGEN_DENSEBASE_H
/** \class DenseBase
* \ingroup Core_Module
*
* \brief Base class for all dense matrices, vectors, and arrays
*
* This class is the base that is inherited by all dense objects (matrix, vector, arrays,
* and related expression types). The common Eigen API for dense objects is contained in this class.
*
* \tparam Derived is the derived type, e.g., a matrix type or an expression.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN.
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived> class DenseBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
: public internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>
#else
: public DenseCoeffsBase<Derived>
#endif // not EIGEN_PARSED_BY_DOXYGEN
{
public:
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
class InnerIterator;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
/** \brief The type of indices
* \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
* \sa \ref TopicPreprocessorDirectives.
*/
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseCoeffsBase<Derived> Base;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::rowIndexByOuterInner;
using Base::colIndexByOuterInner;
using Base::coeff;
using Base::coeffByOuterInner;
using Base::packet;
using Base::packetByOuterInner;
using Base::writePacket;
using Base::writePacketByOuterInner;
using Base::coeffRef;
using Base::coeffRefByOuterInner;
using Base::copyCoeff;
using Base::copyCoeffByOuterInner;
using Base::copyPacket;
using Base::copyPacketByOuterInner;
using Base::operator();
using Base::operator[];
using Base::x;
using Base::y;
using Base::z;
using Base::w;
using Base::stride;
using Base::innerStride;
using Base::outerStride;
using Base::rowStride;
using Base::colStride;
typedef typename Base::CoeffReturnType CoeffReturnType;
enum {
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
/**< The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
/**< The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
/**< This value is equal to the maximum possible number of rows that this expression
* might have. If this expression might have an arbitrarily high number of rows,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
*/
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
/**< This value is equal to the maximum possible number of columns that this expression
* might have. If this expression might have an arbitrarily high number of columns,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
*/
MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime>::ret),
/**< This value is equal to the maximum possible number of coefficients that this expression
* might have. If this expression might have an arbitrarily high number of coefficients,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
*/
IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
|| internal::traits<Derived>::MaxColsAtCompileTime == 1,
/**< This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
Flags = internal::traits<Derived>::Flags,
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
* constructed from this one. See the \ref flags "list of flags".
*/
IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */
InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? SizeAtCompileTime
: int(IsRowMajor) ? ColsAtCompileTime : RowsAtCompileTime,
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
/**< This is a rough measure of how expensive it is to read one coefficient from
* this expression.
*/
InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
};
enum { ThisConstantIsPrivateInPlainObjectBase };
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
inline Index nonZeros() const { return size(); }
/** \returns true if either the number of rows or the number of columns is equal to 1.
* In other words, this function returns
* \code rows()==1 || cols()==1 \endcode
* \sa rows(), cols(), IsVectorAtCompileTime. */
/** \returns the outer size.
*
* \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension
* with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a
* column-major matrix, and the number of rows for a row-major matrix. */
Index outerSize() const
{
return IsVectorAtCompileTime ? 1
: int(IsRowMajor) ? this->rows() : this->cols();
}
/** \returns the inner size.
*
* \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension
* with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a
* column-major matrix, and the number of columns for a row-major matrix. */
Index innerSize() const
{
return IsVectorAtCompileTime ? this->size()
: int(IsRowMajor) ? this->cols() : this->rows();
}
/** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
* Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
void resize(Index size)
{
EIGEN_ONLY_USED_FOR_DEBUG(size);
eigen_assert(size == this->size()
&& "DenseBase::resize() does not actually allow to resize.");
}
/** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
* Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
void resize(Index rows, Index cols)
{
EIGEN_ONLY_USED_FOR_DEBUG(rows);
EIGEN_ONLY_USED_FOR_DEBUG(cols);
eigen_assert(rows == this->rows() && cols == this->cols()
&& "DenseBase::resize() does not actually allow to resize.");
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
/** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,false>,Derived> SequentialLinSpacedReturnType;
/** \internal Represents a vector with linearly spaced coefficients that allows random access. */
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,true>,Derived> RandomAccessLinSpacedReturnType;
/** \internal the return type of MatrixBase::eigenvalues() */
typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** Copies \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
Derived& operator=(const DenseBase<OtherDerived>& other);
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
Derived& operator=(const DenseBase& other);
template<typename OtherDerived>
Derived& operator=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator+=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator-=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator=(const ReturnByValue<OtherDerived>& func);
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Copies \a other into *this without evaluating other. \returns a reference to *this. */
template<typename OtherDerived>
Derived& lazyAssign(const DenseBase<OtherDerived>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN
CommaInitializer<Derived> operator<< (const Scalar& s);
template<unsigned int Added,unsigned int Removed>
const Flagged<Derived, Added, Removed> flagged() const;
template<typename OtherDerived>
CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);
Eigen::Transpose<Derived> transpose();
typedef const Transpose<const Derived> ConstTransposeReturnType;
ConstTransposeReturnType transpose() const;
void transposeInPlace();
#ifndef EIGEN_NO_DEBUG
protected:
template<typename OtherDerived>
void checkTransposeAliasing(const OtherDerived& other) const;
public:
#endif
typedef VectorBlock<Derived> SegmentReturnType;
typedef const VectorBlock<const Derived> ConstSegmentReturnType;
template<int Size> struct FixedSegmentReturnType { typedef VectorBlock<Derived, Size> Type; };
template<int Size> struct ConstFixedSegmentReturnType { typedef const VectorBlock<const Derived, Size> Type; };
// Note: The "DenseBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations.
SegmentReturnType segment(Index start, Index size);
typename DenseBase::ConstSegmentReturnType segment(Index start, Index size) const;
SegmentReturnType head(Index size);
typename DenseBase::ConstSegmentReturnType head(Index size) const;
SegmentReturnType tail(Index size);
typename DenseBase::ConstSegmentReturnType tail(Index size) const;
template<int Size> typename FixedSegmentReturnType<Size>::Type head();
template<int Size> typename ConstFixedSegmentReturnType<Size>::Type head() const;
template<int Size> typename FixedSegmentReturnType<Size>::Type tail();
template<int Size> typename ConstFixedSegmentReturnType<Size>::Type tail() const;
template<int Size> typename FixedSegmentReturnType<Size>::Type segment(Index start);
template<int Size> typename ConstFixedSegmentReturnType<Size>::Type segment(Index start) const;
static const ConstantReturnType
Constant(Index rows, Index cols, const Scalar& value);
static const ConstantReturnType
Constant(Index size, const Scalar& value);
static const ConstantReturnType
Constant(const Scalar& value);
static const SequentialLinSpacedReturnType
LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high);
static const RandomAccessLinSpacedReturnType
LinSpaced(Index size, const Scalar& low, const Scalar& high);
static const SequentialLinSpacedReturnType
LinSpaced(Sequential_t, const Scalar& low, const Scalar& high);
static const RandomAccessLinSpacedReturnType
LinSpaced(const Scalar& low, const Scalar& high);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(Index size, const CustomNullaryOp& func);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(const CustomNullaryOp& func);
static const ConstantReturnType Zero(Index rows, Index cols);
static const ConstantReturnType Zero(Index size);
static const ConstantReturnType Zero();
static const ConstantReturnType Ones(Index rows, Index cols);
static const ConstantReturnType Ones(Index size);
static const ConstantReturnType Ones();
void fill(const Scalar& value);
Derived& setConstant(const Scalar& value);
Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high);
Derived& setLinSpaced(const Scalar& low, const Scalar& high);
Derived& setZero();
Derived& setOnes();
Derived& setRandom();
template<typename OtherDerived>
bool isApprox(const DenseBase<OtherDerived>& other,
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isMuchSmallerThan(const RealScalar& other,
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived>
bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isApproxToConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isZero(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isOnes(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
inline Derived& operator*=(const Scalar& other);
inline Derived& operator/=(const Scalar& other);
/** \returns the matrix or vector obtained by evaluating this expression.
*
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
* a const reference, in order to avoid a useless copy.
*/
EIGEN_STRONG_INLINE const typename internal::eval<Derived>::type eval() const
{
// Even though MSVC does not honor strong inlining when the return type
// is a dynamic matrix, we desperately need strong inlining for fixed
// size types on MSVC.
return typename internal::eval<Derived>::type(derived());
}
/** swaps *this with the expression \a other.
*
*/
template<typename OtherDerived>
void swap(const DenseBase<OtherDerived>& other,
int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
{
SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
}
/** swaps *this with the matrix or array \a other.
*
*/
template<typename OtherDerived>
void swap(PlainObjectBase<OtherDerived>& other)
{
SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
}
inline const NestByValue<Derived> nestByValue() const;
inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
inline ForceAlignedAccess<Derived> forceAlignedAccess();
template<bool Enable> inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const;
template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
Scalar sum() const;
Scalar mean() const;
Scalar trace() const;
Scalar prod() const;
typename internal::traits<Derived>::Scalar minCoeff() const;
typename internal::traits<Derived>::Scalar maxCoeff() const;
template<typename IndexType>
typename internal::traits<Derived>::Scalar minCoeff(IndexType* row, IndexType* col) const;
template<typename IndexType>
typename internal::traits<Derived>::Scalar maxCoeff(IndexType* row, IndexType* col) const;
template<typename IndexType>
typename internal::traits<Derived>::Scalar minCoeff(IndexType* index) const;
template<typename IndexType>
typename internal::traits<Derived>::Scalar maxCoeff(IndexType* index) const;
template<typename BinaryOp>
typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type
redux(const BinaryOp& func) const;
template<typename Visitor>
void visit(Visitor& func) const;
inline const WithFormat<Derived> format(const IOFormat& fmt) const;
/** \returns the unique coefficient of a 1x1 expression */
CoeffReturnType value() const
{
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
return derived().coeff(0,0);
}
/////////// Array module ///////////
bool all(void) const;
bool any(void) const;
Index count() const;
typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType;
typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType;
typedef VectorwiseOp<Derived, Vertical> ColwiseReturnType;
typedef const VectorwiseOp<const Derived, Vertical> ConstColwiseReturnType;
ConstRowwiseReturnType rowwise() const;
RowwiseReturnType rowwise();
ConstColwiseReturnType colwise() const;
ColwiseReturnType colwise();
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index rows, Index cols);
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index size);
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random();
template<typename ThenDerived,typename ElseDerived>
const Select<Derived,ThenDerived,ElseDerived>
select(const DenseBase<ThenDerived>& thenMatrix,
const DenseBase<ElseDerived>& elseMatrix) const;
template<typename ThenDerived>
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
select(const DenseBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
template<typename ElseDerived>
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
select(typename ElseDerived::Scalar thenScalar, const DenseBase<ElseDerived>& elseMatrix) const;
template<int p> RealScalar lpNorm() const;
template<int RowFactor, int ColFactor>
const Replicate<Derived,RowFactor,ColFactor> replicate() const;
const Replicate<Derived,Dynamic,Dynamic> replicate(Index rowFacor,Index colFactor) const;
typedef Reverse<Derived, BothDirections> ReverseReturnType;
typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType;
ReverseReturnType reverse();
ConstReverseReturnType reverse() const;
void reverseInPlace();
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase
# include "../plugins/BlockMethods.h"
# ifdef EIGEN_DENSEBASE_PLUGIN
# include EIGEN_DENSEBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#ifdef EIGEN2_SUPPORT
Block<Derived> corner(CornerType type, Index cRows, Index cCols);
const Block<Derived> corner(CornerType type, Index cRows, Index cCols) const;
template<int CRows, int CCols>
Block<Derived, CRows, CCols> corner(CornerType type);
template<int CRows, int CCols>
const Block<Derived, CRows, CCols> corner(CornerType type) const;
#endif // EIGEN2_SUPPORT
// disable the use of evalTo for dense objects with a nice compilation error
template<typename Dest> inline void evalTo(Dest& ) const
{
EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
}
protected:
/** Default constructor. Do nothing. */
DenseBase()
{
/* Just checks for self-consistency of the flags.
* Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
*/
#ifdef EIGEN_INTERNAL_DEBUGGING
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
&& EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION)
#endif
}
private:
explicit DenseBase(int);
DenseBase(int,int);
template<typename OtherDerived> explicit DenseBase(const DenseBase<OtherDerived>&);
};
#endif // EIGEN_DENSEBASE_H

View file

@ -0,0 +1,765 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DENSECOEFFSBASE_H
#define EIGEN_DENSECOEFFSBASE_H
namespace internal {
template<typename T> struct add_const_on_value_type_if_arithmetic
{
typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
};
}
/** \brief Base class providing read-only coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam ReadOnlyAccessors Constant indicating read-only access
*
* This class defines the \c operator() \c const function and friends, which can be used to read specific
* entries of a matrix or array.
*
* \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
* \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
// Explanation for this CoeffReturnType typedef.
// - This is the return type of the coeff() method.
// - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
// to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
// - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
// while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
// not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
const Scalar&,
typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
>::type CoeffReturnType;
typedef typename internal::add_const_on_value_type_if_arithmetic<
typename internal::packet_traits<Scalar>::type
>::type PacketReturnType;
typedef EigenBase<Derived> Base;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
{
return int(Derived::RowsAtCompileTime) == 1 ? 0
: int(Derived::ColsAtCompileTime) == 1 ? inner
: int(Derived::Flags)&RowMajorBit ? outer
: inner;
}
EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
{
return int(Derived::ColsAtCompileTime) == 1 ? 0
: int(Derived::RowsAtCompileTime) == 1 ? inner
: int(Derived::Flags)&RowMajorBit ? inner
: outer;
}
/** Short version: don't use this function, use
* \link operator()(Index,Index) const \endlink instead.
*
* Long version: this function is similar to
* \link operator()(Index,Index) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(Index,Index) const \endlink.
*
* \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
*/
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return derived().coeff(row, col);
}
EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
{
return coeff(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \returns the coefficient at given the given row and column.
*
* \sa operator()(Index,Index), operator[](Index)
*/
EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return derived().coeff(row, col);
}
/** Short version: don't use this function, use
* \link operator[](Index) const \endlink instead.
*
* Long version: this function is similar to
* \link operator[](Index) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameter \a index is in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](Index) const \endlink.
*
* \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
*/
EIGEN_STRONG_INLINE CoeffReturnType
coeff(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
return derived().coeff(index);
}
/** \returns the coefficient at given index.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
* z() const, w() const
*/
EIGEN_STRONG_INLINE CoeffReturnType
operator[](Index index) const
{
#ifndef EIGEN2_SUPPORT
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
#endif
eigen_assert(index >= 0 && index < size());
return derived().coeff(index);
}
/** \returns the coefficient at given index.
*
* This is synonymous to operator[](Index) const.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
* z() const, w() const
*/
EIGEN_STRONG_INLINE CoeffReturnType
operator()(Index index) const
{
eigen_assert(index >= 0 && index < size());
return derived().coeff(index);
}
/** equivalent to operator[](0). */
EIGEN_STRONG_INLINE CoeffReturnType
x() const { return (*this)[0]; }
/** equivalent to operator[](1). */
EIGEN_STRONG_INLINE CoeffReturnType
y() const { return (*this)[1]; }
/** equivalent to operator[](2). */
EIGEN_STRONG_INLINE CoeffReturnType
z() const { return (*this)[2]; }
/** equivalent to operator[](3). */
EIGEN_STRONG_INLINE CoeffReturnType
w() const { return (*this)[3]; }
/** \internal
* \returns the packet of coefficients starting at the given row and column. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit.
*
* The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return derived().template packet<LoadMode>(row,col);
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
{
return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \internal
* \returns the packet of coefficients starting at the given index. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit and the LinearAccessBit.
*
* The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
return derived().template packet<LoadMode>(index);
}
protected:
// explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
// But some methods are only available in the DirectAccess case.
// So we add dummy methods here with these names, so that "using... " doesn't fail.
// It's not private so that the child class DenseBase can access them, and it's not public
// either since it's an implementation detail, so has to be protected.
void coeffRef();
void coeffRefByOuterInner();
void writePacket();
void writePacketByOuterInner();
void copyCoeff();
void copyCoeffByOuterInner();
void copyPacket();
void copyPacketByOuterInner();
void stride();
void innerStride();
void outerStride();
void rowStride();
void colStride();
};
/** \brief Base class providing read/write coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam WriteAccessors Constant indicating read/write access
*
* This class defines the non-const \c operator() function and friends, which can be used to write specific
* entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
* defines the const variant for reading specific entries.
*
* \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
public:
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::coeff;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
using Base::rowIndexByOuterInner;
using Base::colIndexByOuterInner;
using Base::operator[];
using Base::operator();
using Base::x;
using Base::y;
using Base::z;
using Base::w;
/** Short version: don't use this function, use
* \link operator()(Index,Index) \endlink instead.
*
* Long version: this function is similar to
* \link operator()(Index,Index) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(Index,Index) \endlink.
*
* \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
*/
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return derived().coeffRef(row, col);
}
EIGEN_STRONG_INLINE Scalar&
coeffRefByOuterInner(Index outer, Index inner)
{
return coeffRef(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \returns a reference to the coefficient at given the given row and column.
*
* \sa operator[](Index)
*/
EIGEN_STRONG_INLINE Scalar&
operator()(Index row, Index col)
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return derived().coeffRef(row, col);
}
/** Short version: don't use this function, use
* \link operator[](Index) \endlink instead.
*
* Long version: this function is similar to
* \link operator[](Index) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](Index) \endlink.
*
* \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
*/
EIGEN_STRONG_INLINE Scalar&
coeffRef(Index index)
{
eigen_internal_assert(index >= 0 && index < size());
return derived().coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
*/
EIGEN_STRONG_INLINE Scalar&
operator[](Index index)
{
#ifndef EIGEN2_SUPPORT
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
#endif
eigen_assert(index >= 0 && index < size());
return derived().coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
*
* This is synonymous to operator[](Index).
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
*/
EIGEN_STRONG_INLINE Scalar&
operator()(Index index)
{
eigen_assert(index >= 0 && index < size());
return derived().coeffRef(index);
}
/** equivalent to operator[](0). */
EIGEN_STRONG_INLINE Scalar&
x() { return (*this)[0]; }
/** equivalent to operator[](1). */
EIGEN_STRONG_INLINE Scalar&
y() { return (*this)[1]; }
/** equivalent to operator[](2). */
EIGEN_STRONG_INLINE Scalar&
z() { return (*this)[2]; }
/** equivalent to operator[](3). */
EIGEN_STRONG_INLINE Scalar&
w() { return (*this)[3]; }
/** \internal
* Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit.
*
* The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket
(Index row, Index col, const typename internal::packet_traits<Scalar>::type& x)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
derived().template writePacket<StoreMode>(row,col,x);
}
/** \internal */
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacketByOuterInner
(Index outer, Index inner, const typename internal::packet_traits<Scalar>::type& x)
{
writePacket<StoreMode>(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner),
x);
}
/** \internal
* Stores the given packet of coefficients, at the given index in this expression. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit and the LinearAccessBit.
*
* The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket
(Index index, const typename internal::packet_traits<Scalar>::type& x)
{
eigen_internal_assert(index >= 0 && index < size());
derived().template writePacket<StoreMode>(index,x);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Copies the coefficient at position (row,col) of other into *this.
*
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
* with usual assignments.
*
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
derived().coeffRef(row, col) = other.derived().coeff(row, col);
}
/** \internal Copies the coefficient at the given index of other into *this.
*
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
* with usual assignments.
*
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
{
eigen_internal_assert(index >= 0 && index < size());
derived().coeffRef(index) = other.derived().coeff(index);
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
{
const Index row = rowIndexByOuterInner(outer,inner);
const Index col = colIndexByOuterInner(outer,inner);
// derived() is important here: copyCoeff() may be reimplemented in Derived!
derived().copyCoeff(row, col, other);
}
/** \internal Copies the packet at position (row,col) of other into *this.
*
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
* with usual assignments.
*
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
*/
template<typename OtherDerived, int StoreMode, int LoadMode>
EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
derived().template writePacket<StoreMode>(row, col,
other.derived().template packet<LoadMode>(row, col));
}
/** \internal Copies the packet at the given index of other into *this.
*
* This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
* with usual assignments.
*
* Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
*/
template<typename OtherDerived, int StoreMode, int LoadMode>
EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase<OtherDerived>& other)
{
eigen_internal_assert(index >= 0 && index < size());
derived().template writePacket<StoreMode>(index,
other.derived().template packet<LoadMode>(index));
}
/** \internal */
template<typename OtherDerived, int StoreMode, int LoadMode>
EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
{
const Index row = rowIndexByOuterInner(outer,inner);
const Index col = colIndexByOuterInner(outer,inner);
// derived() is important here: copyCoeff() may be reimplemented in Derived!
derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other);
}
#endif
};
/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam DirectAccessors Constant indicating direct access
*
* This class defines functions to work with strides which can be used to access entries directly. This class
* inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
* \c operator() .
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
public:
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
*
* \sa outerStride(), rowStride(), colStride()
*/
inline Index innerStride() const
{
return derived().innerStride();
}
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
* in a column-major matrix).
*
* \sa innerStride(), rowStride(), colStride()
*/
inline Index outerStride() const
{
return derived().outerStride();
}
// FIXME shall we remove it ?
inline Index stride() const
{
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
}
/** \returns the pointer increment between two consecutive rows.
*
* \sa innerStride(), outerStride(), colStride()
*/
inline Index rowStride() const
{
return Derived::IsRowMajor ? outerStride() : innerStride();
}
/** \returns the pointer increment between two consecutive columns.
*
* \sa innerStride(), outerStride(), rowStride()
*/
inline Index colStride() const
{
return Derived::IsRowMajor ? innerStride() : outerStride();
}
};
/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam DirectAccessors Constant indicating direct access
*
* This class defines functions to work with strides which can be used to access entries directly. This class
* inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
* \c operator().
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, DirectWriteAccessors>
: public DenseCoeffsBase<Derived, WriteAccessors>
{
public:
typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
*
* \sa outerStride(), rowStride(), colStride()
*/
inline Index innerStride() const
{
return derived().innerStride();
}
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
* in a column-major matrix).
*
* \sa innerStride(), rowStride(), colStride()
*/
inline Index outerStride() const
{
return derived().outerStride();
}
// FIXME shall we remove it ?
inline Index stride() const
{
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
}
/** \returns the pointer increment between two consecutive rows.
*
* \sa innerStride(), outerStride(), colStride()
*/
inline Index rowStride() const
{
return Derived::IsRowMajor ? outerStride() : innerStride();
}
/** \returns the pointer increment between two consecutive columns.
*
* \sa innerStride(), outerStride(), rowStride()
*/
inline Index colStride() const
{
return Derived::IsRowMajor ? innerStride() : outerStride();
}
};
namespace internal {
template<typename Derived, bool JustReturnZero>
struct first_aligned_impl
{
inline static typename Derived::Index run(const Derived&)
{ return 0; }
};
template<typename Derived>
struct first_aligned_impl<Derived, false>
{
inline static typename Derived::Index run(const Derived& m)
{
return first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size());
}
};
/** \internal \returns the index of the first element of the array that is well aligned for vectorization.
*
* There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
* documentation.
*/
template<typename Derived>
inline static typename Derived::Index first_aligned(const Derived& m)
{
return first_aligned_impl
<Derived, (Derived::Flags & AlignedBit) || !(Derived::Flags & DirectAccessBit)>
::run(m);
}
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct inner_stride_at_compile_time
{
enum { ret = traits<Derived>::InnerStrideAtCompileTime };
};
template<typename Derived>
struct inner_stride_at_compile_time<Derived, false>
{
enum { ret = 0 };
};
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct outer_stride_at_compile_time
{
enum { ret = traits<Derived>::OuterStrideAtCompileTime };
};
template<typename Derived>
struct outer_stride_at_compile_time<Derived, false>
{
enum { ret = 0 };
};
} // end namespace internal
#endif // EIGEN_DENSECOEFFSBASE_H

View file

@ -0,0 +1,304 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIXSTORAGE_H
#define EIGEN_MATRIXSTORAGE_H
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN EIGEN_DENSE_STORAGE_CTOR_PLUGIN;
#else
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
#endif
namespace internal {
struct constructor_without_unaligned_array_assert {};
/** \internal
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
*/
template <typename T, int Size, int MatrixOrArrayOptions,
int Alignment = (MatrixOrArrayOptions&DontAlign) ? 0
: (((Size*sizeof(T))%16)==0) ? 16
: 0 >
struct plain_array
{
T array[Size];
plain_array() {}
plain_array(constructor_without_unaligned_array_assert) {}
};
#ifdef EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask)
#else
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
eigen_assert((reinterpret_cast<size_t>(array) & sizemask) == 0 \
&& "this assertion is explained here: " \
"http://eigen.tuxfamily.org/dox/UnalignedArrayAssert.html" \
" **** READ THIS WEB PAGE !!! ****");
#endif
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 16>
{
EIGEN_USER_ALIGN16 T array[Size];
plain_array() { EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf) }
plain_array(constructor_without_unaligned_array_assert) {}
};
template <typename T, int MatrixOrArrayOptions, int Alignment>
struct plain_array<T, 0, MatrixOrArrayOptions, Alignment>
{
EIGEN_USER_ALIGN16 T array[1];
plain_array() {}
plain_array(constructor_without_unaligned_array_assert) {}
};
} // end namespace internal
/** \internal
*
* \class DenseStorage
* \ingroup Core_Module
*
* \brief Stores the data of a matrix
*
* This class stores the data of fixed-size, dynamic-size or mixed matrices
* in a way as compact as possible.
*
* \sa Matrix
*/
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage;
// purely fixed-size matrix
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage
{
internal::plain_array<T,Size,_Options> m_data;
public:
inline explicit DenseStorage() {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()) {}
inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); }
inline static DenseIndex rows(void) {return _Rows;}
inline static DenseIndex cols(void) {return _Cols;}
inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
inline void resize(DenseIndex,DenseIndex,DenseIndex) {}
inline const T *data() const { return m_data.array; }
inline T *data() { return m_data.array; }
};
// null matrix
template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options>
{
public:
inline explicit DenseStorage() {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert) {}
inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
inline void swap(DenseStorage& ) {}
inline static DenseIndex rows(void) {return _Rows;}
inline static DenseIndex cols(void) {return _Cols;}
inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
inline void resize(DenseIndex,DenseIndex,DenseIndex) {}
inline const T *data() const { return 0; }
inline T *data() { return 0; }
};
// dynamic-size matrix with fixed-size storage
template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic, Dynamic, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
DenseIndex m_rows;
DenseIndex m_cols;
public:
inline explicit DenseStorage() : m_rows(0), m_cols(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
inline DenseStorage(DenseIndex, DenseIndex rows, DenseIndex cols) : m_rows(rows), m_cols(cols) {}
inline void swap(DenseStorage& other)
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
inline DenseIndex rows(void) const {return m_rows;}
inline DenseIndex cols(void) const {return m_cols;}
inline void conservativeResize(DenseIndex, DenseIndex rows, DenseIndex cols) { m_rows = rows; m_cols = cols; }
inline void resize(DenseIndex, DenseIndex rows, DenseIndex cols) { m_rows = rows; m_cols = cols; }
inline const T *data() const { return m_data.array; }
inline T *data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed width
template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Size, Dynamic, _Cols, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
DenseIndex m_rows;
public:
inline explicit DenseStorage() : m_rows(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
inline DenseStorage(DenseIndex, DenseIndex rows, DenseIndex) : m_rows(rows) {}
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
inline DenseIndex rows(void) const {return m_rows;}
inline DenseIndex cols(void) const {return _Cols;}
inline void conservativeResize(DenseIndex, DenseIndex rows, DenseIndex) { m_rows = rows; }
inline void resize(DenseIndex, DenseIndex rows, DenseIndex) { m_rows = rows; }
inline const T *data() const { return m_data.array; }
inline T *data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed height
template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Size, _Rows, Dynamic, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
DenseIndex m_cols;
public:
inline explicit DenseStorage() : m_cols(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
inline DenseStorage(DenseIndex, DenseIndex, DenseIndex cols) : m_cols(cols) {}
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
inline DenseIndex rows(void) const {return _Rows;}
inline DenseIndex cols(void) const {return m_cols;}
inline void conservativeResize(DenseIndex, DenseIndex, DenseIndex cols) { m_cols = cols; }
inline void resize(DenseIndex, DenseIndex, DenseIndex cols) { m_cols = cols; }
inline const T *data() const { return m_data.array; }
inline T *data() { return m_data.array; }
};
// purely dynamic matrix.
template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynamic, _Options>
{
T *m_data;
DenseIndex m_rows;
DenseIndex m_cols;
public:
inline explicit DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(0), m_rows(0), m_cols(0) {}
inline DenseStorage(DenseIndex size, DenseIndex rows, DenseIndex cols)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows), m_cols(cols)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
inline void swap(DenseStorage& other)
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
inline DenseIndex rows(void) const {return m_rows;}
inline DenseIndex cols(void) const {return m_cols;}
inline void conservativeResize(DenseIndex size, DenseIndex rows, DenseIndex cols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols);
m_rows = rows;
m_cols = cols;
}
void resize(DenseIndex size, DenseIndex rows, DenseIndex cols)
{
if(size != m_rows*m_cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
}
m_rows = rows;
m_cols = cols;
}
inline const T *data() const { return m_data; }
inline T *data() { return m_data; }
};
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Rows, Dynamic, _Options>
{
T *m_data;
DenseIndex m_cols;
public:
inline explicit DenseStorage() : m_data(0), m_cols(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
inline DenseStorage(DenseIndex size, DenseIndex, DenseIndex cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(cols)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
inline static DenseIndex rows(void) {return _Rows;}
inline DenseIndex cols(void) const {return m_cols;}
inline void conservativeResize(DenseIndex size, DenseIndex, DenseIndex cols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols);
m_cols = cols;
}
EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex, DenseIndex cols)
{
if(size != _Rows*m_cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
}
m_cols = cols;
}
inline const T *data() const { return m_data; }
inline T *data() { return m_data; }
};
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dynamic, _Cols, _Options>
{
T *m_data;
DenseIndex m_rows;
public:
inline explicit DenseStorage() : m_data(0), m_rows(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
inline DenseStorage(DenseIndex size, DenseIndex rows, DenseIndex) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
inline DenseIndex rows(void) const {return m_rows;}
inline static DenseIndex cols(void) {return _Cols;}
inline void conservativeResize(DenseIndex size, DenseIndex rows, DenseIndex)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols);
m_rows = rows;
}
EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex rows, DenseIndex)
{
if(size != m_rows*_Cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
}
m_rows = rows;
}
inline const T *data() const { return m_data; }
inline T *data() { return m_data; }
};
#endif // EIGEN_MATRIX_H

View file

@ -0,0 +1,227 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DIAGONAL_H
#define EIGEN_DIAGONAL_H
/** \class Diagonal
* \ingroup Core_Module
*
* \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix
*
* \param MatrixType the type of the object in which we are taking a sub/main/super diagonal
* \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal.
* A positive value means a superdiagonal, a negative value means a subdiagonal.
* You can also use Dynamic so the index can be set at runtime.
*
* The matrix is not required to be square.
*
* This class represents an expression of the main diagonal, or any sub/super diagonal
* of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the
* time this is the only way it is used.
*
* \sa MatrixBase::diagonal(), MatrixBase::diagonal(Index)
*/
namespace internal {
template<typename MatrixType, int DiagIndex>
struct traits<Diagonal<MatrixType,DiagIndex> >
: traits<MatrixType>
{
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
typedef typename MatrixType::StorageKind StorageKind;
enum {
AbsDiagIndex = DiagIndex<0 ? -DiagIndex : DiagIndex, // only used if DiagIndex != Dynamic
// FIXME these computations are broken in the case where the matrix is rectangular and DiagIndex!=0
RowsAtCompileTime = (int(DiagIndex) == Dynamic || int(MatrixType::SizeAtCompileTime) == Dynamic) ? Dynamic
: (EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime,
MatrixType::ColsAtCompileTime) - AbsDiagIndex),
ColsAtCompileTime = 1,
MaxRowsAtCompileTime = int(MatrixType::MaxSizeAtCompileTime) == Dynamic ? Dynamic
: DiagIndex == Dynamic ? EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::MaxRowsAtCompileTime,
MatrixType::MaxColsAtCompileTime)
: (EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime) - AbsDiagIndex),
MaxColsAtCompileTime = 1,
MaskLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
Flags = (unsigned int)_MatrixTypeNested::Flags & (HereditaryBits | LinearAccessBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit,
CoeffReadCost = _MatrixTypeNested::CoeffReadCost,
MatrixTypeOuterStride = outer_stride_at_compile_time<MatrixType>::ret,
InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1,
OuterStrideAtCompileTime = 0
};
};
}
template<typename MatrixType, int DiagIndex> class Diagonal
: public internal::dense_xpr_base< Diagonal<MatrixType,DiagIndex> >::type
{
public:
typedef typename internal::dense_xpr_base<Diagonal>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal)
inline Diagonal(MatrixType& matrix, Index index = DiagIndex) : m_matrix(matrix), m_index(index) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal)
inline Index rows() const
{ return m_index.value()<0 ? std::min(m_matrix.cols(),m_matrix.rows()+m_index.value()) : std::min(m_matrix.rows(),m_matrix.cols()-m_index.value()); }
inline Index cols() const { return 1; }
inline Index innerStride() const
{
return m_matrix.outerStride() + 1;
}
inline Index outerStride() const
{
return 0;
}
inline Scalar& coeffRef(Index row, Index)
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset());
}
inline const Scalar& coeffRef(Index row, Index) const
{
return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset());
}
inline CoeffReturnType coeff(Index row, Index) const
{
return m_matrix.coeff(row+rowOffset(), row+colOffset());
}
inline Scalar& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return m_matrix.const_cast_derived().coeffRef(index+rowOffset(), index+colOffset());
}
inline const Scalar& coeffRef(Index index) const
{
return m_matrix.const_cast_derived().coeffRef(index+rowOffset(), index+colOffset());
}
inline CoeffReturnType coeff(Index index) const
{
return m_matrix.coeff(index+rowOffset(), index+colOffset());
}
protected:
const typename MatrixType::Nested m_matrix;
const internal::variable_if_dynamic<Index, DiagIndex> m_index;
private:
// some compilers may fail to optimize std::max etc in case of compile-time constants...
EIGEN_STRONG_INLINE Index absDiagIndex() const { return m_index.value()>0 ? m_index.value() : -m_index.value(); }
EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value()>0 ? 0 : -m_index.value(); }
EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value()>0 ? m_index.value() : 0; }
// triger a compile time error is someone try to call packet
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index) const;
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index,Index) const;
};
/** \returns an expression of the main diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* Example: \include MatrixBase_diagonal.cpp
* Output: \verbinclude MatrixBase_diagonal.out
*
* \sa class Diagonal */
template<typename Derived>
inline typename MatrixBase<Derived>::DiagonalReturnType
MatrixBase<Derived>::diagonal()
{
return derived();
}
/** This is the const version of diagonal(). */
template<typename Derived>
inline const typename MatrixBase<Derived>::ConstDiagonalReturnType
MatrixBase<Derived>::diagonal() const
{
return ConstDiagonalReturnType(derived());
}
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
* and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
*
* Example: \include MatrixBase_diagonal_int.cpp
* Output: \verbinclude MatrixBase_diagonal_int.out
*
* \sa MatrixBase::diagonal(), class Diagonal */
template<typename Derived>
inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Dynamic>::Type
MatrixBase<Derived>::diagonal(Index index)
{
return typename DiagonalIndexReturnType<Dynamic>::Type(derived(), index);
}
/** This is the const version of diagonal(Index). */
template<typename Derived>
inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Dynamic>::Type
MatrixBase<Derived>::diagonal(Index index) const
{
return typename ConstDiagonalIndexReturnType<Dynamic>::Type(derived(), index);
}
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
* and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
*
* Example: \include MatrixBase_diagonal_template_int.cpp
* Output: \verbinclude MatrixBase_diagonal_template_int.out
*
* \sa MatrixBase::diagonal(), class Diagonal */
template<typename Derived>
template<int Index>
inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Index>::Type
MatrixBase<Derived>::diagonal()
{
return derived();
}
/** This is the const version of diagonal<int>(). */
template<typename Derived>
template<int Index>
inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Index>::Type
MatrixBase<Derived>::diagonal() const
{
return derived();
}
#endif // EIGEN_DIAGONAL_H

View file

@ -0,0 +1,306 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DIAGONALMATRIX_H
#define EIGEN_DIAGONALMATRIX_H
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Derived>
class DiagonalBase : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
IsVectorAtCompileTime = 0,
Flags = 0
};
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
typedef DenseMatrixType DenseType;
typedef DiagonalMatrix<Scalar,DiagonalVectorType::SizeAtCompileTime,DiagonalVectorType::MaxSizeAtCompileTime> PlainObject;
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
DenseMatrixType toDenseMatrix() const { return derived(); }
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived> &other) const;
template<typename DenseDerived>
void addTo(MatrixBase<DenseDerived> &other) const
{ other.diagonal() += diagonal(); }
template<typename DenseDerived>
void subTo(MatrixBase<DenseDerived> &other) const
{ other.diagonal() -= diagonal(); }
inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
inline DiagonalVectorType& diagonal() { return derived().diagonal(); }
inline Index rows() const { return diagonal().size(); }
inline Index cols() const { return diagonal().size(); }
template<typename MatrixDerived>
const DiagonalProduct<MatrixDerived, Derived, OnTheLeft>
operator*(const MatrixBase<MatrixDerived> &matrix) const;
inline const DiagonalWrapper<CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType> >
inverse() const
{
return diagonal().cwiseInverse();
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
bool isApprox(const DiagonalBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
{
return diagonal().isApprox(other.diagonal(), precision);
}
template<typename OtherDerived>
bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
{
return toDenseMatrix().isApprox(other, precision);
}
#endif
};
template<typename Derived>
template<typename DenseDerived>
void DiagonalBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
{
other.setZero();
other.diagonal() = diagonal();
}
#endif
/** \class DiagonalMatrix
* \ingroup Core_Module
*
* \brief Represents a diagonal matrix with its storage
*
* \param _Scalar the type of coefficients
* \param SizeAtCompileTime the dimension of the matrix, or Dynamic
* \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults
* to SizeAtCompileTime. Most of the time, you do not need to specify it.
*
* \sa class DiagonalWrapper
*/
namespace internal {
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct traits<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
: traits<Matrix<_Scalar,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
typedef Dense StorageKind;
typedef DenseIndex Index;
enum {
Flags = LvalueBit
};
};
}
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
class DiagonalMatrix
: public DiagonalBase<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename internal::traits<DiagonalMatrix>::DiagonalVectorType DiagonalVectorType;
typedef const DiagonalMatrix& Nested;
typedef _Scalar Scalar;
typedef typename internal::traits<DiagonalMatrix>::StorageKind StorageKind;
typedef typename internal::traits<DiagonalMatrix>::Index Index;
#endif
protected:
DiagonalVectorType m_diagonal;
public:
/** const version of diagonal(). */
inline const DiagonalVectorType& diagonal() const { return m_diagonal; }
/** \returns a reference to the stored vector of diagonal coefficients. */
inline DiagonalVectorType& diagonal() { return m_diagonal; }
/** Default constructor without initialization */
inline DiagonalMatrix() {}
/** Constructs a diagonal matrix with given dimension */
inline DiagonalMatrix(Index dim) : m_diagonal(dim) {}
/** 2D constructor. */
inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {}
/** 3D constructor. */
inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {}
/** Copy constructor. */
template<typename OtherDerived>
inline DiagonalMatrix(const DiagonalBase<OtherDerived>& other) : m_diagonal(other.diagonal()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {}
#endif
/** generic constructor from expression of the diagonal coefficients */
template<typename OtherDerived>
explicit inline DiagonalMatrix(const MatrixBase<OtherDerived>& other) : m_diagonal(other)
{}
/** Copy operator. */
template<typename OtherDerived>
DiagonalMatrix& operator=(const DiagonalBase<OtherDerived>& other)
{
m_diagonal = other.diagonal();
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
DiagonalMatrix& operator=(const DiagonalMatrix& other)
{
m_diagonal = other.diagonal();
return *this;
}
#endif
/** Resizes to given size. */
inline void resize(Index size) { m_diagonal.resize(size); }
/** Sets all coefficients to zero. */
inline void setZero() { m_diagonal.setZero(); }
/** Resizes and sets all coefficients to zero. */
inline void setZero(Index size) { m_diagonal.setZero(size); }
/** Sets this matrix to be the identity matrix of the current size. */
inline void setIdentity() { m_diagonal.setOnes(); }
/** Sets this matrix to be the identity matrix of the given size. */
inline void setIdentity(Index size) { m_diagonal.setOnes(size); }
};
/** \class DiagonalWrapper
* \ingroup Core_Module
*
* \brief Expression of a diagonal matrix
*
* \param _DiagonalVectorType the type of the vector of diagonal coefficients
*
* This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients,
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal()
* and most of the time this is the only way that it is used.
*
* \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal()
*/
namespace internal {
template<typename _DiagonalVectorType>
struct traits<DiagonalWrapper<_DiagonalVectorType> >
{
typedef _DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::Index Index;
typedef typename DiagonalVectorType::StorageKind StorageKind;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
Flags = traits<DiagonalVectorType>::Flags & LvalueBit
};
};
}
template<typename _DiagonalVectorType>
class DiagonalWrapper
: public DiagonalBase<DiagonalWrapper<_DiagonalVectorType> >, internal::no_assignment_operator
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef _DiagonalVectorType DiagonalVectorType;
typedef DiagonalWrapper Nested;
#endif
/** Constructor from expression of diagonal coefficients to wrap. */
inline DiagonalWrapper(const DiagonalVectorType& diagonal) : m_diagonal(diagonal) {}
/** \returns a const reference to the wrapped expression of diagonal coefficients. */
const DiagonalVectorType& diagonal() const { return m_diagonal; }
protected:
const typename DiagonalVectorType::Nested m_diagonal;
};
/** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients
*
* \only_for_vectors
*
* Example: \include MatrixBase_asDiagonal.cpp
* Output: \verbinclude MatrixBase_asDiagonal.out
*
* \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()
**/
template<typename Derived>
inline const DiagonalWrapper<const Derived>
MatrixBase<Derived>::asDiagonal() const
{
return derived();
}
/** \returns true if *this is approximately equal to a diagonal matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isDiagonal.cpp
* Output: \verbinclude MatrixBase_isDiagonal.out
*
* \sa asDiagonal()
*/
template<typename Derived>
bool MatrixBase<Derived>::isDiagonal(RealScalar prec) const
{
if(cols() != rows()) return false;
RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
for(Index j = 0; j < cols(); ++j)
{
RealScalar absOnDiagonal = internal::abs(coeff(j,j));
if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
}
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < j; ++i)
{
if(!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
if(!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
}
return true;
}
#endif // EIGEN_DIAGONALMATRIX_H

View file

@ -0,0 +1,135 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DIAGONALPRODUCT_H
#define EIGEN_DIAGONALPRODUCT_H
namespace internal {
template<typename MatrixType, typename DiagonalType, int ProductOrder>
struct traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
: traits<MatrixType>
{
typedef typename scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
_StorageOrder = MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor,
_PacketOnDiag = !((int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft)
||(int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)),
_SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
// FIXME currently we need same types, but in the future the next rule should be the one
//_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagonalType::Flags)&PacketAccessBit))),
_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && ((!_PacketOnDiag) || (bool(int(DiagonalType::Flags)&PacketAccessBit))),
Flags = (HereditaryBits & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0),
CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost
};
};
}
template<typename MatrixType, typename DiagonalType, int ProductOrder>
class DiagonalProduct : internal::no_assignment_operator,
public MatrixBase<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
{
public:
typedef MatrixBase<DiagonalProduct> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(DiagonalProduct)
inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal)
: m_matrix(matrix), m_diagonal(diagonal)
{
eigen_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols()));
}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
const Scalar coeff(Index row, Index col) const
{
return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
{
enum {
StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor
};
const Index indexInDiagonalVector = ProductOrder == OnTheLeft ? row : col;
return packet_impl<LoadMode>(row,col,indexInDiagonalVector,typename internal::conditional<
((int(StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft)
||(int(StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)), internal::true_type, internal::false_type>::type());
}
protected:
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const
{
return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
internal::pset1<PacketScalar>(m_diagonal.diagonal().coeff(id)));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const
{
enum {
InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
DiagonalVectorPacketLoadMode = (LoadMode == Aligned && ((InnerSize%16) == 0)) ? Aligned : Unaligned
};
return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
m_diagonal.diagonal().template packet<DiagonalVectorPacketLoadMode>(id));
}
const typename MatrixType::Nested m_matrix;
const typename DiagonalType::Nested m_diagonal;
};
/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
*/
template<typename Derived>
template<typename DiagonalDerived>
inline const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
MatrixBase<Derived>::operator*(const DiagonalBase<DiagonalDerived> &diagonal) const
{
return DiagonalProduct<Derived, DiagonalDerived, OnTheRight>(derived(), diagonal.derived());
}
/** \returns the diagonal matrix product of \c *this by the matrix \a matrix.
*/
template<typename DiagonalDerived>
template<typename MatrixDerived>
inline const DiagonalProduct<MatrixDerived, DiagonalDerived, OnTheLeft>
DiagonalBase<DiagonalDerived>::operator*(const MatrixBase<MatrixDerived> &matrix) const
{
return DiagonalProduct<MatrixDerived, DiagonalDerived, OnTheLeft>(matrix.derived(), derived());
}
#endif // EIGEN_DIAGONALPRODUCT_H

View file

@ -0,0 +1,268 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H
namespace internal {
// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
// looking at the static assertions. Thus this is a trick to get better compile errors.
template<typename T, typename U,
// the NeedToTranspose condition here is taken straight from Assign.h
bool NeedToTranspose = T::IsVectorAtCompileTime
&& U::IsVectorAtCompileTime
&& ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
>
struct dot_nocheck
{
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
{
return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
}
};
template<typename T, typename U>
struct dot_nocheck<T, U, true>
{
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
{
return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
}
};
} // end namespace internal
/** \returns the dot product of *this with other.
*
* \only_for_vectors
*
* \note If the scalar type is complex numbers, then this function returns the hermitian
* (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
* second variable.
*
* \sa squaredNorm(), norm()
*/
template<typename Derived>
template<typename OtherDerived>
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
eigen_assert(size() == other.size());
return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
}
#ifdef EIGEN2_SUPPORT
/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
* (conjugating the second variable). Of course this only makes a difference in the complex case.
*
* This method is only available in EIGEN2_SUPPORT mode.
*
* \only_for_vectors
*
* \sa dot()
*/
template<typename Derived>
template<typename OtherDerived>
typename internal::traits<Derived>::Scalar
MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(size() == other.size());
return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
}
#endif
//---------- implementation of L2 norm and related functions ----------
/** \returns the squared \em l2 norm of *this, i.e., for vectors, the dot product of *this with itself.
*
* \sa dot(), norm()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
{
return internal::real((*this).cwiseAbs2().sum());
}
/** \returns the \em l2 norm of *this, i.e., for vectors, the square root of the dot product of *this with itself.
*
* \sa dot(), squaredNorm()
*/
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
return internal::sqrt(squaredNorm());
}
/** \returns an expression of the quotient of *this by its own norm.
*
* \only_for_vectors
*
* \sa norm(), normalize()
*/
template<typename Derived>
inline const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::normalized() const
{
typedef typename internal::nested<Derived>::type Nested;
typedef typename internal::remove_reference<Nested>::type _Nested;
_Nested n(derived());
return n / n.norm();
}
/** Normalizes the vector, i.e. divides it by its own norm.
*
* \only_for_vectors
*
* \sa norm(), normalized()
*/
template<typename Derived>
inline void MatrixBase<Derived>::normalize()
{
*this /= norm();
}
//---------- implementation of other norms ----------
namespace internal {
template<typename Derived, int p>
struct lpNorm_selector
{
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
inline static RealScalar run(const MatrixBase<Derived>& m)
{
return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
}
};
template<typename Derived>
struct lpNorm_selector<Derived, 1>
{
inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().sum();
}
};
template<typename Derived>
struct lpNorm_selector<Derived, 2>
{
inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.norm();
}
};
template<typename Derived>
struct lpNorm_selector<Derived, Infinity>
{
inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().maxCoeff();
}
};
} // end namespace internal
/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
* norm, that is the maximum of the absolute values of the coefficients of *this.
*
* \sa norm()
*/
template<typename Derived>
template<int p>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::lpNorm() const
{
return internal::lpNorm_selector<Derived, p>::run(*this);
}
//---------- implementation of isOrthogonal / isUnitary ----------
/** \returns true if *this is approximately orthogonal to \a other,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isOrthogonal.cpp
* Output: \verbinclude MatrixBase_isOrthogonal.out
*/
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, RealScalar prec) const
{
typename internal::nested<Derived,2>::type nested(derived());
typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
return internal::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}
/** \returns true if *this is approximately an unitary matrix,
* within the precision given by \a prec. In the case where the \a Scalar
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
*
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
* orthonormal basis.
*
* Example: \include MatrixBase_isUnitary.cpp
* Output: \verbinclude MatrixBase_isUnitary.out
*/
template<typename Derived>
bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
{
typename Derived::Nested nested(derived());
for(Index i = 0; i < cols(); ++i)
{
if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
return false;
for(Index j = 0; j < i; ++j)
if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
return false;
}
return true;
}
#endif // EIGEN_DOT_H

View file

@ -0,0 +1,172 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_EIGENBASE_H
#define EIGEN_EIGENBASE_H
/** Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T).
*
* In other words, an EigenBase object is an object that can be copied into a MatrixBase.
*
* Besides MatrixBase-derived classes, this also includes special matrix classes such as diagonal matrices, etc.
*
* Notice that this class is trivial, it is only used to disambiguate overloaded functions.
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived> struct EigenBase
{
// typedef typename internal::plain_matrix_type<Derived>::type PlainObject;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
/** \returns a reference to the derived object */
Derived& derived() { return *static_cast<Derived*>(this); }
/** \returns a const reference to the derived object */
const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<EigenBase*>(this)); }
inline const Derived& const_derived() const
{ return *static_cast<const Derived*>(this); }
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
inline Index rows() const { return derived().rows(); }
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
inline Index cols() const { return derived().cols(); }
/** \returns the number of coefficients, which is rows()*cols().
* \sa rows(), cols(), SizeAtCompileTime. */
inline Index size() const { return rows() * cols(); }
/** \internal Don't use it, but do the equivalent: \code dst = *this; \endcode */
template<typename Dest> inline void evalTo(Dest& dst) const
{ derived().evalTo(dst); }
/** \internal Don't use it, but do the equivalent: \code dst += *this; \endcode */
template<typename Dest> inline void addTo(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
typename Dest::PlainObject res(rows(),cols());
evalTo(res);
dst += res;
}
/** \internal Don't use it, but do the equivalent: \code dst -= *this; \endcode */
template<typename Dest> inline void subTo(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
typename Dest::PlainObject res(rows(),cols());
evalTo(res);
dst -= res;
}
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheRight(*this); \endcode */
template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
dst = dst * this->derived();
}
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheLeft(*this); \endcode */
template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
dst = this->derived() * dst;
}
};
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** \brief Copies the generic expression \a other into *this.
*
* \details The expression must provide a (templated) evalTo(Derived& dst) const
* function which does the actual job. In practice, this allows any user to write
* its own special matrix without having to modify MatrixBase
*
* \returns a reference to *this.
*/
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
{
other.derived().evalTo(derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
{
other.derived().addTo(derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
{
other.derived().subTo(derived());
return derived();
}
/** replaces \c *this by \c *this * \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
inline Derived&
MatrixBase<Derived>::operator*=(const EigenBase<OtherDerived> &other)
{
other.derived().applyThisOnTheRight(derived());
return derived();
}
/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=() */
template<typename Derived>
template<typename OtherDerived>
inline void MatrixBase<Derived>::applyOnTheRight(const EigenBase<OtherDerived> &other)
{
other.derived().applyThisOnTheRight(derived());
}
/** replaces \c *this by \c *this * \a other. */
template<typename Derived>
template<typename OtherDerived>
inline void MatrixBase<Derived>::applyOnTheLeft(const EigenBase<OtherDerived> &other)
{
other.derived().applyThisOnTheLeft(derived());
}
#endif // EIGEN_EIGENBASE_H

View file

@ -0,0 +1,151 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_FLAGGED_H
#define EIGEN_FLAGGED_H
/** \class Flagged
* \ingroup Core_Module
*
* \brief Expression with modified flags
*
* \param ExpressionType the type of the object of which we are modifying the flags
* \param Added the flags added to the expression
* \param Removed the flags removed from the expression (has priority over Added).
*
* This class represents an expression whose flags have been modified.
* It is the return type of MatrixBase::flagged()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::flagged()
*/
namespace internal {
template<typename ExpressionType, unsigned int Added, unsigned int Removed>
struct traits<Flagged<ExpressionType, Added, Removed> > : traits<ExpressionType>
{
enum { Flags = (ExpressionType::Flags | Added) & ~Removed };
};
}
template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged
: public MatrixBase<Flagged<ExpressionType, Added, Removed> >
{
public:
typedef MatrixBase<Flagged> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Flagged)
typedef typename internal::conditional<internal::must_nest_by_value<ExpressionType>::ret,
ExpressionType, const ExpressionType&>::type ExpressionTypeNested;
typedef typename ExpressionType::InnerIterator InnerIterator;
inline Flagged(const ExpressionType& matrix) : m_matrix(matrix) {}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
inline Index outerStride() const { return m_matrix.outerStride(); }
inline Index innerStride() const { return m_matrix.innerStride(); }
inline CoeffReturnType coeff(Index row, Index col) const
{
return m_matrix.coeff(row, col);
}
inline CoeffReturnType coeff(Index index) const
{
return m_matrix.coeff(index);
}
inline const Scalar& coeffRef(Index row, Index col) const
{
return m_matrix.const_cast_derived().coeffRef(row, col);
}
inline const Scalar& coeffRef(Index index) const
{
return m_matrix.const_cast_derived().coeffRef(index);
}
inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.const_cast_derived().coeffRef(row, col);
}
inline Scalar& coeffRef(Index index)
{
return m_matrix.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return m_matrix.template packet<LoadMode>(row, col);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(row, col, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_matrix.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
}
const ExpressionType& _expression() const { return m_matrix; }
template<typename OtherDerived>
typename ExpressionType::PlainObject solveTriangular(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
void solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const;
protected:
ExpressionTypeNested m_matrix;
};
/** \returns an expression of *this with added and removed flags
*
* This is mostly for internal use.
*
* \sa class Flagged
*/
template<typename Derived>
template<unsigned int Added,unsigned int Removed>
inline const Flagged<Derived, Added, Removed>
DenseBase<Derived>::flagged() const
{
return derived();
}
#endif // EIGEN_FLAGGED_H

View file

@ -0,0 +1,157 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_FORCEALIGNEDACCESS_H
#define EIGEN_FORCEALIGNEDACCESS_H
/** \class ForceAlignedAccess
* \ingroup Core_Module
*
* \brief Enforce aligned packet loads and stores regardless of what is requested
*
* \param ExpressionType the type of the object of which we are forcing aligned packet access
*
* This class is the return type of MatrixBase::forceAlignedAccess()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::forceAlignedAccess()
*/
namespace internal {
template<typename ExpressionType>
struct traits<ForceAlignedAccess<ExpressionType> > : public traits<ExpressionType>
{};
}
template<typename ExpressionType> class ForceAlignedAccess
: public internal::dense_xpr_base< ForceAlignedAccess<ExpressionType> >::type
{
public:
typedef typename internal::dense_xpr_base<ForceAlignedAccess>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess)
inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {}
inline Index rows() const { return m_expression.rows(); }
inline Index cols() const { return m_expression.cols(); }
inline Index outerStride() const { return m_expression.outerStride(); }
inline Index innerStride() const { return m_expression.innerStride(); }
inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return m_expression.template packet<Aligned>(row, col);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<Aligned>(row, col, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<Aligned>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<Aligned>(index, x);
}
operator const ExpressionType&() const { return m_expression; }
protected:
const ExpressionType& m_expression;
private:
ForceAlignedAccess& operator=(const ForceAlignedAccess&);
};
/** \returns an expression of *this with forced aligned access
* \sa forceAlignedAccessIf(),class ForceAlignedAccess
*/
template<typename Derived>
inline const ForceAlignedAccess<Derived>
MatrixBase<Derived>::forceAlignedAccess() const
{
return ForceAlignedAccess<Derived>(derived());
}
/** \returns an expression of *this with forced aligned access
* \sa forceAlignedAccessIf(), class ForceAlignedAccess
*/
template<typename Derived>
inline ForceAlignedAccess<Derived>
MatrixBase<Derived>::forceAlignedAccess()
{
return ForceAlignedAccess<Derived>(derived());
}
/** \returns an expression of *this with forced aligned access if \a Enable is true.
* \sa forceAlignedAccess(), class ForceAlignedAccess
*/
template<typename Derived>
template<bool Enable>
inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type
MatrixBase<Derived>::forceAlignedAccessIf() const
{
return derived();
}
/** \returns an expression of *this with forced aligned access if \a Enable is true.
* \sa forceAlignedAccess(), class ForceAlignedAccess
*/
template<typename Derived>
template<bool Enable>
inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type
MatrixBase<Derived>::forceAlignedAccessIf()
{
return derived();
}
#endif // EIGEN_FORCEALIGNEDACCESS_H

View file

@ -0,0 +1,940 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_FUNCTORS_H
#define EIGEN_FUNCTORS_H
namespace internal {
// associative functors:
/** \internal
* \brief Template functor to compute the sum of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
*/
template<typename Scalar> struct scalar_sum_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::padd(a,b); }
template<typename Packet>
EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
{ return internal::predux(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sum_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasAdd
};
};
/** \internal
* \brief Template functor to compute the product of two scalars
*
* \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
*/
template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
enum {
// TODO vectorize mixed product
Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
};
typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pmul(a,b); }
template<typename Packet>
EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
{ return internal::predux_mul(a); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
enum {
Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
};
};
/** \internal
* \brief Template functor to compute the conjugate product of two scalars
*
* This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
*/
template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
enum {
Conj = NumTraits<LhsScalar>::IsComplex
};
typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
{ return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
enum {
Cost = NumTraits<LhsScalar>::MulCost,
PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
};
};
/** \internal
* \brief Template functor to compute the min of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
*/
template<typename Scalar> struct scalar_min_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pmin(a,b); }
template<typename Packet>
EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
{ return internal::predux_min(a); }
};
template<typename Scalar>
struct functor_traits<scalar_min_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasMin
};
};
/** \internal
* \brief Template functor to compute the max of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
*/
template<typename Scalar> struct scalar_max_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pmax(a,b); }
template<typename Packet>
EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
{ return internal::predux_max(a); }
};
template<typename Scalar>
struct functor_traits<scalar_max_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasMax
};
};
/** \internal
* \brief Template functor to compute the hypot of two scalars
*
* \sa MatrixBase::stableNorm(), class Redux
*/
template<typename Scalar> struct scalar_hypot_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
// typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
{
Scalar p = std::max(_x, _y);
Scalar q = std::min(_x, _y);
Scalar qp = q/p;
return p * sqrt(Scalar(1) + qp*qp);
}
};
template<typename Scalar>
struct functor_traits<scalar_hypot_op<Scalar> > {
enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
};
// other binary functors:
/** \internal
* \brief Template functor to compute the difference of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::operator-
*/
template<typename Scalar> struct scalar_difference_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::psub(a,b); }
};
template<typename Scalar>
struct functor_traits<scalar_difference_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasSub
};
};
/** \internal
* \brief Template functor to compute the quotient of two scalars
*
* \sa class CwiseBinaryOp, Cwise::operator/()
*/
template<typename Scalar> struct scalar_quotient_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pdiv(a,b); }
};
template<typename Scalar>
struct functor_traits<scalar_quotient_op<Scalar> > {
enum {
Cost = 2 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasDiv
};
};
// unary functors:
/** \internal
* \brief Template functor to compute the opposite of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::operator-
*/
template<typename Scalar> struct scalar_opposite_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pnegate(a); }
};
template<typename Scalar>
struct functor_traits<scalar_opposite_op<Scalar> >
{ enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasNegate };
};
/** \internal
* \brief Template functor to compute the absolute value of a scalar
*
* \sa class CwiseUnaryOp, Cwise::abs
*/
template<typename Scalar> struct scalar_abs_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return abs(a); }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pabs(a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasAbs
};
};
/** \internal
* \brief Template functor to compute the squared absolute value of a scalar
*
* \sa class CwiseUnaryOp, Cwise::abs2
*/
template<typename Scalar> struct scalar_abs2_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return abs2(a); }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs2_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
/** \internal
* \brief Template functor to compute the conjugate of a complex value
*
* \sa class CwiseUnaryOp, MatrixBase::conjugate()
*/
template<typename Scalar> struct scalar_conjugate_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return conj(a); }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
};
template<typename Scalar>
struct functor_traits<scalar_conjugate_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
PacketAccess = packet_traits<Scalar>::HasConj
};
};
/** \internal
* \brief Template functor to cast a scalar to another type
*
* \sa class CwiseUnaryOp, MatrixBase::cast()
*/
template<typename Scalar, typename NewType>
struct scalar_cast_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
typedef NewType result_type;
EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
};
template<typename Scalar, typename NewType>
struct functor_traits<scalar_cast_op<Scalar,NewType> >
{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the real part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::real()
*/
template<typename Scalar>
struct scalar_real_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return real(a); }
};
template<typename Scalar>
struct functor_traits<scalar_real_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the imaginary part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::imag()
*/
template<typename Scalar>
struct scalar_imag_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return imag(a); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the real part of a complex as a reference
*
* \sa class CwiseUnaryOp, MatrixBase::real()
*/
template<typename Scalar>
struct scalar_real_ref_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return real_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_real_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the imaginary part of a complex as a reference
*
* \sa class CwiseUnaryOp, MatrixBase::imag()
*/
template<typename Scalar>
struct scalar_imag_ref_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return imag_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
*
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, Cwise::exp()
*/
template<typename Scalar> struct scalar_exp_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
inline const Scalar operator() (const Scalar& a) const { return exp(a); }
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
};
template<typename Scalar>
struct functor_traits<scalar_exp_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };
/** \internal
*
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, Cwise::log()
*/
template<typename Scalar> struct scalar_log_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
inline const Scalar operator() (const Scalar& a) const { return log(a); }
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
};
template<typename Scalar>
struct functor_traits<scalar_log_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
/** \internal
* \brief Template functor to multiply a scalar by a fixed other one
*
* \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
*/
/* NOTE why doing the pset1() in packetOp *is* an optimization ?
* indeed it seems better to declare m_other as a Packet and do the pset1() once
* in the constructor. However, in practice:
* - GCC does not like m_other as a Packet and generate a load every time it needs it
* - on the other hand GCC is able to moves the pset1() away the loop :)
* - simpler code ;)
* (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
*/
template<typename Scalar>
struct scalar_multiple_op {
typedef typename packet_traits<Scalar>::type Packet;
// FIXME default copy constructors seems bugged with std::complex<>
EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pmul(a, pset1<Packet>(m_other)); }
typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
};
template<typename Scalar>
struct functor_traits<scalar_multiple_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
template<typename Scalar1, typename Scalar2>
struct scalar_multiple2_op {
typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
};
template<typename Scalar1,typename Scalar2>
struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
{ enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
template<typename Scalar, bool IsInteger>
struct scalar_quotient1_impl {
typedef typename packet_traits<Scalar>::type Packet;
// FIXME default copy constructors seems bugged with std::complex<>
EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {}
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pmul(a, pset1<Packet>(m_other)); }
const Scalar m_other;
};
template<typename Scalar>
struct functor_traits<scalar_quotient1_impl<Scalar,false> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
template<typename Scalar>
struct scalar_quotient1_impl<Scalar,true> {
// FIXME default copy constructors seems bugged with std::complex<>
EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
};
template<typename Scalar>
struct functor_traits<scalar_quotient1_impl<Scalar,true> >
{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
/** \internal
* \brief Template functor to divide a scalar by a fixed other one
*
* This functor is used to implement the quotient of a matrix by
* a scalar where the scalar type is not necessarily a floating point type.
*
* \sa class CwiseUnaryOp, MatrixBase::operator/
*/
template<typename Scalar>
struct scalar_quotient1_op : scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger > {
EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other)
: scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger >(other) {}
};
template<typename Scalar>
struct functor_traits<scalar_quotient1_op<Scalar> >
: functor_traits<scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger> >
{};
// nullary functors
template<typename Scalar>
struct scalar_constant_op {
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
template<typename Index>
EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
template<typename Index>
EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
const Scalar m_other;
};
template<typename Scalar>
struct functor_traits<scalar_constant_op<Scalar> >
// FIXME replace this packet test by a safe one
{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
template<typename Scalar> struct scalar_identity_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
template<typename Index>
EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
};
template<typename Scalar>
struct functor_traits<scalar_identity_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;
// linear access for packet ops:
// 1) initialization
// base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
// 2) each step
// base += [size*step, ..., size*step]
template <typename Scalar>
struct linspaced_op_impl<Scalar,false>
{
typedef typename packet_traits<Scalar>::type Packet;
linspaced_op_impl(Scalar low, Scalar step) :
m_low(low), m_step(step),
m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
m_base(padd(pset1<Packet>(low),pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}
template<typename Index>
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
template<typename Index>
EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }
const Scalar m_low;
const Scalar m_step;
const Packet m_packetStep;
mutable Packet m_base;
};
// random access for packet ops:
// 1) each step
// [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
template <typename Scalar>
struct linspaced_op_impl<Scalar,true>
{
typedef typename packet_traits<Scalar>::type Packet;
linspaced_op_impl(Scalar low, Scalar step) :
m_low(low), m_step(step),
m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}
template<typename Index>
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
template<typename Index>
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
const Scalar m_low;
const Scalar m_step;
const Packet m_lowPacket;
const Packet m_stepPacket;
const Packet m_interPacket;
};
// ----- Linspace functor ----------------------------------------------------------------
// Forward declaration (we default to random access which does not really give
// us a speed gain when using packet access but it allows to use the functor in
// nested expressions).
template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
template <typename Scalar, bool RandomAccess> struct linspaced_op
{
typedef typename packet_traits<Scalar>::type Packet;
linspaced_op(Scalar low, Scalar high, int num_steps) : impl(low, (high-low)/(num_steps-1)) {}
template<typename Index>
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
// We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
// there row==0 and col is used for the actual iteration.
template<typename Index>
EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const
{
eigen_assert(col==0 || row==0);
return impl(col + row);
}
template<typename Index>
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }
// We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
// there row==0 and col is used for the actual iteration.
template<typename Index>
EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
{
eigen_assert(col==0 || row==0);
return impl(col + row);
}
// This proxy object handles the actual required temporaries, the different
// implementations (random vs. sequential access) as well as the
// correct piping to size 2/4 packet operations.
const linspaced_op_impl<Scalar,RandomAccess> impl;
};
// all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
// to indicate whether a functor allows linear access, just always answering 'yes' except for
// scalar_identity_op.
// FIXME move this to functor_traits adding a functor_default
template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
// in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
// where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
// FIXME move this to functor_traits adding a functor_default
template<typename Functor> struct functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
/** \internal
* \brief Template functor to add a scalar to a fixed other one
* \sa class CwiseUnaryOp, Array::operator+
*/
/* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
template<typename Scalar>
struct scalar_add_op {
typedef typename packet_traits<Scalar>::type Packet;
// FIXME default copy constructors seems bugged with std::complex<>
inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
inline scalar_add_op(const Scalar& other) : m_other(other) { }
inline Scalar operator() (const Scalar& a) const { return a + m_other; }
inline const Packet packetOp(const Packet& a) const
{ return internal::padd(a, pset1<Packet>(m_other)); }
const Scalar m_other;
};
template<typename Scalar>
struct functor_traits<scalar_add_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };
/** \internal
* \brief Template functor to compute the square root of a scalar
* \sa class CwiseUnaryOp, Cwise::sqrt()
*/
template<typename Scalar> struct scalar_sqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
inline const Scalar operator() (const Scalar& a) const { return sqrt(a); }
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sqrt_op<Scalar> >
{ enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasSqrt
};
};
/** \internal
* \brief Template functor to compute the cosine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::cos()
*/
template<typename Scalar> struct scalar_cos_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
inline Scalar operator() (const Scalar& a) const { return cos(a); }
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_cos_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasCos
};
};
/** \internal
* \brief Template functor to compute the sine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::sin()
*/
template<typename Scalar> struct scalar_sin_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
inline const Scalar operator() (const Scalar& a) const { return sin(a); }
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sin_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasSin
};
};
/** \internal
* \brief Template functor to compute the tan of a scalar
* \sa class CwiseUnaryOp, ArrayBase::tan()
*/
template<typename Scalar> struct scalar_tan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
inline const Scalar operator() (const Scalar& a) const { return tan(a); }
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_tan_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasTan
};
};
/** \internal
* \brief Template functor to compute the arc cosine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::acos()
*/
template<typename Scalar> struct scalar_acos_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
inline const Scalar operator() (const Scalar& a) const { return acos(a); }
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_acos_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasACos
};
};
/** \internal
* \brief Template functor to compute the arc sine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::asin()
*/
template<typename Scalar> struct scalar_asin_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
inline const Scalar operator() (const Scalar& a) const { return acos(a); }
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_asin_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasASin
};
};
/** \internal
* \brief Template functor to raise a scalar to a power
* \sa class CwiseUnaryOp, Cwise::pow
*/
template<typename Scalar>
struct scalar_pow_op {
// FIXME default copy constructors seems bugged with std::complex<>
inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
inline Scalar operator() (const Scalar& a) const { return internal::pow(a, m_exponent); }
const Scalar m_exponent;
};
template<typename Scalar>
struct functor_traits<scalar_pow_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
/** \internal
* \brief Template functor to compute the inverse of a scalar
* \sa class CwiseUnaryOp, Cwise::inverse()
*/
template<typename Scalar>
struct scalar_inverse_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
template<typename Packet>
inline const Packet packetOp(const Packet& a) const
{ return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
};
template<typename Scalar>
struct functor_traits<scalar_inverse_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
/** \internal
* \brief Template functor to compute the square of a scalar
* \sa class CwiseUnaryOp, Cwise::square()
*/
template<typename Scalar>
struct scalar_square_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
inline Scalar operator() (const Scalar& a) const { return a*a; }
template<typename Packet>
inline const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_square_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
/** \internal
* \brief Template functor to compute the cube of a scalar
* \sa class CwiseUnaryOp, Cwise::cube()
*/
template<typename Scalar>
struct scalar_cube_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
inline Scalar operator() (const Scalar& a) const { return a*a*a; }
template<typename Packet>
inline const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,pmul(a,a)); }
};
template<typename Scalar>
struct functor_traits<scalar_cube_op<Scalar> >
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
// default functor traits for STL functors:
template<typename T>
struct functor_traits<std::multiplies<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::divides<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::plus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::minus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::negate<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::logical_or<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::logical_and<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::logical_not<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::greater<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::less<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::greater_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::less_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::not_equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::binder2nd<T> >
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::binder1st<T> >
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::unary_negate<T> >
{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::binary_negate<T> >
{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
#ifdef EIGEN_STDEXT_SUPPORT
template<typename T0,typename T1>
struct functor_traits<std::project1st<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct functor_traits<std::project2nd<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct functor_traits<std::select2nd<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct functor_traits<std::select1st<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct functor_traits<std::unary_compose<T0,T1> >
{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
template<typename T0,typename T1,typename T2>
struct functor_traits<std::binary_compose<T0,T1,T2> >
{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
#endif // EIGEN_STDEXT_SUPPORT
// allow to add new functors and specializations of functor_traits from outside Eigen.
// this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
#ifdef EIGEN_FUNCTORS_PLUGIN
#include EIGEN_FUNCTORS_PLUGIN
#endif
} // end namespace internal
#endif // EIGEN_FUNCTORS_H

View file

@ -0,0 +1,160 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_FUZZY_H
#define EIGEN_FUZZY_H
namespace internal
{
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isApprox_selector
{
static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar prec)
{
const typename internal::nested<Derived,2>::type nested(x);
const typename internal::nested<OtherDerived,2>::type otherNested(y);
return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * std::min(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
}
};
template<typename Derived, typename OtherDerived>
struct isApprox_selector<Derived, OtherDerived, true>
{
static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar)
{
return x.matrix() == y.matrix();
}
};
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_object_selector
{
static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar prec)
{
return x.cwiseAbs2().sum() <= abs2(prec) * y.cwiseAbs2().sum();
}
};
template<typename Derived, typename OtherDerived>
struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
{
static bool run(const Derived& x, const OtherDerived&, typename Derived::RealScalar)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_scalar_selector
{
static bool run(const Derived& x, const typename Derived::RealScalar& y, typename Derived::RealScalar prec)
{
return x.cwiseAbs2().sum() <= abs2(prec * y);
}
};
template<typename Derived>
struct isMuchSmallerThan_scalar_selector<Derived, true>
{
static bool run(const Derived& x, const typename Derived::RealScalar&, typename Derived::RealScalar)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
} // end namespace internal
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
* are considered to be approximately equal within precision \f$ p \f$ if
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
* L2 norm).
*
* \note Because of the multiplicativeness of this comparison, one can't use this function
* to check whether \c *this is approximately equal to the zero matrix or vector.
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
* or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
* RealScalar&, RealScalar) instead.
*
* \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool DenseBase<Derived>::isApprox(
const DenseBase<OtherDerived>& other,
RealScalar prec
) const
{
return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
/** \returns \c true if the norm of \c *this is much smaller than \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
*
* For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
* the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
* of a reference matrix of same dimensions.
*
* \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
*/
template<typename Derived>
bool DenseBase<Derived>::isMuchSmallerThan(
const typename NumTraits<Scalar>::Real& other,
RealScalar prec
) const
{
return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
}
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm.
*
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool DenseBase<Derived>::isMuchSmallerThan(
const DenseBase<OtherDerived>& other,
RealScalar prec
) const
{
return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
#endif // EIGEN_FUZZY_H

View file

@ -0,0 +1,339 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_GENERIC_PACKET_MATH_H
#define EIGEN_GENERIC_PACKET_MATH_H
namespace internal {
/** \internal
* \file GenericPacketMath.h
*
* Default implementation for types not supported by the vectorization.
* In practice these functions are provided to make easier the writing
* of generic vectorized code.
*/
#ifndef EIGEN_DEBUG_ALIGNED_LOAD
#define EIGEN_DEBUG_ALIGNED_LOAD
#endif
#ifndef EIGEN_DEBUG_UNALIGNED_LOAD
#define EIGEN_DEBUG_UNALIGNED_LOAD
#endif
#ifndef EIGEN_DEBUG_ALIGNED_STORE
#define EIGEN_DEBUG_ALIGNED_STORE
#endif
#ifndef EIGEN_DEBUG_UNALIGNED_STORE
#define EIGEN_DEBUG_UNALIGNED_STORE
#endif
struct default_packet_traits
{
enum {
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasNegate = 1,
HasAbs = 1,
HasAbs2 = 1,
HasMin = 1,
HasMax = 1,
HasConj = 1,
HasSetLinear = 1,
HasDiv = 0,
HasSqrt = 0,
HasExp = 0,
HasLog = 0,
HasPow = 0,
HasSin = 0,
HasCos = 0,
HasTan = 0,
HasASin = 0,
HasACos = 0,
HasATan = 0
};
};
template<typename T> struct packet_traits : default_packet_traits
{
typedef T type;
enum {
Vectorizable = 0,
size = 1,
AlignedOnScalar = 0
};
enum {
HasAdd = 0,
HasSub = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0
};
};
/** \internal \returns a + b (coeff-wise) */
template<typename Packet> inline Packet
padd(const Packet& a,
const Packet& b) { return a+b; }
/** \internal \returns a - b (coeff-wise) */
template<typename Packet> inline Packet
psub(const Packet& a,
const Packet& b) { return a-b; }
/** \internal \returns -a (coeff-wise) */
template<typename Packet> inline Packet
pnegate(const Packet& a) { return -a; }
/** \internal \returns conj(a) (coeff-wise) */
template<typename Packet> inline Packet
pconj(const Packet& a) { return conj(a); }
/** \internal \returns a * b (coeff-wise) */
template<typename Packet> inline Packet
pmul(const Packet& a,
const Packet& b) { return a*b; }
/** \internal \returns a / b (coeff-wise) */
template<typename Packet> inline Packet
pdiv(const Packet& a,
const Packet& b) { return a/b; }
/** \internal \returns the min of \a a and \a b (coeff-wise) */
template<typename Packet> inline Packet
pmin(const Packet& a,
const Packet& b) { return std::min(a, b); }
/** \internal \returns the max of \a a and \a b (coeff-wise) */
template<typename Packet> inline Packet
pmax(const Packet& a,
const Packet& b) { return std::max(a, b); }
/** \internal \returns the absolute value of \a a */
template<typename Packet> inline Packet
pabs(const Packet& a) { return abs(a); }
/** \internal \returns the bitwise and of \a a and \a b */
template<typename Packet> inline Packet
pand(const Packet& a, const Packet& b) { return a & b; }
/** \internal \returns the bitwise or of \a a and \a b */
template<typename Packet> inline Packet
por(const Packet& a, const Packet& b) { return a | b; }
/** \internal \returns the bitwise xor of \a a and \a b */
template<typename Packet> inline Packet
pxor(const Packet& a, const Packet& b) { return a ^ b; }
/** \internal \returns the bitwise andnot of \a a and \a b */
template<typename Packet> inline Packet
pandnot(const Packet& a, const Packet& b) { return a & (!b); }
/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */
template<typename Packet> inline Packet
pload(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet version of \a *from, (un-aligned load) */
template<typename Packet> inline Packet
ploadu(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with elements of \a *from duplicated, e.g.: (from[0],from[0],from[1],from[1]) */
template<typename Packet> inline Packet
ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
template<typename Packet> inline Packet
pset1(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
template<typename Scalar> inline typename packet_traits<Scalar>::type
plset(const Scalar& a) { return a; }
/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
template<typename Scalar, typename Packet> inline void pstore(Scalar* to, const Packet& from)
{ (*to) = from; }
/** \internal copy the packet \a from to \a *to, (un-aligned store) */
template<typename Scalar, typename Packet> inline void pstoreu(Scalar* to, const Packet& from)
{ (*to) = from; }
/** \internal tries to do cache prefetching of \a addr */
template<typename Scalar> inline void prefetch(const Scalar* addr)
{
#if !defined(_MSC_VER)
__builtin_prefetch(addr);
#endif
}
/** \internal \returns the first element of a packet */
template<typename Packet> inline typename unpacket_traits<Packet>::type pfirst(const Packet& a)
{ return a; }
/** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */
template<typename Packet> inline Packet
preduxp(const Packet* vecs) { return vecs[0]; }
/** \internal \returns the sum of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux(const Packet& a)
{ return a; }
/** \internal \returns the product of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a)
{ return a; }
/** \internal \returns the min of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_min(const Packet& a)
{ return a; }
/** \internal \returns the max of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_max(const Packet& a)
{ return a; }
/** \internal \returns the reversed elements of \a a*/
template<typename Packet> inline Packet preverse(const Packet& a)
{ return a; }
/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */
template<typename Packet> inline Packet pcplxflip(const Packet& a)
{ return Packet(imag(a),real(a)); }
/**************************
* Special math functions
***************************/
/** \internal \returns the sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psin(const Packet& a) { return sin(a); }
/** \internal \returns the cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcos(const Packet& a) { return cos(a); }
/** \internal \returns the tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptan(const Packet& a) { return tan(a); }
/** \internal \returns the arc sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pasin(const Packet& a) { return asin(a); }
/** \internal \returns the arc cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pacos(const Packet& a) { return acos(a); }
/** \internal \returns the exp of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexp(const Packet& a) { return exp(a); }
/** \internal \returns the log of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog(const Packet& a) { return log(a); }
/** \internal \returns the square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psqrt(const Packet& a) { return sqrt(a); }
/***************************************************************************
* The following functions might not have to be overwritten for vectorized types
***************************************************************************/
/** \internal copy a packet with constant coeficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */
// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type)
template<typename Packet>
inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename unpacket_traits<Packet>::type& a)
{
pstore(to, pset1<Packet>(a));
}
/** \internal \returns a * b + c (coeff-wise) */
template<typename Packet> inline Packet
pmadd(const Packet& a,
const Packet& b,
const Packet& c)
{ return padd(pmul(a, b),c); }
/** \internal \returns a packet version of \a *from.
* \If LoadMode equals Aligned, \a from must be 16 bytes aligned */
template<typename Packet, int LoadMode>
inline Packet ploadt(const typename unpacket_traits<Packet>::type* from)
{
if(LoadMode == Aligned)
return pload<Packet>(from);
else
return ploadu<Packet>(from);
}
/** \internal copy the packet \a from to \a *to.
* If StoreMode equals Aligned, \a to must be 16 bytes aligned */
template<typename Scalar, typename Packet, int LoadMode>
inline void pstoret(Scalar* to, const Packet& from)
{
if(LoadMode == Aligned)
pstore(to, from);
else
pstoreu(to, from);
}
/** \internal default implementation of palign() allowing partial specialization */
template<int Offset,typename PacketType>
struct palign_impl
{
// by default data are aligned, so there is nothing to be done :)
inline static void run(PacketType&, const PacketType&) {}
};
/** \internal update \a first using the concatenation of the \a Offset last elements
* of \a first and packet_size minus \a Offset first elements of \a second */
template<int Offset,typename PacketType>
inline void palign(PacketType& first, const PacketType& second)
{
palign_impl<Offset,PacketType>::run(first,second);
}
/***************************************************************************
* Fast complex products (GCC generates a function call which is very slow)
***************************************************************************/
template<> inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b)
{ return std::complex<float>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
template<> inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b)
{ return std::complex<double>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
} // end namespace internal
#endif // EIGEN_GENERIC_PACKET_MATH_H

View file

@ -0,0 +1,95 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_GLOBAL_FUNCTIONS_H
#define EIGEN_GLOBAL_FUNCTIONS_H
#define EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(NAME,FUNCTOR) \
template<typename Derived> \
inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
NAME(const Eigen::ArrayBase<Derived>& x) { \
return x.derived(); \
}
#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \
\
template<typename Derived> \
struct NAME##_retval<ArrayBase<Derived> > \
{ \
typedef const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> type; \
}; \
template<typename Derived> \
struct NAME##_impl<ArrayBase<Derived> > \
{ \
static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
{ \
return x.derived(); \
} \
};
namespace std
{
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(real,scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(imag,scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(sin,scalar_sin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(cos,scalar_cos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(asin,scalar_asin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(acos,scalar_acos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(tan,scalar_tan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(exp,scalar_exp_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(log,scalar_log_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(abs,scalar_abs_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(sqrt,scalar_sqrt_op)
template<typename Derived>
inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar>, const Derived>
pow(const Eigen::ArrayBase<Derived>& x, const typename Derived::Scalar& exponent) { \
return x.derived().pow(exponent); \
}
}
namespace Eigen
{
namespace internal
{
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(imag,scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(sin,scalar_sin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(cos,scalar_cos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(asin,scalar_asin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(acos,scalar_acos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(tan,scalar_tan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(exp,scalar_exp_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(log,scalar_log_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs,scalar_abs_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(sqrt,scalar_sqrt_op)
}
}
// TODO: cleanly disable those functions that are not supported on Array (internal::real_ref, internal::random, internal::isApprox...)
#endif // EIGEN_GLOBAL_FUNCTIONS_H

View file

@ -0,0 +1,259 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_IO_H
#define EIGEN_IO_H
enum { DontAlignCols = 1 };
enum { StreamPrecision = -1,
FullPrecision = -2 };
namespace internal {
template<typename Derived>
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt);
}
/** \class IOFormat
* \ingroup Core_Module
*
* \brief Stores a set of parameters controlling the way matrices are printed
*
* List of available parameters:
* - \b precision number of digits for floating point values, or one of the special constants \c StreamPrecision and \c FullPrecision.
* The default is the special value \c StreamPrecision which means to use the
* stream's own precision setting, as set for instance using \c cout.precision(3). The other special value
* \c FullPrecision means that the number of digits will be computed to match the full precision of each floating-point
* type.
* - \b flags an OR-ed combination of flags, the default value is 0, the only currently available flag is \c DontAlignCols which
* allows to disable the alignment of columns, resulting in faster code.
* - \b coeffSeparator string printed between two coefficients of the same row
* - \b rowSeparator string printed between two rows
* - \b rowPrefix string printed at the beginning of each row
* - \b rowSuffix string printed at the end of each row
* - \b matPrefix string printed at the beginning of the matrix
* - \b matSuffix string printed at the end of the matrix
*
* Example: \include IOFormat.cpp
* Output: \verbinclude IOFormat.out
*
* \sa DenseBase::format(), class WithFormat
*/
struct IOFormat
{
/** Default contructor, see class IOFormat for the meaning of the parameters */
IOFormat(int _precision = StreamPrecision, int _flags = 0,
const std::string& _coeffSeparator = " ",
const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="",
const std::string& _matPrefix="", const std::string& _matSuffix="")
: matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator),
coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags)
{
rowSpacer = "";
int i = int(matSuffix.length())-1;
while (i>=0 && matSuffix[i]!='\n')
{
rowSpacer += ' ';
i--;
}
}
std::string matPrefix, matSuffix;
std::string rowPrefix, rowSuffix, rowSeparator, rowSpacer;
std::string coeffSeparator;
int precision;
int flags;
};
/** \class WithFormat
* \ingroup Core_Module
*
* \brief Pseudo expression providing matrix output with given format
*
* \param ExpressionType the type of the object on which IO stream operations are performed
*
* This class represents an expression with stream operators controlled by a given IOFormat.
* It is the return type of DenseBase::format()
* and most of the time this is the only way it is used.
*
* See class IOFormat for some examples.
*
* \sa DenseBase::format(), class IOFormat
*/
template<typename ExpressionType>
class WithFormat
{
public:
WithFormat(const ExpressionType& matrix, const IOFormat& format)
: m_matrix(matrix), m_format(format)
{}
friend std::ostream & operator << (std::ostream & s, const WithFormat& wf)
{
return internal::print_matrix(s, wf.m_matrix.eval(), wf.m_format);
}
protected:
const typename ExpressionType::Nested m_matrix;
IOFormat m_format;
};
/** \returns a WithFormat proxy object allowing to print a matrix the with given
* format \a fmt.
*
* See class IOFormat for some examples.
*
* \sa class IOFormat, class WithFormat
*/
template<typename Derived>
inline const WithFormat<Derived>
DenseBase<Derived>::format(const IOFormat& fmt) const
{
return WithFormat<Derived>(derived(), fmt);
}
namespace internal {
template<typename Scalar, bool IsInteger>
struct significant_decimals_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline int run()
{
return cast<RealScalar,int>(std::ceil(-log(NumTraits<RealScalar>::epsilon())/log(RealScalar(10))));
}
};
template<typename Scalar>
struct significant_decimals_default_impl<Scalar, true>
{
static inline int run()
{
return 0;
}
};
template<typename Scalar>
struct significant_decimals_impl
: significant_decimals_default_impl<Scalar, NumTraits<Scalar>::IsInteger>
{};
/** \internal
* print the matrix \a _m to the output stream \a s using the output format \a fmt */
template<typename Derived>
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt)
{
if(_m.size() == 0)
{
s << fmt.matPrefix << fmt.matSuffix;
return s;
}
const typename Derived::Nested m = _m;
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
Index width = 0;
std::streamsize explicit_precision;
if(fmt.precision == StreamPrecision)
{
explicit_precision = 0;
}
else if(fmt.precision == FullPrecision)
{
if (NumTraits<Scalar>::IsInteger)
{
explicit_precision = 0;
}
else
{
explicit_precision = significant_decimals_impl<Scalar>::run();
}
}
else
{
explicit_precision = fmt.precision;
}
bool align_cols = !(fmt.flags & DontAlignCols);
if(align_cols)
{
// compute the largest width
for(Index j = 1; j < m.cols(); ++j)
for(Index i = 0; i < m.rows(); ++i)
{
std::stringstream sstr;
if(explicit_precision) sstr.precision(explicit_precision);
sstr << m.coeff(i,j);
width = std::max<Index>(width, Index(sstr.str().length()));
}
}
std::streamsize old_precision = 0;
if(explicit_precision) old_precision = s.precision(explicit_precision);
s << fmt.matPrefix;
for(Index i = 0; i < m.rows(); ++i)
{
if (i)
s << fmt.rowSpacer;
s << fmt.rowPrefix;
if(width) s.width(width);
s << m.coeff(i, 0);
for(Index j = 1; j < m.cols(); ++j)
{
s << fmt.coeffSeparator;
if (width) s.width(width);
s << m.coeff(i, j);
}
s << fmt.rowSuffix;
if( i < m.rows() - 1)
s << fmt.rowSeparator;
}
s << fmt.matSuffix;
if(explicit_precision) s.precision(old_precision);
return s;
}
} // end namespace internal
/** \relates DenseBase
*
* Outputs the matrix, to the given stream.
*
* If you wish to print the matrix with a format different than the default, use DenseBase::format().
*
* It is also possible to change the default format by defining EIGEN_DEFAULT_IO_FORMAT before including Eigen headers.
* If not defined, this will automatically be defined to Eigen::IOFormat(), that is the Eigen::IOFormat with default parameters.
*
* \sa DenseBase::format()
*/
template<typename Derived>
std::ostream & operator <<
(std::ostream & s,
const DenseBase<Derived> & m)
{
return internal::print_matrix(s, m.eval(), EIGEN_DEFAULT_IO_FORMAT);
}
#endif // EIGEN_IO_H

View file

@ -0,0 +1,205 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MAP_H
#define EIGEN_MAP_H
/** \class Map
* \ingroup Core_Module
*
* \brief A matrix or vector expression mapping an existing array of data.
*
* \param PlainObjectType the equivalent matrix type of the mapped data
* \param MapOptions specifies whether the pointer is \c Aligned, or \c Unaligned.
* The default is \c Unaligned.
* \param StrideType optionnally specifies strides. By default, Map assumes the memory layout
* of an ordinary, contiguous array. This can be overridden by specifying strides.
* The type passed here must be a specialization of the Stride template, see examples below.
*
* This class represents a matrix or vector expression mapping an existing array of data.
* It can be used to let Eigen interface without any overhead with non-Eigen data structures,
* such as plain C arrays or structures from other libraries. By default, it assumes that the
* data is laid out contiguously in memory. You can however override this by explicitly specifying
* inner and outer strides.
*
* Here's an example of simply mapping a contiguous array as a \ref TopicStorageOrders "column-major" matrix:
* \include Map_simple.cpp
* Output: \verbinclude Map_simple.out
*
* If you need to map non-contiguous arrays, you can do so by specifying strides:
*
* Here's an example of mapping an array as a vector, specifying an inner stride, that is, the pointer
* increment between two consecutive coefficients. Here, we're specifying the inner stride as a compile-time
* fixed value.
* \include Map_inner_stride.cpp
* Output: \verbinclude Map_inner_stride.out
*
* Here's an example of mapping an array while specifying an outer stride. Here, since we're mapping
* as a column-major matrix, 'outer stride' means the pointer increment between two consecutive columns.
* Here, we're specifying the outer stride as a runtime parameter. Note that here \c OuterStride<> is
* a short version of \c OuterStride<Dynamic> because the default template parameter of OuterStride
* is \c Dynamic
* \include Map_outer_stride.cpp
* Output: \verbinclude Map_outer_stride.out
*
* For more details and for an example of specifying both an inner and an outer stride, see class Stride.
*
* \b Tip: to change the array of data mapped by a Map object, you can use the C++
* placement new syntax:
*
* Example: \include Map_placement_new.cpp
* Output: \verbinclude Map_placement_new.out
*
* This class is the return type of Matrix::Map() but can also be used directly.
*
* \sa Matrix::Map(), \ref TopicStorageOrders
*/
namespace internal {
template<typename PlainObjectType, int MapOptions, typename StrideType>
struct traits<Map<PlainObjectType, MapOptions, StrideType> >
: public traits<PlainObjectType>
{
typedef traits<PlainObjectType> TraitsBase;
typedef typename PlainObjectType::Index Index;
typedef typename PlainObjectType::Scalar Scalar;
enum {
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
? int(PlainObjectType::InnerStrideAtCompileTime)
: int(StrideType::InnerStrideAtCompileTime),
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? int(PlainObjectType::OuterStrideAtCompileTime)
: int(StrideType::OuterStrideAtCompileTime),
HasNoInnerStride = InnerStrideAtCompileTime == 1,
HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
HasNoStride = HasNoInnerStride && HasNoOuterStride,
IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned),
IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
KeepsPacketAccess = bool(HasNoInnerStride)
&& ( bool(IsDynamicSize)
|| HasNoOuterStride
|| ( OuterStrideAtCompileTime!=Dynamic
&& ((static_cast<int>(sizeof(Scalar))*OuterStrideAtCompileTime)%16)==0 ) ),
Flags0 = TraitsBase::Flags,
Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit),
Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime))
? int(Flags1) : int(Flags1 & ~LinearAccessBit),
Flags3 = is_lvalue<PlainObjectType>::value ? int(Flags2) : (int(Flags2) & ~LvalueBit),
Flags = KeepsPacketAccess ? int(Flags3) : (int(Flags3) & ~PacketAccessBit)
};
private:
enum { Options }; // Expressions don't have Options
};
}
template<typename PlainObjectType, int MapOptions, typename StrideType> class Map
: public MapBase<Map<PlainObjectType, MapOptions, StrideType> >
{
public:
typedef MapBase<Map> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Map)
typedef typename Base::PointerType PointerType;
#if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API
typedef const Scalar* PointerArgType;
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast<PointerType>(ptr); }
#else
typedef PointerType PointerArgType;
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; }
#endif
inline Index innerStride() const
{
return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
}
inline Index outerStride() const
{
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
: IsVectorAtCompileTime ? this->size()
: int(Flags)&RowMajorBit ? this->cols()
: this->rows();
}
/** Constructor in the fixed-size case.
*
* \param data pointer to the array to map
* \param stride optional Stride object, passing the strides.
*/
inline Map(PointerArgType data, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(data)), m_stride(stride)
{
PlainObjectType::Base::_check_template_params();
}
/** Constructor in the dynamic-size vector case.
*
* \param data pointer to the array to map
* \param size the size of the vector expression
* \param stride optional Stride object, passing the strides.
*/
inline Map(PointerArgType data, Index size, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(data), size), m_stride(stride)
{
PlainObjectType::Base::_check_template_params();
}
/** Constructor in the dynamic-size matrix case.
*
* \param data pointer to the array to map
* \param rows the number of rows of the matrix expression
* \param cols the number of columns of the matrix expression
* \param stride optional Stride object, passing the strides.
*/
inline Map(PointerArgType data, Index rows, Index cols, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(data), rows, cols), m_stride(stride)
{
PlainObjectType::Base::_check_template_params();
}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
protected:
StrideType m_stride;
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
inline Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
::Array(const Scalar *data)
{
this->_set_noalias(Eigen::Map<const Array>(data));
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
inline Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
::Matrix(const Scalar *data)
{
this->_set_noalias(Eigen::Map<const Matrix>(data));
}
#endif // EIGEN_MAP_H

View file

@ -0,0 +1,255 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MAPBASE_H
#define EIGEN_MAPBASE_H
#define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \
EIGEN_STATIC_ASSERT((int(internal::traits<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT)
/** \class MapBase
* \ingroup Core_Module
*
* \brief Base class for Map and Block expression with direct access
*
* \sa class Map, class Block
*/
template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
: public internal::dense_xpr_base<Derived>::type
{
public:
typedef typename internal::dense_xpr_base<Derived>::type Base;
enum {
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
SizeAtCompileTime = Base::SizeAtCompileTime
};
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename internal::conditional<
bool(internal::is_lvalue<Derived>::value),
Scalar *,
const Scalar *>::type
PointerType;
using Base::derived;
// using Base::RowsAtCompileTime;
// using Base::ColsAtCompileTime;
// using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::IsRowMajor;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::lazyAssign;
using Base::eval;
using Base::innerStride;
using Base::outerStride;
using Base::rowStride;
using Base::colStride;
// bug 217 - compile error on ICC 11.1
using Base::operator=;
typedef typename Base::CoeffReturnType CoeffReturnType;
inline Index rows() const { return m_rows.value(); }
inline Index cols() const { return m_cols.value(); }
/** Returns a pointer to the first coefficient of the matrix or vector.
*
* \note When addressing this data, make sure to honor the strides returned by innerStride() and outerStride().
*
* \sa innerStride(), outerStride()
*/
inline const Scalar* data() const { return m_data; }
inline const Scalar& coeff(Index row, Index col) const
{
return m_data[col * colStride() + row * rowStride()];
}
inline const Scalar& coeff(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return m_data[index * innerStride()];
}
inline const Scalar& coeffRef(Index row, Index col) const
{
return this->m_data[col * colStride() + row * rowStride()];
}
inline const Scalar& coeffRef(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return this->m_data[index * innerStride()];
}
template<int LoadMode>
inline PacketScalar packet(Index row, Index col) const
{
return internal::ploadt<PacketScalar, LoadMode>
(m_data + (col * colStride() + row * rowStride()));
}
template<int LoadMode>
inline PacketScalar packet(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return internal::ploadt<PacketScalar, LoadMode>(m_data + index * innerStride());
}
inline MapBase(PointerType data) : m_data(data), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
checkSanity();
}
inline MapBase(PointerType data, Index size)
: m_data(data),
m_rows(RowsAtCompileTime == Dynamic ? size : Index(RowsAtCompileTime)),
m_cols(ColsAtCompileTime == Dynamic ? size : Index(ColsAtCompileTime))
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
eigen_assert(size >= 0);
eigen_assert(data == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
checkSanity();
}
inline MapBase(PointerType data, Index rows, Index cols)
: m_data(data), m_rows(rows), m_cols(cols)
{
eigen_assert( (data == 0)
|| ( rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)));
checkSanity();
}
protected:
void checkSanity() const
{
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(internal::traits<Derived>::Flags&PacketAccessBit,
internal::inner_stride_at_compile_time<Derived>::ret==1),
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::Flags&AlignedBit, (size_t(m_data) % (sizeof(Scalar)*internal::packet_traits<Scalar>::size)) == 0)
&& "data is not aligned");
}
PointerType m_data;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
};
template<typename Derived> class MapBase<Derived, WriteAccessors>
: public MapBase<Derived, ReadOnlyAccessors>
{
public:
typedef MapBase<Derived, ReadOnlyAccessors> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::PacketScalar PacketScalar;
typedef typename Base::Index Index;
typedef typename Base::PointerType PointerType;
using Base::derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::innerStride;
using Base::outerStride;
using Base::rowStride;
using Base::colStride;
typedef typename internal::conditional<
internal::is_lvalue<Derived>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
inline const Scalar* data() const { return this->m_data; }
inline ScalarWithConstIfNotLvalue* data() { return this->m_data; } // no const-cast here so non-const-correct code will give a compile error
inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col)
{
return this->m_data[col * colStride() + row * rowStride()];
}
inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return this->m_data[index * innerStride()];
}
template<int StoreMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>
(this->m_data + (col * colStride() + row * rowStride()), x);
}
template<int StoreMode>
inline void writePacket(Index index, const PacketScalar& x)
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
internal::pstoret<Scalar, PacketScalar, StoreMode>
(this->m_data + index * innerStride(), x);
}
inline MapBase(PointerType data) : Base(data) {}
inline MapBase(PointerType data, Index size) : Base(data, size) {}
inline MapBase(PointerType data, Index rows, Index cols) : Base(data, rows, cols) {}
Derived& operator=(const MapBase& other)
{
Base::Base::operator=(other);
return derived();
}
using Base::Base::operator=;
};
#endif // EIGEN_MAPBASE_H

View file

@ -0,0 +1,831 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H
namespace internal {
/** \internal \struct global_math_functions_filtering_base
*
* What it does:
* Defines a typedef 'type' as follows:
* - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
* global_math_functions_filtering_base<T>::type is a typedef for it.
* - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
*
* How it's used:
* To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
* When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
* is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
* So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
* won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
*
* How it's implemented:
* SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
* the typename dummy by an integer template parameter, it doesn't work anymore!
*/
template<typename T, typename dummy = void>
struct global_math_functions_filtering_base
{
typedef T type;
};
template<typename T> struct always_void { typedef void type; };
template<typename T>
struct global_math_functions_filtering_base
<T,
typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
>
{
typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
};
#define EIGEN_MATHFUNC_IMPL(func, scalar) func##_impl<typename global_math_functions_filtering_base<scalar>::type>
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename func##_retval<typename global_math_functions_filtering_base<scalar>::type>::type
/****************************************************************************
* Implementation of real *
****************************************************************************/
template<typename Scalar>
struct real_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x)
{
return x;
}
};
template<typename RealScalar>
struct real_impl<std::complex<RealScalar> >
{
static inline RealScalar run(const std::complex<RealScalar>& x)
{
return std::real(x);
}
};
template<typename Scalar>
struct real_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
}
/****************************************************************************
* Implementation of imag *
****************************************************************************/
template<typename Scalar>
struct imag_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar&)
{
return RealScalar(0);
}
};
template<typename RealScalar>
struct imag_impl<std::complex<RealScalar> >
{
static inline RealScalar run(const std::complex<RealScalar>& x)
{
return std::imag(x);
}
};
template<typename Scalar>
struct imag_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}
/****************************************************************************
* Implementation of real_ref *
****************************************************************************/
template<typename Scalar>
struct real_ref_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar& run(Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[0];
}
static inline const RealScalar& run(const Scalar& x)
{
return reinterpret_cast<const RealScalar*>(&x)[0];
}
};
template<typename Scalar>
struct real_ref_retval
{
typedef typename NumTraits<Scalar>::Real & type;
};
template<typename Scalar>
inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
{
return real_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}
/****************************************************************************
* Implementation of imag_ref *
****************************************************************************/
template<typename Scalar, bool IsComplex>
struct imag_ref_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar& run(Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[1];
}
static inline const RealScalar& run(const Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[1];
}
};
template<typename Scalar>
struct imag_ref_default_impl<Scalar, false>
{
static inline Scalar run(Scalar&)
{
return Scalar(0);
}
static inline const Scalar run(const Scalar&)
{
return Scalar(0);
}
};
template<typename Scalar>
struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
template<typename Scalar>
struct imag_ref_retval
{
typedef typename NumTraits<Scalar>::Real & type;
};
template<typename Scalar>
inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
{
return imag_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}
/****************************************************************************
* Implementation of conj *
****************************************************************************/
template<typename Scalar>
struct conj_impl
{
static inline Scalar run(const Scalar& x)
{
return x;
}
};
template<typename RealScalar>
struct conj_impl<std::complex<RealScalar> >
{
static inline std::complex<RealScalar> run(const std::complex<RealScalar>& x)
{
return std::conj(x);
}
};
template<typename Scalar>
struct conj_retval
{
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}
/****************************************************************************
* Implementation of abs *
****************************************************************************/
template<typename Scalar>
struct abs_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x)
{
return std::abs(x);
}
};
template<typename Scalar>
struct abs_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs, Scalar) abs(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(abs, Scalar)::run(x);
}
/****************************************************************************
* Implementation of abs2 *
****************************************************************************/
template<typename Scalar>
struct abs2_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x)
{
return x*x;
}
};
template<typename RealScalar>
struct abs2_impl<std::complex<RealScalar> >
{
static inline RealScalar run(const std::complex<RealScalar>& x)
{
return std::norm(x);
}
};
template<typename Scalar>
struct abs2_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}
/****************************************************************************
* Implementation of norm1 *
****************************************************************************/
template<typename Scalar, bool IsComplex>
struct norm1_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x)
{
return abs(real(x)) + abs(imag(x));
}
};
template<typename Scalar>
struct norm1_default_impl<Scalar, false>
{
static inline Scalar run(const Scalar& x)
{
return abs(x);
}
};
template<typename Scalar>
struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
template<typename Scalar>
struct norm1_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}
/****************************************************************************
* Implementation of hypot *
****************************************************************************/
template<typename Scalar>
struct hypot_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x, const Scalar& y)
{
RealScalar _x = abs(x);
RealScalar _y = abs(y);
RealScalar p = std::max(_x, _y);
RealScalar q = std::min(_x, _y);
RealScalar qp = q/p;
return p * sqrt(RealScalar(1) + qp*qp);
}
};
template<typename Scalar>
struct hypot_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}
/****************************************************************************
* Implementation of cast *
****************************************************************************/
template<typename OldType, typename NewType>
struct cast_impl
{
static inline NewType run(const OldType& x)
{
return static_cast<NewType>(x);
}
};
// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
template<typename OldType, typename NewType>
inline NewType cast(const OldType& x)
{
return cast_impl<OldType, NewType>::run(x);
}
/****************************************************************************
* Implementation of sqrt *
****************************************************************************/
template<typename Scalar, bool IsInteger>
struct sqrt_default_impl
{
static inline Scalar run(const Scalar& x)
{
return std::sqrt(x);
}
};
template<typename Scalar>
struct sqrt_default_impl<Scalar, true>
{
static inline Scalar run(const Scalar&)
{
#ifdef EIGEN2_SUPPORT
eigen_assert(!NumTraits<Scalar>::IsInteger);
#else
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
#endif
return Scalar(0);
}
};
template<typename Scalar>
struct sqrt_impl : sqrt_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct sqrt_retval
{
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(sqrt, Scalar) sqrt(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x);
}
/****************************************************************************
* Implementation of standard unary real functions (exp, log, sin, cos, ... *
****************************************************************************/
// This macro instanciate all the necessary template mechanism which is common to all unary real functions.
#define EIGEN_MATHFUNC_STANDARD_REAL_UNARY(NAME) \
template<typename Scalar, bool IsInteger> struct NAME##_default_impl { \
static inline Scalar run(const Scalar& x) { return std::NAME(x); } \
}; \
template<typename Scalar> struct NAME##_default_impl<Scalar, true> { \
static inline Scalar run(const Scalar&) { \
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) \
return Scalar(0); \
} \
}; \
template<typename Scalar> struct NAME##_impl \
: NAME##_default_impl<Scalar, NumTraits<Scalar>::IsInteger> \
{}; \
template<typename Scalar> struct NAME##_retval { typedef Scalar type; }; \
template<typename Scalar> \
inline EIGEN_MATHFUNC_RETVAL(NAME, Scalar) NAME(const Scalar& x) { \
return EIGEN_MATHFUNC_IMPL(NAME, Scalar)::run(x); \
}
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(exp)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(log)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(sin)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(cos)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(tan)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(asin)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(acos)
/****************************************************************************
* Implementation of atan2 *
****************************************************************************/
template<typename Scalar, bool IsInteger>
struct atan2_default_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return std::atan2(x, y);
}
};
template<typename Scalar>
struct atan2_default_impl<Scalar, true>
{
static inline Scalar run(const Scalar&, const Scalar&)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
return Scalar(0);
}
};
template<typename Scalar>
struct atan2_impl : atan2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct atan2_retval
{
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(atan2, Scalar) atan2(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(atan2, Scalar)::run(x, y);
}
/****************************************************************************
* Implementation of pow *
****************************************************************************/
template<typename Scalar, bool IsInteger>
struct pow_default_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return std::pow(x, y);
}
};
template<typename Scalar>
struct pow_default_impl<Scalar, true>
{
static inline Scalar run(Scalar x, Scalar y)
{
Scalar res = 1;
eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
if(y & 1) res *= x;
y >>= 1;
while(y)
{
x *= x;
if(y&1) res *= x;
y >>= 1;
}
return res;
}
};
template<typename Scalar>
struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct pow_retval
{
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
}
/****************************************************************************
* Implementation of random *
****************************************************************************/
template<typename Scalar,
bool IsComplex,
bool IsInteger>
struct random_default_impl {};
template<typename Scalar>
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct random_retval
{
typedef Scalar type;
};
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
template<typename Scalar>
struct random_default_impl<Scalar, false, false>
{
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
}
static inline Scalar run()
{
return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
}
};
enum {
floor_log2_terminate,
floor_log2_move_up,
floor_log2_move_down,
floor_log2_bogus
};
template<unsigned int n, int lower, int upper> struct floor_log2_selector
{
enum { middle = (lower + upper) / 2,
value = (upper <= lower + 1) ? int(floor_log2_terminate)
: (n < (1 << middle)) ? int(floor_log2_move_down)
: (n==0) ? int(floor_log2_bogus)
: int(floor_log2_move_up)
};
};
template<unsigned int n,
int lower = 0,
int upper = sizeof(unsigned int) * CHAR_BIT - 1,
int selector = floor_log2_selector<n, lower, upper>::value>
struct floor_log2 {};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_down>
{
enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value };
};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_up>
{
enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value };
};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_terminate>
{
enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_bogus>
{
// no value, error at compile time
};
template<typename Scalar>
struct random_default_impl<Scalar, false, true>
{
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1)));
}
static inline Scalar run()
{
#ifdef EIGEN_MAKING_DOCS
return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
#else
enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value,
scalar_bits = sizeof(Scalar) * CHAR_BIT,
shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits))
};
Scalar x = Scalar(std::rand() >> shift);
Scalar offset = NumTraits<Scalar>::IsSigned ? Scalar(1 << (rand_bits-1)) : Scalar(0);
return x - offset;
#endif
}
};
template<typename Scalar>
struct random_default_impl<Scalar, true, false>
{
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return Scalar(random(real(x), real(y)),
random(imag(x), imag(y)));
}
static inline Scalar run()
{
typedef typename NumTraits<Scalar>::Real RealScalar;
return Scalar(random<RealScalar>(), random<RealScalar>());
}
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
{
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
}
/****************************************************************************
* Implementation of fuzzy comparisons *
****************************************************************************/
template<typename Scalar,
bool IsComplex,
bool IsInteger>
struct scalar_fuzzy_default_impl {};
template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, false>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar>
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
{
return abs(x) <= abs(y) * prec;
}
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
return abs(x - y) <= std::min(abs(x), abs(y)) * prec;
}
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
return x <= y || isApprox(x, y, prec);
}
};
template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar>
static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
{
return x == Scalar(0);
}
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
{
return x == y;
}
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
{
return x <= y;
}
};
template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, true, false>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar>
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
{
return abs2(x) <= abs2(y) * prec * prec;
}
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
return abs2(x - y) <= std::min(abs2(x), abs2(y)) * prec * prec;
}
};
template<typename Scalar>
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar, typename OtherScalar>
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
}
template<typename Scalar>
inline bool isApprox(const Scalar& x, const Scalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
}
template<typename Scalar>
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
}
/******************************************
*** The special case of the bool type ***
******************************************/
template<> struct random_impl<bool>
{
static inline bool run()
{
return random<int>(0,1)==0 ? false : true;
}
};
template<> struct scalar_fuzzy_impl<bool>
{
typedef bool RealScalar;
template<typename OtherScalar>
static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
{
return !x;
}
static inline bool isApprox(bool x, bool y, bool)
{
return x == y;
}
static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
{
return (!x) || y;
}
};
} // end namespace internal
#endif // EIGEN_MATHFUNCTIONS_H

View file

@ -0,0 +1,439 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIX_H
#define EIGEN_MATRIX_H
/** \class Matrix
* \ingroup Core_Module
*
* \brief The matrix class, also used for vectors and row-vectors
*
* The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen.
* Vectors are matrices with one column, and row-vectors are matrices with one row.
*
* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
*
* The first three template parameters are required:
* \tparam _Scalar \anchor matrix_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
* User defined sclar types are supported as well (see \ref user_defined_scalars "here").
* \tparam _Rows Number of rows, or \b Dynamic
* \tparam _Cols Number of columns, or \b Dynamic
*
* The remaining template parameters are optional -- in most cases you don't have to worry about them.
* \tparam _Options \anchor matrix_tparam_options A combination of either \b RowMajor or \b ColMajor, and of either
* \b AutoAlign or \b DontAlign.
* The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
* for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
* \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
* \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
*
* Eigen provides a number of typedefs covering the usual cases. Here are some examples:
*
* \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>)
* \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>)
* \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>)
*
* \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
* \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
*
* \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, Dynamic>)
* \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix<double, Dynamic, 3>)
*
* See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
*
* You can access elements of vectors and matrices using normal subscripting:
*
* \code
* Eigen::VectorXd v(10);
* v[0] = 0.1;
* v[1] = 0.2;
* v(0) = 0.3;
* v(1) = 0.4;
*
* Eigen::MatrixXi m(10, 10);
* m(0, 1) = 1;
* m(0, 2) = 2;
* m(0, 3) = 3;
* \endcode
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN.
*
* <i><b>Some notes:</b></i>
*
* <dl>
* <dt><b>\anchor dense Dense versus sparse:</b></dt>
* <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
*
* Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array.
* This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd>
*
* <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt>
* <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array
* of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up
* to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
*
* Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime
* variables, and the array of coefficients is allocated dynamically on the heap.
*
* Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
* If you want this behavior, see the Sparse module.</dd>
*
* <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
* <dd>In most cases, one just leaves these parameters to the default values.
* These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
* when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
* exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
* are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
* </dl>
*
* \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy,
* \ref TopicStorageOrders
*/
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef DenseIndex Index;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
Options = _Options,
InnerStrideAtCompileTime = 1,
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime
};
};
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Matrix
: public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
public:
/** \brief Base class typedef.
* \sa PlainObjectBase
*/
typedef PlainObjectBase<Matrix> Base;
enum { Options = _Options };
EIGEN_DENSE_PUBLIC_INTERFACE(Matrix)
typedef typename Base::PlainObject PlainObject;
enum { NeedsToAlign = (!(Options&DontAlign))
&& SizeAtCompileTime!=Dynamic && ((static_cast<int>(sizeof(Scalar))*SizeAtCompileTime)%16)==0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
using Base::base;
using Base::coeffRef;
/**
* \brief Assigns matrices to each other.
*
* \note This is a special case of the templated operator=. Its purpose is
* to prevent a default operator= from hiding the templated operator=.
*
* \callgraph
*/
EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
{
return Base::_set(other);
}
/** \internal
* \brief Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
{
return Base::_set(other);
}
/* Here, doxygen failed to copy the brief information when using \copydoc */
/**
* \brief Copies the generic expression \a other into *this.
* \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase<OtherDerived> &other)
{
return Base::operator=(other);
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func)
{
return Base::operator=(func);
}
/** \brief Default constructor.
*
* For fixed-size matrices, does nothing.
*
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
* a matrix to 0 is not supported.
*
* \sa resize(Index,Index)
*/
EIGEN_STRONG_INLINE explicit Matrix() : Base()
{
Base::_check_template_params();
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
// FIXME is it still needed
Matrix(internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert())
{ Base::_check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED }
/** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
EIGEN_STRONG_INLINE explicit Matrix(Index dim)
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
eigen_assert(dim >= 0);
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T0, typename T1>
EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
{
Base::_check_template_params();
Base::template _init2<T0,T1>(x, y);
}
#else
/** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead. */
Matrix(Index rows, Index cols);
/** \brief Constructs an initialized 2D vector with given coefficients */
Matrix(const Scalar& x, const Scalar& y);
#endif
/** \brief Constructs an initialized 3D vector with given coefficients */
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
}
/** \brief Constructs an initialized 4D vector with given coefficients */
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
m_storage.data()[3] = w;
}
explicit Matrix(const Scalar *data);
/** \brief Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
// This test resides here, to bring the error messages closer to the user. Normally, these checks
// are performed deeply within the library, thus causing long and scary error traces.
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
Base::_check_template_params();
Base::_set_noalias(other);
}
/** \brief Copy constructor */
EIGEN_STRONG_INLINE Matrix(const Matrix& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** \brief Copy constructor with in-place evaluation */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const ReturnByValue<OtherDerived>& other)
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
other.evalTo(*this);
}
/** \brief Copy constructor for generic expressions.
* \sa MatrixBase::operator=(const EigenBase<OtherDerived>&)
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const EigenBase<OtherDerived> &other)
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
// FIXME/CHECK: isn't *this = other.derived() more efficient. it allows to
// go for pure _set() implementations, right?
*this = other;
}
/** \internal
* \brief Override MatrixBase::swap() since for dynamic-sized matrices
* of same type it is enough to swap the data pointers.
*/
template<typename OtherDerived>
void swap(MatrixBase<OtherDerived> const & other)
{ this->_swap(other.derived()); }
inline Index innerStride() const { return 1; }
inline Index outerStride() const { return this->innerSize(); }
/////////// Geometry module ///////////
template<typename OtherDerived>
explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
explicit Matrix(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
#endif
// allow to extend Matrix outside Eigen
#ifdef EIGEN_MATRIX_PLUGIN
#include EIGEN_MATRIX_PLUGIN
#endif
protected:
template <typename Derived, typename OtherDerived, bool IsVector>
friend struct internal::conservative_resize_like_impl;
using Base::m_storage;
};
/** \defgroup matrixtypedefs Global matrix typedefs
*
* \ingroup Core_Module
*
* Eigen defines several typedef shortcuts for most common matrix and vector types.
*
* The general patterns are the following:
*
* \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
*
* There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
* a fixed-size vector of 4 complex floats.
*
* \sa class Matrix
*/
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_TYPEDEFS
#undef EIGEN_MAKE_TYPEDEFS_LARGE
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_MATRIX_TYPEDEFS \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
#endif // EIGEN_MATRIX_H

View file

@ -0,0 +1,520 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIXBASE_H
#define EIGEN_MATRIXBASE_H
/** \class MatrixBase
* \ingroup Core_Module
*
* \brief Base class for all dense matrices, vectors, and expressions
*
* This class is the base that is inherited by all matrix, vector, and related expression
* types. Most of the Eigen API is contained in this class, and its base classes. Other important
* classes for the Eigen API are Matrix, and VectorwiseOp.
*
* Note that some methods are defined in other modules such as the \ref LU_Module LU module
* for all functions related to matrix inversions.
*
* \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc.
*
* When writing a function taking Eigen objects as argument, if you want your function
* to take as argument any matrix, vector, or expression, just let it take a
* MatrixBase argument. As an example, here is a function printFirstRow which, given
* a matrix, vector, or expression \a x, prints the first row of \a x.
*
* \code
template<typename Derived>
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
{
cout << x.row(0) << endl;
}
* \endcode
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN.
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived> class MatrixBase
: public DenseBase<Derived>
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef MatrixBase StorageBaseType;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseBase<Derived> Base;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::CoeffReadCost;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::lazyAssign;
using Base::eval;
using Base::operator+=;
using Base::operator-=;
using Base::operator*=;
using Base::operator/=;
typedef typename Base::CoeffReturnType CoeffReturnType;
typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType;
typedef typename Base::RowXpr RowXpr;
typedef typename Base::ColXpr ColXpr;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** type of the equivalent square matrix */
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** \returns the size of the main diagonal, which is min(rows(),cols()).
* \sa rows(), cols(), SizeAtCompileTime. */
inline Index diagonalSize() const { return std::min(rows(),cols()); }
/** \brief The plain matrix type corresponding to this expression.
*
* This is not necessarily exactly the return type of eval(). In the case of plain matrices,
* the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed
* that the return type of eval() is either PlainObject or const PlainObject&.
*/
typedef Matrix<typename internal::traits<Derived>::Scalar,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime,
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime
> PlainObject;
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
/** \internal the return type of MatrixBase::adjoint() */
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
ConstTransposeReturnType
>::type AdjointReturnType;
/** \internal Return type of eigenvalues() */
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType;
/** \internal the return type of identity */
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> IdentityReturnType;
/** \internal the return type of unit vectors */
typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime> BasisReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/CommonCwiseBinaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
# include "../plugins/MatrixCwiseBinaryOps.h"
# ifdef EIGEN_MATRIXBASE_PLUGIN
# include EIGEN_MATRIXBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
Derived& operator=(const MatrixBase& other);
// We cannot inherit here via Base::operator= since it is causing
// trouble with MSVC.
template <typename OtherDerived>
Derived& operator=(const DenseBase<OtherDerived>& other);
template <typename OtherDerived>
Derived& operator=(const EigenBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator=(const ReturnByValue<OtherDerived>& other);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
Derived& operator+=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
const typename ProductReturnType<Derived,OtherDerived>::Type
operator*(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
const typename LazyProductReturnType<Derived,OtherDerived>::Type
lazyProduct(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
Derived& operator*=(const EigenBase<OtherDerived>& other);
template<typename OtherDerived>
void applyOnTheLeft(const EigenBase<OtherDerived>& other);
template<typename OtherDerived>
void applyOnTheRight(const EigenBase<OtherDerived>& other);
template<typename DiagonalDerived>
const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
template<typename OtherDerived>
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
dot(const MatrixBase<OtherDerived>& other) const;
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
Scalar eigen2_dot(const MatrixBase<OtherDerived>& other) const;
#endif
RealScalar squaredNorm() const;
RealScalar norm() const;
RealScalar stableNorm() const;
RealScalar blueNorm() const;
RealScalar hypotNorm() const;
const PlainObject normalized() const;
void normalize();
const AdjointReturnType adjoint() const;
void adjointInPlace();
typedef Diagonal<Derived> DiagonalReturnType;
DiagonalReturnType diagonal();
typedef const Diagonal<const Derived> ConstDiagonalReturnType;
const ConstDiagonalReturnType diagonal() const;
template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; };
template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; };
template<int Index> typename DiagonalIndexReturnType<Index>::Type diagonal();
template<int Index> typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
// Note: The "MatrixBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations.
// On the other hand they confuse MSVC8...
#if (defined _MSC_VER) && (_MSC_VER >= 1500) // 2008 or later
typename MatrixBase::template DiagonalIndexReturnType<Dynamic>::Type diagonal(Index index);
typename MatrixBase::template ConstDiagonalIndexReturnType<Dynamic>::Type diagonal(Index index) const;
#else
typename DiagonalIndexReturnType<Dynamic>::Type diagonal(Index index);
typename ConstDiagonalIndexReturnType<Dynamic>::Type diagonal(Index index) const;
#endif
#ifdef EIGEN2_SUPPORT
template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type part();
template<unsigned int Mode> const typename internal::eigen2_part_return_type<Derived, Mode>::type part() const;
// huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead
// of an integer constant. Solution: overload the part() method template wrt template parameters list.
template<template<typename T, int n> class U>
const DiagonalWrapper<ConstDiagonalReturnType> part() const
{ return diagonal().asDiagonal(); }
#endif // EIGEN2_SUPPORT
template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; };
template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; };
template<unsigned int Mode> typename TriangularViewReturnType<Mode>::Type triangularView();
template<unsigned int Mode> typename ConstTriangularViewReturnType<Mode>::Type triangularView() const;
template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SelfAdjointView<Derived, UpLo> Type; };
template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView<const Derived, UpLo> Type; };
template<unsigned int UpLo> typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
template<unsigned int UpLo> typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const;
const SparseView<Derived> sparseView(const Scalar& m_reference = Scalar(0),
typename NumTraits<Scalar>::Real m_epsilon = NumTraits<Scalar>::dummy_precision()) const;
static const IdentityReturnType Identity();
static const IdentityReturnType Identity(Index rows, Index cols);
static const BasisReturnType Unit(Index size, Index i);
static const BasisReturnType Unit(Index i);
static const BasisReturnType UnitX();
static const BasisReturnType UnitY();
static const BasisReturnType UnitZ();
static const BasisReturnType UnitW();
const DiagonalWrapper<const Derived> asDiagonal() const;
const PermutationWrapper<const Derived> asPermutation() const;
Derived& setIdentity();
Derived& setIdentity(Index rows, Index cols);
bool isIdentity(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isDiagonal(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUpperTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isLowerTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived>
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUnitary(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
/** \returns true if each coefficients of \c *this and \a other are all exactly equal.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator!= */
template<typename OtherDerived>
inline bool operator==(const MatrixBase<OtherDerived>& other) const
{ return cwiseEqual(other).all(); }
/** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator== */
template<typename OtherDerived>
inline bool operator!=(const MatrixBase<OtherDerived>& other) const
{ return cwiseNotEqual(other).any(); }
NoAlias<Derived,Eigen::MatrixBase > noalias();
inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
inline ForceAlignedAccess<Derived> forceAlignedAccess();
template<bool Enable> inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type forceAlignedAccessIf() const;
template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
Scalar trace() const;
/////////// Array module ///////////
template<int p> RealScalar lpNorm() const;
MatrixBase<Derived>& matrix() { return *this; }
const MatrixBase<Derived>& matrix() const { return *this; }
/** \returns an \link ArrayBase Array \endlink expression of this matrix
* \sa ArrayBase::matrix() */
ArrayWrapper<Derived> array() { return derived(); }
const ArrayWrapper<Derived> array() const { return derived(); }
/////////// LU module ///////////
const FullPivLU<PlainObject> fullPivLu() const;
const PartialPivLU<PlainObject> partialPivLu() const;
#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
const LU<PlainObject> lu() const;
#endif
#ifdef EIGEN2_SUPPORT
const LU<PlainObject> eigen2_lu() const;
#endif
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
const PartialPivLU<PlainObject> lu() const;
#endif
#ifdef EIGEN2_SUPPORT
template<typename ResultType>
void computeInverse(MatrixBase<ResultType> *result) const {
*result = this->inverse();
}
#endif
const internal::inverse_impl<Derived> inverse() const;
template<typename ResultType>
void computeInverseAndDetWithCheck(
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible,
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
) const;
template<typename ResultType>
void computeInverseWithCheck(
ResultType& inverse,
bool& invertible,
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
) const;
Scalar determinant() const;
/////////// Cholesky module ///////////
const LLT<PlainObject> llt() const;
const LDLT<PlainObject> ldlt() const;
/////////// QR module ///////////
const HouseholderQR<PlainObject> householderQr() const;
const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
#ifdef EIGEN2_SUPPORT
const QR<PlainObject> qr() const;
#endif
EigenvaluesReturnType eigenvalues() const;
RealScalar operatorNorm() const;
/////////// SVD module ///////////
JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
#ifdef EIGEN2_SUPPORT
SVD<PlainObject> svd() const;
#endif
/////////// Geometry module ///////////
#ifndef EIGEN_PARSED_BY_DOXYGEN
/// \internal helper struct to form the return type of the cross product
template<typename OtherDerived> struct cross_product_return_type {
typedef typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar;
typedef Matrix<Scalar,MatrixBase::RowsAtCompileTime,MatrixBase::ColsAtCompileTime> type;
};
#endif // EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
typename cross_product_return_type<OtherDerived>::type
cross(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
PlainObject cross3(const MatrixBase<OtherDerived>& other) const;
PlainObject unitOrthogonal(void) const;
Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const;
// put this as separate enum value to work around possible GCC 4.3 bug (?)
enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal };
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType;
HomogeneousReturnType homogeneous() const;
#endif
enum {
SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
};
typedef Block<const Derived,
internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne;
typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>,
const ConstStartMinusOne > HNormalizedReturnType;
const HNormalizedReturnType hnormalized() const;
////////// Householder module ///////////
void makeHouseholderInPlace(Scalar& tau, RealScalar& beta);
template<typename EssentialPart>
void makeHouseholder(EssentialPart& essential,
Scalar& tau, RealScalar& beta) const;
template<typename EssentialPart>
void applyHouseholderOnTheLeft(const EssentialPart& essential,
const Scalar& tau,
Scalar* workspace);
template<typename EssentialPart>
void applyHouseholderOnTheRight(const EssentialPart& essential,
const Scalar& tau,
Scalar* workspace);
///////// Jacobi module /////////
template<typename OtherScalar>
void applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j);
template<typename OtherScalar>
void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j);
///////// MatrixFunctions module /////////
typedef typename internal::stem_function<Scalar>::type StemFunction;
const MatrixExponentialReturnValue<Derived> exp() const;
const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const;
const MatrixFunctionReturnValue<Derived> cosh() const;
const MatrixFunctionReturnValue<Derived> sinh() const;
const MatrixFunctionReturnValue<Derived> cos() const;
const MatrixFunctionReturnValue<Derived> sin() const;
#ifdef EIGEN2_SUPPORT
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other);
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other);
/** \deprecated because .lazy() is deprecated
* Overloaded for cache friendly product evaluation */
template<typename OtherDerived>
Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other)
{ return lazyAssign(other._expression()); }
template<unsigned int Added>
const Flagged<Derived, Added, 0> marked() const;
const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const;
inline const Cwise<Derived> cwise() const;
inline Cwise<Derived> cwise();
VectorBlock<Derived> start(Index size);
const VectorBlock<const Derived> start(Index size) const;
VectorBlock<Derived> end(Index size);
const VectorBlock<const Derived> end(Index size) const;
template<int Size> VectorBlock<Derived,Size> start();
template<int Size> const VectorBlock<const Derived,Size> start() const;
template<int Size> VectorBlock<Derived,Size> end();
template<int Size> const VectorBlock<const Derived,Size> end() const;
Minor<Derived> minor(Index row, Index col);
const Minor<Derived> minor(Index row, Index col) const;
#endif
protected:
MatrixBase() : Base() {}
private:
explicit MatrixBase(int);
MatrixBase(int,int);
template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&);
protected:
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator+=(const ArrayBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(sizeof(typename OtherDerived::Scalar)==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES);}
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator-=(const ArrayBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(sizeof(typename OtherDerived::Scalar)==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES);}
};
#endif // EIGEN_MATRIXBASE_H

View file

@ -0,0 +1,122 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_NESTBYVALUE_H
#define EIGEN_NESTBYVALUE_H
/** \class NestByValue
* \ingroup Core_Module
*
* \brief Expression which must be nested by value
*
* \param ExpressionType the type of the object of which we are requiring nesting-by-value
*
* This class is the return type of MatrixBase::nestByValue()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::nestByValue()
*/
namespace internal {
template<typename ExpressionType>
struct traits<NestByValue<ExpressionType> > : public traits<ExpressionType>
{};
}
template<typename ExpressionType> class NestByValue
: public internal::dense_xpr_base< NestByValue<ExpressionType> >::type
{
public:
typedef typename internal::dense_xpr_base<NestByValue>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(NestByValue)
inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
inline Index rows() const { return m_expression.rows(); }
inline Index cols() const { return m_expression.cols(); }
inline Index outerStride() const { return m_expression.outerStride(); }
inline Index innerStride() const { return m_expression.innerStride(); }
inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return m_expression.template packet<LoadMode>(row, col);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(row, col, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
}
operator const ExpressionType&() const { return m_expression; }
protected:
const ExpressionType m_expression;
};
/** \returns an expression of the temporary version of *this.
*/
template<typename Derived>
inline const NestByValue<Derived>
DenseBase<Derived>::nestByValue() const
{
return NestByValue<Derived>(derived());
}
#endif // EIGEN_NESTBYVALUE_H

View file

@ -0,0 +1,136 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_NOALIAS_H
#define EIGEN_NOALIAS_H
/** \class NoAlias
* \ingroup Core_Module
*
* \brief Pseudo expression providing an operator = assuming no aliasing
*
* \param ExpressionType the type of the object on which to do the lazy assignment
*
* This class represents an expression with special assignment operators
* assuming no aliasing between the target expression and the source expression.
* More precisely it alloas to bypass the EvalBeforeAssignBit flag of the source expression.
* It is the return type of MatrixBase::noalias()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::noalias()
*/
template<typename ExpressionType, template <typename> class StorageBase>
class NoAlias
{
typedef typename ExpressionType::Scalar Scalar;
public:
NoAlias(ExpressionType& expression) : m_expression(expression) {}
/** Behaves like MatrixBase::lazyAssign(other)
* \sa MatrixBase::lazyAssign() */
template<typename OtherDerived>
EIGEN_STRONG_INLINE ExpressionType& operator=(const StorageBase<OtherDerived>& other)
{ return internal::assign_selector<ExpressionType,OtherDerived,false>::run(m_expression,other.derived()); }
/** \sa MatrixBase::operator+= */
template<typename OtherDerived>
EIGEN_STRONG_INLINE ExpressionType& operator+=(const StorageBase<OtherDerived>& other)
{
typedef SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
SelfAdder tmp(m_expression);
typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
return m_expression;
}
/** \sa MatrixBase::operator-= */
template<typename OtherDerived>
EIGEN_STRONG_INLINE ExpressionType& operator-=(const StorageBase<OtherDerived>& other)
{
typedef SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
SelfAdder tmp(m_expression);
typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
return m_expression;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE ExpressionType& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{ other.derived().addTo(m_expression); return m_expression; }
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE ExpressionType& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{ other.derived().subTo(m_expression); return m_expression; }
template<typename Lhs, typename Rhs, int NestingFlags>
EIGEN_STRONG_INLINE ExpressionType& operator+=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
{ return m_expression.derived() += CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
template<typename Lhs, typename Rhs, int NestingFlags>
EIGEN_STRONG_INLINE ExpressionType& operator-=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
{ return m_expression.derived() -= CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
#endif
protected:
ExpressionType& m_expression;
};
/** \returns a pseudo expression of \c *this with an operator= assuming
* no aliasing between \c *this and the source expression.
*
* More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag.
* Currently, even though several expressions may alias, only product
* expressions have this flag. Therefore, noalias() is only usefull when
* the source expression contains a matrix product.
*
* Here are some examples where noalias is usefull:
* \code
* D.noalias() = A * B;
* D.noalias() += A.transpose() * B;
* D.noalias() -= 2 * A * B.adjoint();
* \endcode
*
* On the other hand the following example will lead to a \b wrong result:
* \code
* A.noalias() = A * B;
* \endcode
* because the result matrix A is also an operand of the matrix product. Therefore,
* there is no alternative than evaluating A * B in a temporary, that is the default
* behavior when you write:
* \code
* A = A * B;
* \endcode
*
* \sa class NoAlias
*/
template<typename Derived>
NoAlias<Derived,MatrixBase> MatrixBase<Derived>::noalias()
{
return derived();
}
#endif // EIGEN_NOALIAS_H

View file

@ -0,0 +1,160 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_NUMTRAITS_H
#define EIGEN_NUMTRAITS_H
/** \class NumTraits
* \ingroup Core_Module
*
* \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
*
* \param T the numeric type at hand
*
* This class stores enums, typedefs and static methods giving information about a numeric type.
*
* The provided data consists of:
* \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real,
* then \a Real is just a typedef to \a T. If \a T is \c std::complex<U> then \a Real
* is a typedef to \a U.
* \li A typedef \a NonInteger, giving the type that should be used for operations producing non-integral values,
* such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives
* \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to
* take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is
* only intended as a helper for code that needs to explicitly promote types.
* \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what
* this means, just use \a T here.
* \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
* type, and to 0 otherwise.
* \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int,
* and to \c 0 otherwise.
* \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed
* to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers.
* Stay vague here. No need to do architecture-specific stuff.
* \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
* \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
* be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
* \li An epsilon() function which, unlike std::numeric_limits::epsilon(), returns a \a Real instead of a \a T.
* \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
* value by the fuzzy comparison operators.
* \li highest() and lowest() functions returning the highest and lowest possible values respectively.
*/
template<typename T> struct GenericNumTraits
{
enum {
IsInteger = std::numeric_limits<T>::is_integer,
IsSigned = std::numeric_limits<T>::is_signed,
IsComplex = 0,
RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1,
ReadCost = 1,
AddCost = 1,
MulCost = 1
};
typedef T Real;
typedef typename internal::conditional<
IsInteger,
typename internal::conditional<sizeof(T)<=2, float, double>::type,
T
>::type NonInteger;
typedef T Nested;
inline static Real epsilon() { return std::numeric_limits<T>::epsilon(); }
inline static Real dummy_precision()
{
// make sure to override this for floating-point types
return Real(0);
}
inline static T highest() { return std::numeric_limits<T>::max(); }
inline static T lowest() { return IsInteger ? std::numeric_limits<T>::min() : (-std::numeric_limits<T>::max()); }
#ifdef EIGEN2_SUPPORT
enum {
HasFloatingPoint = !IsInteger
};
typedef NonInteger FloatingPoint;
#endif
};
template<typename T> struct NumTraits : GenericNumTraits<T>
{};
template<> struct NumTraits<float>
: GenericNumTraits<float>
{
inline static float dummy_precision() { return 1e-5f; }
};
template<> struct NumTraits<double> : GenericNumTraits<double>
{
inline static double dummy_precision() { return 1e-12; }
};
template<> struct NumTraits<long double>
: GenericNumTraits<long double>
{
static inline long double dummy_precision() { return 1e-15l; }
};
template<typename _Real> struct NumTraits<std::complex<_Real> >
: GenericNumTraits<std::complex<_Real> >
{
typedef _Real Real;
enum {
IsComplex = 1,
RequireInitialization = NumTraits<_Real>::RequireInitialization,
ReadCost = 2 * NumTraits<_Real>::ReadCost,
AddCost = 2 * NumTraits<Real>::AddCost,
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
};
inline static Real epsilon() { return NumTraits<Real>::epsilon(); }
inline static Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
{
typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real;
typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar;
typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger;
typedef ArrayType & Nested;
enum {
IsComplex = NumTraits<Scalar>::IsComplex,
IsInteger = NumTraits<Scalar>::IsInteger,
IsSigned = NumTraits<Scalar>::IsSigned,
RequireInitialization = 1,
ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost,
AddCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost,
MulCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost
};
};
#endif // EIGEN_NUMTRAITS_H

View file

@ -0,0 +1,696 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PERMUTATIONMATRIX_H
#define EIGEN_PERMUTATIONMATRIX_H
template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl;
/** \class PermutationBase
* \ingroup Core_Module
*
* \brief Base class for permutations
*
* \param Derived the derived class
*
* This class is the base class for all expressions representing a permutation matrix,
* internally stored as a vector of integers.
* The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix
* \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have:
* \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f]
* This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have:
* \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f]
*
* Permutation matrices are square and invertible.
*
* Notice that in addition to the member functions and operators listed here, there also are non-member
* operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase)
* on either side.
*
* \sa class PermutationMatrix, class PermutationWrapper
*/
namespace internal {
template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false>
struct permut_matrix_product_retval;
enum PermPermProduct_t {PermPermProduct};
} // end namespace internal
template<typename Derived>
class PermutationBase : public EigenBase<Derived>
{
typedef internal::traits<Derived> Traits;
typedef EigenBase<Derived> Base;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
enum {
Flags = Traits::Flags,
CoeffReadCost = Traits::CoeffReadCost,
RowsAtCompileTime = Traits::RowsAtCompileTime,
ColsAtCompileTime = Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
};
typedef typename Traits::Scalar Scalar;
typedef typename Traits::Index Index;
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
DenseMatrixType;
typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index>
PlainPermutationType;
using Base::derived;
#endif
/** Copies the other permutation into *this */
template<typename OtherDerived>
Derived& operator=(const PermutationBase<OtherDerived>& other)
{
indices() = other.indices();
return derived();
}
/** Assignment from the Transpositions \a tr */
template<typename OtherDerived>
Derived& operator=(const TranspositionsBase<OtherDerived>& tr)
{
setIdentity(tr.size());
for(Index k=size()-1; k>=0; --k)
applyTranspositionOnTheRight(k,tr.coeff(k));
return derived();
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Derived& operator=(const PermutationBase& other)
{
indices() = other.indices();
return derived();
}
#endif
/** \returns the number of rows */
inline Index rows() const { return indices().size(); }
/** \returns the number of columns */
inline Index cols() const { return indices().size(); }
/** \returns the size of a side of the respective square matrix, i.e., the number of indices */
inline Index size() const { return indices().size(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived>& other) const
{
other.setZero();
for (int i=0; i<rows();++i)
other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1);
}
#endif
/** \returns a Matrix object initialized from this permutation matrix. Notice that it
* is inefficient to return this Matrix object by value. For efficiency, favor using
* the Matrix constructor taking EigenBase objects.
*/
DenseMatrixType toDenseMatrix() const
{
return derived();
}
/** const version of indices(). */
const IndicesType& indices() const { return derived().indices(); }
/** \returns a reference to the stored array representing the permutation. */
IndicesType& indices() { return derived().indices(); }
/** Resizes to given size.
*/
inline void resize(Index size)
{
indices().resize(size);
}
/** Sets *this to be the identity permutation matrix */
void setIdentity()
{
for(Index i = 0; i < size(); ++i)
indices().coeffRef(i) = i;
}
/** Sets *this to be the identity permutation matrix of given size.
*/
void setIdentity(Index size)
{
resize(size);
setIdentity();
}
/** Multiplies *this by the transposition \f$(ij)\f$ on the left.
*
* \returns a reference to *this.
*
* \warning This is much slower than applyTranspositionOnTheRight(int,int):
* this has linear complexity and requires a lot of branching.
*
* \sa applyTranspositionOnTheRight(int,int)
*/
Derived& applyTranspositionOnTheLeft(Index i, Index j)
{
eigen_assert(i>=0 && j>=0 && i<size() && j<size());
for(Index k = 0; k < size(); ++k)
{
if(indices().coeff(k) == i) indices().coeffRef(k) = j;
else if(indices().coeff(k) == j) indices().coeffRef(k) = i;
}
return derived();
}
/** Multiplies *this by the transposition \f$(ij)\f$ on the right.
*
* \returns a reference to *this.
*
* This is a fast operation, it only consists in swapping two indices.
*
* \sa applyTranspositionOnTheLeft(int,int)
*/
Derived& applyTranspositionOnTheRight(Index i, Index j)
{
eigen_assert(i>=0 && j>=0 && i<size() && j<size());
std::swap(indices().coeffRef(i), indices().coeffRef(j));
return derived();
}
/** \returns the inverse permutation matrix.
*
* \note \note_try_to_help_rvo
*/
inline Transpose<PermutationBase> inverse() const
{ return derived(); }
/** \returns the tranpose permutation matrix.
*
* \note \note_try_to_help_rvo
*/
inline Transpose<PermutationBase> transpose() const
{ return derived(); }
/**** multiplication helpers to hopefully get RVO ****/
#ifndef EIGEN_PARSED_BY_DOXYGEN
protected:
template<typename OtherDerived>
void assignTranspose(const PermutationBase<OtherDerived>& other)
{
for (int i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
}
template<typename Lhs,typename Rhs>
void assignProduct(const Lhs& lhs, const Rhs& rhs)
{
eigen_assert(lhs.cols() == rhs.rows());
for (int i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
}
#endif
public:
/** \returns the product permutation matrix.
*
* \note \note_try_to_help_rvo
*/
template<typename Other>
inline PlainPermutationType operator*(const PermutationBase<Other>& other) const
{ return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); }
/** \returns the product of a permutation with another inverse permutation.
*
* \note \note_try_to_help_rvo
*/
template<typename Other>
inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other) const
{ return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); }
/** \returns the product of an inverse permutation with another permutation.
*
* \note \note_try_to_help_rvo
*/
template<typename Other> friend
inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm)
{ return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); }
protected:
};
/** \class PermutationMatrix
* \ingroup Core_Module
*
* \brief Permutation matrix
*
* \param SizeAtCompileTime the number of rows/cols, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
* \param IndexType the interger type of the indices
*
* This class represents a permutation matrix, internally stored as a vector of integers.
*
* \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
*/
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
: traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef IndexType Index;
typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
{
typedef PermutationBase<PermutationMatrix> Base;
typedef internal::traits<PermutationMatrix> Traits;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
#endif
inline PermutationMatrix()
{}
/** Constructs an uninitialized permutation matrix of given size.
*/
inline PermutationMatrix(int size) : m_indices(size)
{}
/** Copy constructor. */
template<typename OtherDerived>
inline PermutationMatrix(const PermutationBase<OtherDerived>& other)
: m_indices(other.indices()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Standard copy constructor. Defined only to prevent a default copy constructor
* from hiding the other templated constructor */
inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {}
#endif
/** Generic constructor from expression of the indices. The indices
* array has the meaning that the permutations sends each integer i to indices[i].
*
* \warning It is your responsibility to check that the indices array that you passes actually
* describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the
* array's size.
*/
template<typename Other>
explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices)
{}
/** Convert the Transpositions \a tr to a permutation matrix */
template<typename Other>
explicit PermutationMatrix(const TranspositionsBase<Other>& tr)
: m_indices(tr.size())
{
*this = tr;
}
/** Copies the other permutation into *this */
template<typename Other>
PermutationMatrix& operator=(const PermutationBase<Other>& other)
{
m_indices = other.indices();
return *this;
}
/** Assignment from the Transpositions \a tr */
template<typename Other>
PermutationMatrix& operator=(const TranspositionsBase<Other>& tr)
{
return Base::operator=(tr.derived());
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
PermutationMatrix& operator=(const PermutationMatrix& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the permutation. */
IndicesType& indices() { return m_indices; }
/**** multiplication helpers to hopefully get RVO ****/
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Other>
PermutationMatrix(const Transpose<PermutationBase<Other> >& other)
: m_indices(other.nestedPermutation().size())
{
for (int i=0; i<m_indices.size();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i;
}
template<typename Lhs,typename Rhs>
PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs)
: m_indices(lhs.indices().size())
{
Base::assignProduct(lhs,rhs);
}
#endif
protected:
IndicesType m_indices;
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
: traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef IndexType Index;
typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess>
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
{
typedef PermutationBase<Map> Base;
typedef internal::traits<Map> Traits;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
#endif
inline Map(const Index* indices)
: m_indices(indices)
{}
inline Map(const Index* indices, Index size)
: m_indices(indices,size)
{}
/** Copies the other permutation into *this */
template<typename Other>
Map& operator=(const PermutationBase<Other>& other)
{ return Base::operator=(other.derived()); }
/** Assignment from the Transpositions \a tr */
template<typename Other>
Map& operator=(const TranspositionsBase<Other>& tr)
{ return Base::operator=(tr.derived()); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Map& operator=(const Map& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the permutation. */
IndicesType& indices() { return m_indices; }
protected:
IndicesType m_indices;
};
/** \class PermutationWrapper
* \ingroup Core_Module
*
* \brief Class to view a vector of integers as a permutation matrix
*
* \param _IndicesType the type of the vector of integer (can be any compatible expression)
*
* This class allows to view any vector expression of integers as a permutation matrix.
*
* \sa class PermutationBase, class PermutationMatrix
*/
struct PermutationStorage {};
template<typename _IndicesType> class TranspositionsWrapper;
namespace internal {
template<typename _IndicesType>
struct traits<PermutationWrapper<_IndicesType> >
{
typedef PermutationStorage StorageKind;
typedef typename _IndicesType::Scalar Scalar;
typedef typename _IndicesType::Scalar Index;
typedef _IndicesType IndicesType;
enum {
RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime,
Flags = 0,
CoeffReadCost = _IndicesType::CoeffReadCost
};
};
}
template<typename _IndicesType>
class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
{
typedef PermutationBase<PermutationWrapper> Base;
typedef internal::traits<PermutationWrapper> Traits;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
#endif
inline PermutationWrapper(const IndicesType& indices)
: m_indices(indices)
{}
/** const version of indices(). */
const typename internal::remove_all<typename IndicesType::Nested>::type&
indices() const { return m_indices; }
protected:
const typename IndicesType::Nested m_indices;
};
/** \returns the matrix with the permutation applied to the columns.
*/
template<typename Derived, typename PermutationDerived>
inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight>
operator*(const MatrixBase<Derived>& matrix,
const PermutationBase<PermutationDerived> &permutation)
{
return internal::permut_matrix_product_retval
<PermutationDerived, Derived, OnTheRight>
(permutation.derived(), matrix.derived());
}
/** \returns the matrix with the permutation applied to the rows.
*/
template<typename Derived, typename PermutationDerived>
inline const internal::permut_matrix_product_retval
<PermutationDerived, Derived, OnTheLeft>
operator*(const PermutationBase<PermutationDerived> &permutation,
const MatrixBase<Derived>& matrix)
{
return internal::permut_matrix_product_retval
<PermutationDerived, Derived, OnTheLeft>
(permutation.derived(), matrix.derived());
}
namespace internal {
template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
struct traits<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
{
typedef typename MatrixType::PlainObject ReturnType;
};
template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
struct permut_matrix_product_retval
: public ReturnByValue<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
{
typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix)
: m_permutation(perm), m_matrix(matrix)
{}
inline int rows() const { return m_matrix.rows(); }
inline int cols() const { return m_matrix.cols(); }
template<typename Dest> inline void evalTo(Dest& dst) const
{
const int n = Side==OnTheLeft ? rows() : cols();
if(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix))
{
// apply the permutation inplace
Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size());
mask.fill(false);
int r = 0;
while(r < m_permutation.size())
{
// search for the next seed
while(r<m_permutation.size() && mask[r]) r++;
if(r>=m_permutation.size())
break;
// we got one, let's follow it until we are back to the seed
int k0 = r++;
int kPrev = k0;
mask.coeffRef(k0) = true;
for(int k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k))
{
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
.swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
(dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
mask.coeffRef(k) = true;
kPrev = k;
}
}
}
else
{
for(int i = 0; i < n; ++i)
{
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
(dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i)
=
Block<const MatrixTypeNestedCleaned,Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime>
(m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i);
}
}
}
protected:
const PermutationType& m_permutation;
const typename MatrixType::Nested m_matrix;
};
/* Template partial specialization for transposed/inverse permutations */
template<typename Derived>
struct traits<Transpose<PermutationBase<Derived> > >
: traits<Derived>
{};
} // end namespace internal
template<typename Derived>
class Transpose<PermutationBase<Derived> >
: public EigenBase<Transpose<PermutationBase<Derived> > >
{
typedef Derived PermutationType;
typedef typename PermutationType::IndicesType IndicesType;
typedef typename PermutationType::PlainPermutationType PlainPermutationType;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef internal::traits<PermutationType> Traits;
typedef typename Derived::DenseMatrixType DenseMatrixType;
enum {
Flags = Traits::Flags,
CoeffReadCost = Traits::CoeffReadCost,
RowsAtCompileTime = Traits::RowsAtCompileTime,
ColsAtCompileTime = Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
};
typedef typename Traits::Scalar Scalar;
#endif
Transpose(const PermutationType& p) : m_permutation(p) {}
inline int rows() const { return m_permutation.rows(); }
inline int cols() const { return m_permutation.cols(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived>& other) const
{
other.setZero();
for (int i=0; i<rows();++i)
other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1);
}
#endif
/** \return the equivalent permutation matrix */
PlainPermutationType eval() const { return *this; }
DenseMatrixType toDenseMatrix() const { return *this; }
/** \returns the matrix with the inverse permutation applied to the columns.
*/
template<typename OtherDerived> friend
inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>
operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm)
{
return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived());
}
/** \returns the matrix with the inverse permutation applied to the rows.
*/
template<typename OtherDerived>
inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>
operator*(const MatrixBase<OtherDerived>& matrix) const
{
return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived());
}
const PermutationType& nestedPermutation() const { return m_permutation; }
protected:
const PermutationType& m_permutation;
};
template<typename Derived>
const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const
{
return derived();
}
#endif // EIGEN_PERMUTATIONMATRIX_H

View file

@ -0,0 +1,740 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DENSESTORAGEBASE_H
#define EIGEN_DENSESTORAGEBASE_H
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
#else
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#endif
namespace internal {
template <typename Derived, typename OtherDerived = Derived, bool IsVector = static_cast<bool>(Derived::IsVectorAtCompileTime)> struct conservative_resize_like_impl;
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl;
} // end namespace internal
/**
* \brief %Dense storage base class for matrices and arrays.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN.
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived>
class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
{
public:
enum { Options = internal::traits<Derived>::Options };
typedef typename internal::dense_xpr_base<Derived>::type Base;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Derived DenseType;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
template<typename PlainObjectType, int MapOptions, typename StrideType> friend class Eigen::Map;
friend class Eigen::Map<Derived, Unaligned>;
typedef Eigen::Map<Derived, Unaligned> MapType;
friend class Eigen::Map<const Derived, Unaligned>;
typedef const Eigen::Map<const Derived, Unaligned> ConstMapType;
friend class Eigen::Map<Derived, Aligned>;
typedef Eigen::Map<Derived, Aligned> AlignedMapType;
friend class Eigen::Map<const Derived, Aligned>;
typedef const Eigen::Map<const Derived, Aligned> ConstAlignedMapType;
template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; };
template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; };
template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, Aligned, StrideType> type; };
template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, Aligned, StrideType> type; };
protected:
DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
public:
enum { NeedsToAlign = (!(Options&DontAlign))
&& SizeAtCompileTime!=Dynamic && ((static_cast<int>(sizeof(Scalar))*SizeAtCompileTime)%16)==0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
Base& base() { return *static_cast<Base*>(this); }
const Base& base() const { return *static_cast<const Base*>(this); }
EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); }
EIGEN_STRONG_INLINE const Scalar& coeff(Index row, Index col) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
{
return m_storage.data()[index];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
{
return m_storage.data()[index];
}
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index row, Index col) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const
{
return m_storage.data()[index];
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
{
return internal::ploadt<PacketScalar, LoadMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()));
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index);
}
/** \internal */
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(Index row, Index col, const PacketScalar& x)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()), x);
}
/** \internal */
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& x)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
}
/** \returns a const pointer to the data array of this matrix */
EIGEN_STRONG_INLINE const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
EIGEN_STRONG_INLINE Scalar *data()
{ return m_storage.data(); }
/** Resizes \c *this to a \a rows x \a cols matrix.
*
* This method is intended for dynamic-size matrices, although it is legal to call it on any
* matrix as long as fixed dimensions are left unchanged. If you only want to change the number
* of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t).
*
* If the current number of coefficients of \c *this exactly matches the
* product \a rows * \a cols, then no memory allocation is performed and
* the current values are left unchanged. In all other cases, including
* shrinking, the data is reallocated and all previous values are lost.
*
* Example: \include Matrix_resize_int_int.cpp
* Output: \verbinclude Matrix_resize_int_int.out
*
* \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t)
*/
EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
{
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
Index size = rows*cols;
bool size_changed = size != this->size();
m_storage.resize(size, rows, cols);
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#else
m_storage.resize(rows*cols, rows, cols);
#endif
}
/** Resizes \c *this to a vector of length \a size
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* Example: \include Matrix_resize_int.cpp
* Output: \verbinclude Matrix_resize_int.out
*
* \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t)
*/
inline void resize(Index size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase)
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
bool size_changed = size != this->size();
#endif
if(RowsAtCompileTime == 1)
m_storage.resize(size, 1, size);
else
m_storage.resize(size, size, 1);
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#endif
}
/** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_NoChange_int.cpp
* Output: \verbinclude Matrix_resize_NoChange_int.out
*
* \sa resize(Index,Index)
*/
inline void resize(NoChange_t, Index cols)
{
resize(rows(), cols);
}
/** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_int_NoChange.cpp
* Output: \verbinclude Matrix_resize_int_NoChange.out
*
* \sa resize(Index,Index)
*/
inline void resize(Index rows, NoChange_t)
{
resize(rows, cols());
}
/** Resizes \c *this to have the same dimensions as \a other.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other)
{
const OtherDerived& other = _other.derived();
const Index othersize = other.rows()*other.cols();
if(RowsAtCompileTime == 1)
{
eigen_assert(other.rows() == 1 || other.cols() == 1);
resize(1, othersize);
}
else if(ColsAtCompileTime == 1)
{
eigen_assert(other.rows() == 1 || other.cols() == 1);
resize(othersize, 1);
}
else resize(other.rows(), other.cols());
}
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
*
* The method is intended for matrices of dynamic size. If you only want to change the number
* of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
* conservativeResize(Index, NoChange_t).
*
* Matrices are resized relative to the top-left element. In case values need to be
* appended to the matrix they will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols)
{
internal::conservative_resize_like_impl<Derived>::run(*this, rows, cols);
}
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
*
* As opposed to conservativeResize(Index rows, Index cols), this version leaves
* the number of columns unchanged.
*
* In case the matrix is growing, new rows will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t)
{
// Note: see the comment in conservativeResize(Index,Index)
conservativeResize(rows, cols());
}
/** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
*
* As opposed to conservativeResize(Index rows, Index cols), this version leaves
* the number of rows unchanged.
*
* In case the matrix is growing, new columns will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols)
{
// Note: see the comment in conservativeResize(Index,Index)
conservativeResize(rows(), cols);
}
/** Resizes the vector to \a size while retaining old values.
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* When values are appended, they will be uninitialized.
*/
EIGEN_STRONG_INLINE void conservativeResize(Index size)
{
internal::conservative_resize_like_impl<Derived>::run(*this, size);
}
/** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched.
*
* The method is intended for matrices of dynamic size. If you only want to change the number
* of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
* conservativeResize(Index, NoChange_t).
*
* Matrices are resized relative to the top-left element. In case values need to be
* appended to the matrix they will copied from \c other.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
{
internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other);
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other)
{
return _set(other);
}
/** \sa MatrixBase::lazyAssign() */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other)
{
_resize_to_match(other);
return Base::lazyAssign(other.derived());
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
{
resize(func.rows(), func.cols());
return Base::operator=(func);
}
EIGEN_STRONG_INLINE explicit PlainObjectBase() : m_storage()
{
// _check_template_params();
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ?
/** \internal */
PlainObjectBase(internal::constructor_without_unaligned_array_assert)
: m_storage(internal::constructor_without_unaligned_array_assert())
{
// _check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
#endif
EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols)
: m_storage(size, rows, cols)
{
// _check_template_params();
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
/** \copydoc MatrixBase::operator=(const EigenBase<OtherDerived>&)
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
{
_resize_to_match(other);
Base::operator=(other.derived());
return this->derived();
}
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other)
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
_check_template_params();
Base::operator=(other.derived());
}
/** \name Map
* These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
* \a data pointers.
*
* These methods do not allow to specify strides. If you need to specify strides, you have to
* use the Map class directly.
*
* \see class Map
*/
//@{
inline static ConstMapType Map(const Scalar* data)
{ return ConstMapType(data); }
inline static MapType Map(Scalar* data)
{ return MapType(data); }
inline static ConstMapType Map(const Scalar* data, Index size)
{ return ConstMapType(data, size); }
inline static MapType Map(Scalar* data, Index size)
{ return MapType(data, size); }
inline static ConstMapType Map(const Scalar* data, Index rows, Index cols)
{ return ConstMapType(data, rows, cols); }
inline static MapType Map(Scalar* data, Index rows, Index cols)
{ return MapType(data, rows, cols); }
inline static ConstAlignedMapType MapAligned(const Scalar* data)
{ return ConstAlignedMapType(data); }
inline static AlignedMapType MapAligned(Scalar* data)
{ return AlignedMapType(data); }
inline static ConstAlignedMapType MapAligned(const Scalar* data, Index size)
{ return ConstAlignedMapType(data, size); }
inline static AlignedMapType MapAligned(Scalar* data, Index size)
{ return AlignedMapType(data, size); }
inline static ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols)
{ return ConstAlignedMapType(data, rows, cols); }
inline static AlignedMapType MapAligned(Scalar* data, Index rows, Index cols)
{ return AlignedMapType(data, rows, cols); }
template<int Outer, int Inner>
inline static typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
inline static typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
inline static typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
inline static typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
inline static typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
template<int Outer, int Inner>
inline static typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
template<int Outer, int Inner>
inline static typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
inline static typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, const Stride<Outer, Inner>& stride)
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
template<int Outer, int Inner>
inline static typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
inline static typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
template<int Outer, int Inner>
inline static typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
template<int Outer, int Inner>
inline static typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
//@}
using Base::setConstant;
Derived& setConstant(Index size, const Scalar& value);
Derived& setConstant(Index rows, Index cols, const Scalar& value);
using Base::setZero;
Derived& setZero(Index size);
Derived& setZero(Index rows, Index cols);
using Base::setOnes;
Derived& setOnes(Index size);
Derived& setOnes(Index rows, Index cols);
using Base::setRandom;
Derived& setRandom(Index size);
Derived& setRandom(Index rows, Index cols);
#ifdef EIGEN_PLAINOBJECTBASE_PLUGIN
#include EIGEN_PLAINOBJECTBASE_PLUGIN
#endif
protected:
/** \internal Resizes *this in preparation for assigning \a other to it.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other)
{
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
: (rows() == other.rows() && cols() == other.cols())))
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
#else
resizeLike(other);
#endif
}
/**
* \brief Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
*
* \internal
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
{
_set_selector(other.derived(), typename internal::conditional<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type());
return this->derived();
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); }
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); }
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
* is the case when creating a new matrix) so one can enforce lazy evaluation.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
{
// I don't think we need this resize call since the lazyAssign will anyways resize
// and lazyAssign will be called by the assign selector.
//_resize_to_match(other);
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// it wouldn't allow to copy a row-vector into a column-vector.
return internal::assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
{
eigen_assert(rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
m_storage.resize(rows*cols,rows,cols);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
}
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
friend struct internal::matrix_swap_impl;
/** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
template<typename OtherDerived>
void _swap(DenseBase<OtherDerived> const & other)
{
enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic };
internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived());
}
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_STRONG_INLINE static void _check_template_params()
{
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor)
&& EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0)
&& ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0))
&& ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0))
&& ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0))
&& ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0))
&& (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic)
&& (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic)
&& (Options & (DontAlign|RowMajor)) == Options),
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
#endif
private:
enum { ThisConstantIsPrivateInPlainObjectBase };
};
template <typename Derived, typename OtherDerived, bool IsVector>
struct internal::conservative_resize_like_impl
{
typedef typename Derived::Index Index;
static void run(DenseBase<Derived>& _this, Index rows, Index cols)
{
if (_this.rows() == rows && _this.cols() == cols) return;
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows
(!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns
{
_this.derived().m_storage.conservativeResize(rows*cols,rows,cols);
}
else
{
// The storage order does not allow us to use reallocation.
typename Derived::PlainObject tmp(rows,cols);
const Index common_rows = std::min(rows, _this.rows());
const Index common_cols = std::min(cols, _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
}
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
// Note: Here is space for improvement. Basically, for conservativeResize(Index,Index),
// neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
// dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or
// conservativeResize(NoChange_t, Index cols). For these methods new static asserts like
// EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)
if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows
(!Derived::IsRowMajor && _this.rows() == other.rows()) ) // column-major and we change only the number of columns
{
const Index new_rows = other.rows() - _this.rows();
const Index new_cols = other.cols() - _this.cols();
_this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols());
if (new_rows>0)
_this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows);
else if (new_cols>0)
_this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols);
}
else
{
// The storage order does not allow us to use reallocation.
typename Derived::PlainObject tmp(other);
const Index common_rows = std::min(tmp.rows(), _this.rows());
const Index common_cols = std::min(tmp.cols(), _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
}
};
namespace internal {
template <typename Derived, typename OtherDerived>
struct conservative_resize_like_impl<Derived,OtherDerived,true>
{
typedef typename Derived::Index Index;
static void run(DenseBase<Derived>& _this, Index size)
{
const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size;
const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1;
_this.derived().m_storage.conservativeResize(size,new_rows,new_cols);
}
static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
{
if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;
const Index num_new_elements = other.size() - _this.size();
const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows();
const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1;
_this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols);
if (num_new_elements > 0)
_this.tail(num_new_elements) = other.tail(num_new_elements);
}
};
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
struct matrix_swap_impl
{
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
a.base().swap(b);
}
};
template<typename MatrixTypeA, typename MatrixTypeB>
struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
{
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage);
}
};
} // end namespace internal
#endif // EIGEN_DENSESTORAGEBASE_H

View file

@ -0,0 +1,628 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PRODUCT_H
#define EIGEN_PRODUCT_H
/** \class GeneralProduct
* \ingroup Core_Module
*
* \brief Expression of the product of two general matrices or vectors
*
* \param LhsNested the type used to store the left-hand side
* \param RhsNested the type used to store the right-hand side
* \param ProductMode the type of the product
*
* This class represents an expression of the product of two general matrices.
* We call a general matrix, a dense matrix with full storage. For instance,
* This excludes triangular, selfadjoint, and sparse matrices.
* It is the return type of the operator* between general matrices. Its template
* arguments are determined automatically by ProductReturnType. Therefore,
* GeneralProduct should never be used direclty. To determine the result type of a
* function which involves a matrix product, use ProductReturnType::Type.
*
* \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
class GeneralProduct;
enum {
Large = 2,
Small = 3
};
namespace internal {
template<int Rows, int Cols, int Depth> struct product_type_selector;
template<int Size, int MaxSize> struct product_size_category
{
enum { is_large = MaxSize == Dynamic ||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
value = is_large ? Large
: Size == 1 ? 1
: Small
};
};
template<typename Lhs, typename Rhs> struct product_type
{
typedef typename remove_all<Lhs>::type _Lhs;
typedef typename remove_all<Rhs>::type _Rhs;
enum {
MaxRows = _Lhs::MaxRowsAtCompileTime,
Rows = _Lhs::RowsAtCompileTime,
MaxCols = _Rhs::MaxColsAtCompileTime,
Cols = _Rhs::ColsAtCompileTime,
MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
_Rhs::MaxRowsAtCompileTime),
Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
_Rhs::RowsAtCompileTime),
LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
};
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
// is to work around an internal compiler error with gcc 4.1 and 4.2.
private:
enum {
rows_select = product_size_category<Rows,MaxRows>::value,
cols_select = product_size_category<Cols,MaxCols>::value,
depth_select = product_size_category<Depth,MaxDepth>::value
};
typedef product_type_selector<rows_select, cols_select, depth_select> selector;
public:
enum {
value = selector::ret
};
#ifdef EIGEN_DEBUG_PRODUCT
static void debug()
{
EIGEN_DEBUG_VAR(Rows);
EIGEN_DEBUG_VAR(Cols);
EIGEN_DEBUG_VAR(Depth);
EIGEN_DEBUG_VAR(rows_select);
EIGEN_DEBUG_VAR(cols_select);
EIGEN_DEBUG_VAR(depth_select);
EIGEN_DEBUG_VAR(value);
}
#endif
};
/* The following allows to select the kind of product at compile time
* based on the three dimensions of the product.
* This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
// FIXME I'm not sure the current mapping is the ideal one.
template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
} // end namespace internal
/** \class ProductReturnType
* \ingroup Core_Module
*
* \brief Helper class to get the correct and optimized returned type of operator*
*
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
* \param ProductMode the type of the product (determined automatically by internal::product_mode)
*
* This class defines the typename Type representing the optimized product expression
* between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
* is the recommended way to define the result type of a function returning an expression
* which involve a matrix product. The class Product should never be
* used directly.
*
* \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename Lhs, typename Rhs, int ProductType>
struct ProductReturnType
{
// TODO use the nested type to reduce instanciations ????
// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
};
template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
{
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
};
template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
{
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
};
// this is a workaround for sun CC
template<typename Lhs, typename Rhs>
struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
{};
/***********************************************************************
* Implementation of Inner Vector Vector Product
***********************************************************************/
// FIXME : maybe the "inner product" could return a Scalar
// instead of a 1x1 matrix ??
// Pro: more natural for the user
// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
namespace internal {
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
: traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
{};
}
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, InnerProduct>
: internal::no_assignment_operator,
public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
{
typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
public:
GeneralProduct(const Lhs& lhs, const Rhs& rhs)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
}
/** Convertion to scalar */
operator const typename Base::Scalar() const {
return Base::coeff(0,0);
}
};
/***********************************************************************
* Implementation of Outer Vector Vector Product
***********************************************************************/
namespace internal {
template<int StorageOrder> struct outer_product_selector;
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
: traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
{};
}
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, OuterProduct>
: public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
{
public:
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
}
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
{
internal::outer_product_selector<(int(Dest::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dest, alpha);
}
};
namespace internal {
template<> struct outer_product_selector<ColMajor> {
template<typename ProductType, typename Dest>
static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
typedef typename Dest::Index Index;
// FIXME make sure lhs is sequentially stored
// FIXME not very good if rhs is real and lhs complex while alpha is real too
const Index cols = dest.cols();
for (Index j=0; j<cols; ++j)
dest.col(j) += (alpha * prod.rhs().coeff(j)) * prod.lhs();
}
};
template<> struct outer_product_selector<RowMajor> {
template<typename ProductType, typename Dest>
static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
typedef typename Dest::Index Index;
// FIXME make sure rhs is sequentially stored
// FIXME not very good if lhs is real and rhs complex while alpha is real too
const Index rows = dest.rows();
for (Index i=0; i<rows; ++i)
dest.row(i) += (alpha * prod.lhs().coeff(i)) * prod.rhs();
}
};
} // end namespace internal
/***********************************************************************
* Implementation of General Matrix Vector Product
***********************************************************************/
/* According to the shape/flags of the matrix we have to distinghish 3 different cases:
* 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
* 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
* 3 - all other cases are handled using a simple loop along the outer-storage direction.
* Therefore we need a lower level meta selector.
* Furthermore, if the matrix is the rhs, then the product has to be transposed.
*/
namespace internal {
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
: traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
{};
template<int Side, int StorageOrder, bool BlasCompatible>
struct gemv_selector;
} // end namespace internal
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, GemvProduct>
: public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
{
public:
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
{
// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
}
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
{
eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
}
};
namespace internal {
// The vector is on the left => transposition
template<int StorageOrder, bool BlasCompatible>
struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
{
Transpose<Dest> destT(dest);
enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
(prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
}
};
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
{
EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
};
template<typename Scalar,int Size>
struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
{
EIGEN_STRONG_INLINE Scalar* data() { return 0; }
};
template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
{
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
};
template<> struct gemv_selector<OnTheRight,ColMajor,true>
{
template<typename ProductType, typename Dest>
static inline void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
{
typedef typename ProductType::Index Index;
typedef typename ProductType::LhsScalar LhsScalar;
typedef typename ProductType::RhsScalar RhsScalar;
typedef typename ProductType::Scalar ResScalar;
typedef typename ProductType::RealScalar RealScalar;
typedef typename ProductType::ActualLhsType ActualLhsType;
typedef typename ProductType::ActualRhsType ActualRhsType;
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
const ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
const ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
* RhsBlasTraits::extractScalarFactor(prod.rhs());
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
};
gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0));
bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
ResScalar* actualDestPtr;
bool freeDestPtr = false;
if (evalToDest)
{
actualDestPtr = &dest.coeffRef(0);
}
else
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if((actualDestPtr = static_dest.data())==0)
{
freeDestPtr = true;
actualDestPtr = ei_aligned_stack_new(ResScalar,dest.size());
}
if(!alphaIsCompatible)
{
MappedDest(actualDestPtr, dest.size()).setZero();
compatibleAlpha = RhsScalar(1);
}
else
MappedDest(actualDestPtr, dest.size()) = dest;
}
general_matrix_vector_product
<Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
&actualLhs.coeffRef(0,0), actualLhs.outerStride(),
actualRhs.data(), actualRhs.innerStride(),
actualDestPtr, 1,
compatibleAlpha);
if (!evalToDest)
{
if(!alphaIsCompatible)
dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
else
dest = MappedDest(actualDestPtr, dest.size());
if(freeDestPtr) ei_aligned_stack_delete(ResScalar, actualDestPtr, dest.size());
}
}
};
template<> struct gemv_selector<OnTheRight,RowMajor,true>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
{
typedef typename ProductType::LhsScalar LhsScalar;
typedef typename ProductType::RhsScalar RhsScalar;
typedef typename ProductType::Scalar ResScalar;
typedef typename ProductType::Index Index;
typedef typename ProductType::ActualLhsType ActualLhsType;
typedef typename ProductType::ActualRhsType ActualRhsType;
typedef typename ProductType::_ActualRhsType _ActualRhsType;
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
* RhsBlasTraits::extractScalarFactor(prod.rhs());
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
};
gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
RhsScalar* actualRhsPtr;
bool freeRhsPtr = false;
if (DirectlyUseRhs)
{
actualRhsPtr = const_cast<RhsScalar*>(&actualRhs.coeffRef(0));
}
else
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if((actualRhsPtr = static_rhs.data())==0)
{
freeRhsPtr = true;
actualRhsPtr = ei_aligned_stack_new(RhsScalar, actualRhs.size());
}
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
general_matrix_vector_product
<Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
&actualLhs.coeffRef(0,0), actualLhs.outerStride(),
actualRhsPtr, 1,
&dest.coeffRef(0,0), dest.innerStride(),
actualAlpha);
if((!DirectlyUseRhs) && freeRhsPtr) ei_aligned_stack_delete(RhsScalar, actualRhsPtr, prod.rhs().size());
}
};
template<> struct gemv_selector<OnTheRight,ColMajor,false>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
{
typedef typename Dest::Index Index;
// TODO makes sure dest is sequentially stored in memory, otherwise use a temp
const Index size = prod.rhs().rows();
for(Index k=0; k<size; ++k)
dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
}
};
template<> struct gemv_selector<OnTheRight,RowMajor,false>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
{
typedef typename Dest::Index Index;
// TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
const Index rows = prod.rows();
for(Index i=0; i<rows; ++i)
dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
}
};
} // end namespace internal
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** \returns the matrix product of \c *this and \a other.
*
* \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
*
* \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
*/
template<typename Derived>
template<typename OtherDerived>
inline const typename ProductReturnType<Derived,OtherDerived>::Type
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
// A note regarding the function declaration: In MSVC, this function will sometimes
// not be inlined since DenseStorage is an unwindable object for dynamic
// matrices and product types are holding a member to store the result.
// Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
enum {
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|| OtherDerived::RowsAtCompileTime==Dynamic
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwiseProduct(v2)
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
#ifdef EIGEN_DEBUG_PRODUCT
internal::product_type<Derived,OtherDerived>::debug();
#endif
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
*
* The returned product will behave like any other expressions: the coefficients of the product will be
* computed once at a time as requested. This might be useful in some extremely rare cases when only
* a small and no coherent fraction of the result's coefficients have to be computed.
*
* \warning This version of the matrix product can be much much slower. So use it only if you know
* what you are doing and that you measured a true speed improvement.
*
* \sa operator*(const MatrixBase&)
*/
template<typename Derived>
template<typename OtherDerived>
const typename LazyProductReturnType<Derived,OtherDerived>::Type
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
enum {
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|| OtherDerived::RowsAtCompileTime==Dynamic
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwiseProduct(v2)
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}
#endif // EIGEN_PRODUCT_H

View file

@ -0,0 +1,288 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PRODUCTBASE_H
#define EIGEN_PRODUCTBASE_H
/** \class ProductBase
* \ingroup Core_Module
*
*/
namespace internal {
template<typename Derived, typename _Lhs, typename _Rhs>
struct traits<ProductBase<Derived,_Lhs,_Rhs> >
{
typedef MatrixXpr XprKind;
typedef typename remove_all<_Lhs>::type Lhs;
typedef typename remove_all<_Rhs>::type Rhs;
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
enum {
RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
// Note that EvalBeforeNestingBit and NestByRefBit
// are not used in practice because nested is overloaded for products
CoeffReadCost = 0 // FIXME why is it needed ?
};
};
}
#define EIGEN_PRODUCT_PUBLIC_INTERFACE(Derived) \
typedef ProductBase<Derived, Lhs, Rhs > Base; \
EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \
typedef typename Base::LhsNested LhsNested; \
typedef typename Base::_LhsNested _LhsNested; \
typedef typename Base::LhsBlasTraits LhsBlasTraits; \
typedef typename Base::ActualLhsType ActualLhsType; \
typedef typename Base::_ActualLhsType _ActualLhsType; \
typedef typename Base::RhsNested RhsNested; \
typedef typename Base::_RhsNested _RhsNested; \
typedef typename Base::RhsBlasTraits RhsBlasTraits; \
typedef typename Base::ActualRhsType ActualRhsType; \
typedef typename Base::_ActualRhsType _ActualRhsType; \
using Base::m_lhs; \
using Base::m_rhs;
template<typename Derived, typename Lhs, typename Rhs>
class ProductBase : public MatrixBase<Derived>
{
public:
typedef MatrixBase<Derived> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ProductBase)
typedef typename Lhs::Nested LhsNested;
typedef typename internal::remove_all<LhsNested>::type _LhsNested;
typedef internal::blas_traits<_LhsNested> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef typename internal::remove_all<ActualLhsType>::type _ActualLhsType;
typedef typename internal::traits<Lhs>::Scalar LhsScalar;
typedef typename Rhs::Nested RhsNested;
typedef typename internal::remove_all<RhsNested>::type _RhsNested;
typedef internal::blas_traits<_RhsNested> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename internal::remove_all<ActualRhsType>::type _ActualRhsType;
typedef typename internal::traits<Rhs>::Scalar RhsScalar;
// Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once
typedef CoeffBasedProduct<LhsNested, RhsNested, 0> FullyLazyCoeffBaseProductType;
public:
typedef typename Base::PlainObject PlainObject;
ProductBase(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
eigen_assert(lhs.cols() == rhs.rows()
&& "invalid matrix product"
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
}
inline Index rows() const { return m_lhs.rows(); }
inline Index cols() const { return m_rhs.cols(); }
template<typename Dest>
inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,Scalar(1)); }
template<typename Dest>
inline void addTo(Dest& dst) const { scaleAndAddTo(dst,1); }
template<typename Dest>
inline void subTo(Dest& dst) const { scaleAndAddTo(dst,-1); }
template<typename Dest>
inline void scaleAndAddTo(Dest& dst,Scalar alpha) const { derived().scaleAndAddTo(dst,alpha); }
const _LhsNested& lhs() const { return m_lhs; }
const _RhsNested& rhs() const { return m_rhs; }
// Implicit conversion to the nested type (trigger the evaluation of the product)
operator const PlainObject& () const
{
m_result.resize(m_lhs.rows(), m_rhs.cols());
derived().evalTo(m_result);
return m_result;
}
const Diagonal<const FullyLazyCoeffBaseProductType,0> diagonal() const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
template<int Index>
const Diagonal<FullyLazyCoeffBaseProductType,Index> diagonal() const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
// restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isnt a Lvalue expression
typename Base::CoeffReturnType coeff(Index row, Index col) const
{
#ifdef EIGEN2_SUPPORT
return lhs().row(row).cwiseProduct(rhs().col(col).transpose()).sum();
#else
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
return derived().coeff(row,col);
#endif
}
typename Base::CoeffReturnType coeff(Index i) const
{
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
return derived().coeff(i);
}
const Scalar& coeffRef(Index row, Index col) const
{
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
return derived().coeffRef(row,col);
}
const Scalar& coeffRef(Index i) const
{
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
return derived().coeffRef(i);
}
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
mutable PlainObject m_result;
};
// here we need to overload the nested rule for products
// such that the nested type is a const reference to a plain matrix
namespace internal {
template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
struct nested<GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
{
typedef PlainObject const& type;
};
}
template<typename NestedProduct>
class ScaledProduct;
// Note that these two operator* functions are not defined as member
// functions of ProductBase, because, otherwise we would have to
// define all overloads defined in MatrixBase. Furthermore, Using
// "using Base::operator*" would not work with MSVC.
//
// Also note that here we accept any compatible scalar types
template<typename Derived,typename Lhs,typename Rhs>
const ScaledProduct<Derived>
operator*(const ProductBase<Derived,Lhs,Rhs>& prod, typename Derived::Scalar x)
{ return ScaledProduct<Derived>(prod.derived(), x); }
template<typename Derived,typename Lhs,typename Rhs>
typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
const ScaledProduct<Derived> >::type
operator*(const ProductBase<Derived,Lhs,Rhs>& prod, typename Derived::RealScalar x)
{ return ScaledProduct<Derived>(prod.derived(), x); }
template<typename Derived,typename Lhs,typename Rhs>
const ScaledProduct<Derived>
operator*(typename Derived::Scalar x,const ProductBase<Derived,Lhs,Rhs>& prod)
{ return ScaledProduct<Derived>(prod.derived(), x); }
template<typename Derived,typename Lhs,typename Rhs>
typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
const ScaledProduct<Derived> >::type
operator*(typename Derived::RealScalar x,const ProductBase<Derived,Lhs,Rhs>& prod)
{ return ScaledProduct<Derived>(prod.derived(), x); }
namespace internal {
template<typename NestedProduct>
struct traits<ScaledProduct<NestedProduct> >
: traits<ProductBase<ScaledProduct<NestedProduct>,
typename NestedProduct::_LhsNested,
typename NestedProduct::_RhsNested> >
{
typedef typename traits<NestedProduct>::StorageKind StorageKind;
};
}
template<typename NestedProduct>
class ScaledProduct
: public ProductBase<ScaledProduct<NestedProduct>,
typename NestedProduct::_LhsNested,
typename NestedProduct::_RhsNested>
{
public:
typedef ProductBase<ScaledProduct<NestedProduct>,
typename NestedProduct::_LhsNested,
typename NestedProduct::_RhsNested> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::PlainObject PlainObject;
// EIGEN_PRODUCT_PUBLIC_INTERFACE(ScaledProduct)
ScaledProduct(const NestedProduct& prod, Scalar x)
: Base(prod.lhs(),prod.rhs()), m_prod(prod), m_alpha(x) {}
template<typename Dest>
inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,m_alpha); }
template<typename Dest>
inline void addTo(Dest& dst) const { scaleAndAddTo(dst,m_alpha); }
template<typename Dest>
inline void subTo(Dest& dst) const { scaleAndAddTo(dst,-m_alpha); }
template<typename Dest>
inline void scaleAndAddTo(Dest& dst,Scalar alpha) const { m_prod.derived().scaleAndAddTo(dst,alpha); }
const Scalar& alpha() const { return m_alpha; }
protected:
const NestedProduct& m_prod;
Scalar m_alpha;
};
/** \internal
* Overloaded to perform an efficient C = (A*B).lazy() */
template<typename Derived>
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& MatrixBase<Derived>::lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{
other.derived().evalTo(derived());
return derived();
}
#endif // EIGEN_PRODUCTBASE_H

View file

@ -0,0 +1,163 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_RANDOM_H
#define EIGEN_RANDOM_H
namespace internal {
template<typename Scalar> struct scalar_random_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_random_op)
template<typename Index>
inline const Scalar operator() (Index, Index = 0) const { return random<Scalar>(); }
};
template<typename Scalar>
struct functor_traits<scalar_random_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
} // end namespace internal
/** \returns a random matrix expression
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Random() should be used
* instead.
*
* Example: \include MatrixBase_random_int_int.cpp
* Output: \verbinclude MatrixBase_random_int_int.out
*
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
* a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
* behavior with expressions involving random matrices.
*
* \sa MatrixBase::setRandom(), MatrixBase::Random(Index), MatrixBase::Random()
*/
template<typename Derived>
inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
DenseBase<Derived>::Random(Index rows, Index cols)
{
return NullaryExpr(rows, cols, internal::scalar_random_op<Scalar>());
}
/** \returns a random vector expression
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Random() should be used
* instead.
*
* Example: \include MatrixBase_random_int.cpp
* Output: \verbinclude MatrixBase_random_int.out
*
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
* a temporary vector whenever it is nested in a larger expression. This prevents unexpected
* behavior with expressions involving random matrices.
*
* \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random()
*/
template<typename Derived>
inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
DenseBase<Derived>::Random(Index size)
{
return NullaryExpr(size, internal::scalar_random_op<Scalar>());
}
/** \returns a fixed-size random matrix or vector expression
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_random.cpp
* Output: \verbinclude MatrixBase_random.out
*
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
* a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
* behavior with expressions involving random matrices.
*
* \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random(Index)
*/
template<typename Derived>
inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
DenseBase<Derived>::Random()
{
return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_random_op<Scalar>());
}
/** Sets all coefficients in this expression to random values.
*
* Example: \include MatrixBase_setRandom.cpp
* Output: \verbinclude MatrixBase_setRandom.out
*
* \sa class CwiseNullaryOp, setRandom(Index), setRandom(Index,Index)
*/
template<typename Derived>
inline Derived& DenseBase<Derived>::setRandom()
{
return *this = Random(rows(), cols());
}
/** Resizes to the given \a size, and sets all coefficients in this expression to random values.
*
* \only_for_vectors
*
* Example: \include Matrix_setRandom_int.cpp
* Output: \verbinclude Matrix_setRandom_int.out
*
* \sa MatrixBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, MatrixBase::Random()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setRandom(Index size)
{
resize(size);
return setRandom();
}
/** Resizes to the given size, and sets all coefficients in this expression to random values.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setRandom_int_int.cpp
* Output: \verbinclude Matrix_setRandom_int_int.out
*
* \sa MatrixBase::setRandom(), setRandom(Index), class CwiseNullaryOp, MatrixBase::Random()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setRandom(Index rows, Index cols)
{
resize(rows, cols);
return setRandom();
}
#endif // EIGEN_RANDOM_H

View file

@ -0,0 +1,404 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_REDUX_H
#define EIGEN_REDUX_H
namespace internal {
// TODO
// * implement other kind of vectorization
// * factorize code
/***************************************************************************
* Part 1 : the logic deciding a strategy for vectorization and unrolling
***************************************************************************/
template<typename Func, typename Derived>
struct redux_traits
{
public:
enum {
PacketSize = packet_traits<typename Derived::Scalar>::size,
InnerMaxSize = int(Derived::IsRowMajor)
? Derived::MaxColsAtCompileTime
: Derived::MaxRowsAtCompileTime
};
enum {
MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
&& (functor_traits<Func>::PacketAccess),
MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit),
MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize
};
public:
enum {
Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(DefaultTraversal)
};
public:
enum {
Cost = ( Derived::SizeAtCompileTime == Dynamic
|| Derived::CoeffReadCost == Dynamic
|| (Derived::SizeAtCompileTime!=1 && functor_traits<Func>::Cost == Dynamic)
) ? Dynamic
: Derived::SizeAtCompileTime * Derived::CoeffReadCost
+ (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
};
public:
enum {
Unrolling = Cost != Dynamic && Cost <= UnrollingLimit
? CompleteUnrolling
: NoUnrolling
};
};
/***************************************************************************
* Part 2 : unrollers
***************************************************************************/
/*** no vectorization ***/
template<typename Func, typename Derived, int Start, int Length>
struct redux_novec_unroller
{
enum {
HalfLength = Length/2
};
typedef typename Derived::Scalar Scalar;
EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func& func)
{
return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
}
};
template<typename Func, typename Derived, int Start>
struct redux_novec_unroller<Func, Derived, Start, 1>
{
enum {
outer = Start / Derived::InnerSizeAtCompileTime,
inner = Start % Derived::InnerSizeAtCompileTime
};
typedef typename Derived::Scalar Scalar;
EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func&)
{
return mat.coeffByOuterInner(outer, inner);
}
};
// This is actually dead code and will never be called. It is required
// to prevent false warnings regarding failed inlining though
// for 0 length run() will never be called at all.
template<typename Func, typename Derived, int Start>
struct redux_novec_unroller<Func, Derived, Start, 0>
{
typedef typename Derived::Scalar Scalar;
EIGEN_STRONG_INLINE static Scalar run(const Derived&, const Func&) { return Scalar(); }
};
/*** vectorization ***/
template<typename Func, typename Derived, int Start, int Length>
struct redux_vec_unroller
{
enum {
PacketSize = packet_traits<typename Derived::Scalar>::size,
HalfLength = Length/2
};
typedef typename Derived::Scalar Scalar;
typedef typename packet_traits<Scalar>::type PacketScalar;
EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func& func)
{
return func.packetOp(
redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
}
};
template<typename Func, typename Derived, int Start>
struct redux_vec_unroller<Func, Derived, Start, 1>
{
enum {
index = Start * packet_traits<typename Derived::Scalar>::size,
outer = index / int(Derived::InnerSizeAtCompileTime),
inner = index % int(Derived::InnerSizeAtCompileTime),
alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
};
typedef typename Derived::Scalar Scalar;
typedef typename packet_traits<Scalar>::type PacketScalar;
EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func&)
{
return mat.template packetByOuterInner<alignment>(outer, inner);
}
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
template<typename Func, typename Derived,
int Traversal = redux_traits<Func, Derived>::Traversal,
int Unrolling = redux_traits<Func, Derived>::Unrolling
>
struct redux_impl;
template<typename Func, typename Derived>
struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
{
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
{
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
Scalar res;
res = mat.coeffByOuterInner(0, 0);
for(Index i = 1; i < mat.innerSize(); ++i)
res = func(res, mat.coeffByOuterInner(0, i));
for(Index i = 1; i < mat.outerSize(); ++i)
for(Index j = 0; j < mat.innerSize(); ++j)
res = func(res, mat.coeffByOuterInner(i, j));
return res;
}
};
template<typename Func, typename Derived>
struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
: public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
{};
template<typename Func, typename Derived>
struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
{
typedef typename Derived::Scalar Scalar;
typedef typename packet_traits<Scalar>::type PacketScalar;
typedef typename Derived::Index Index;
static Scalar run(const Derived& mat, const Func& func)
{
const Index size = mat.size();
eigen_assert(size && "you are using an empty matrix");
const Index packetSize = packet_traits<Scalar>::size;
const Index alignedStart = first_aligned(mat);
enum {
alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit)
? Aligned : Unaligned
};
const Index alignedSize = ((size-alignedStart)/packetSize)*packetSize;
const Index alignedEnd = alignedStart + alignedSize;
Scalar res;
if(alignedSize)
{
PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
for(Index index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
packet_res = func.packetOp(packet_res, mat.template packet<alignment>(index));
res = func.predux(packet_res);
for(Index index = 0; index < alignedStart; ++index)
res = func(res,mat.coeff(index));
for(Index index = alignedEnd; index < size; ++index)
res = func(res,mat.coeff(index));
}
else // too small to vectorize anything.
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
{
res = mat.coeff(0);
for(Index index = 1; index < size; ++index)
res = func(res,mat.coeff(index));
}
return res;
}
};
template<typename Func, typename Derived>
struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling>
{
typedef typename Derived::Scalar Scalar;
typedef typename packet_traits<Scalar>::type PacketScalar;
typedef typename Derived::Index Index;
static Scalar run(const Derived& mat, const Func& func)
{
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
const Index innerSize = mat.innerSize();
const Index outerSize = mat.outerSize();
enum {
packetSize = packet_traits<Scalar>::size
};
const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
Scalar res;
if(packetedInnerSize)
{
PacketScalar packet_res = mat.template packet<Unaligned>(0,0);
for(Index j=0; j<outerSize; ++j)
for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i));
res = func.predux(packet_res);
for(Index j=0; j<outerSize; ++j)
for(Index i=packetedInnerSize; i<innerSize; ++i)
res = func(res, mat.coeffByOuterInner(j,i));
}
else // too small to vectorize anything.
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
{
res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
}
return res;
}
};
template<typename Func, typename Derived>
struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
{
typedef typename Derived::Scalar Scalar;
typedef typename packet_traits<Scalar>::type PacketScalar;
enum {
PacketSize = packet_traits<Scalar>::size,
Size = Derived::SizeAtCompileTime,
VectorizedSize = (Size / PacketSize) * PacketSize
};
EIGEN_STRONG_INLINE static Scalar run(const Derived& mat, const Func& func)
{
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
if (VectorizedSize != Size)
res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
return res;
}
};
} // end namespace internal
/***************************************************************************
* Part 4 : public API
***************************************************************************/
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
*
* The template parameter \a BinaryOp is the type of the functor \a func which must be
* an associative operator. Both current STL and TR1 functor styles are handled.
*
* \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
*/
template<typename Derived>
template<typename Func>
EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type
DenseBase<Derived>::redux(const Func& func) const
{
typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
return internal::redux_impl<Func, ThisNested>
::run(derived(), func);
}
/** \returns the minimum of all coefficients of *this
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::minCoeff() const
{
return this->redux(Eigen::internal::scalar_min_op<Scalar>());
}
/** \returns the maximum of all coefficients of *this
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::maxCoeff() const
{
return this->redux(Eigen::internal::scalar_max_op<Scalar>());
}
/** \returns the sum of all coefficients of *this
*
* \sa trace(), prod(), mean()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::sum() const
{
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
return Scalar(0);
return this->redux(Eigen::internal::scalar_sum_op<Scalar>());
}
/** \returns the mean of all coefficients of *this
*
* \sa trace(), prod(), sum()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::mean() const
{
return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
}
/** \returns the product of all coefficients of *this
*
* Example: \include MatrixBase_prod.cpp
* Output: \verbinclude MatrixBase_prod.out
*
* \sa sum(), mean(), trace()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::prod() const
{
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
return Scalar(1);
return this->redux(Eigen::internal::scalar_product_op<Scalar>());
}
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
*
* \c *this can be any matrix, not necessarily square.
*
* \sa diagonal(), sum()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
MatrixBase<Derived>::trace() const
{
return derived().diagonal().sum();
}
#endif // EIGEN_REDUX_H

View file

@ -0,0 +1,179 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_REPLICATE_H
#define EIGEN_REPLICATE_H
/**
* \class Replicate
* \ingroup Core_Module
*
* \brief Expression of the multiple replication of a matrix or vector
*
* \param MatrixType the type of the object we are replicating
*
* This class represents an expression of the multiple replication of a matrix or vector.
* It is the return type of DenseBase::replicate() and most of the time
* this is the only way it is used.
*
* \sa DenseBase::replicate()
*/
namespace internal {
template<typename MatrixType,int RowFactor,int ColFactor>
struct traits<Replicate<MatrixType,RowFactor,ColFactor> >
: traits<MatrixType>
{
typedef typename MatrixType::Scalar Scalar;
typedef typename traits<MatrixType>::StorageKind StorageKind;
typedef typename traits<MatrixType>::XprKind XprKind;
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsAtCompileTime = RowFactor==Dynamic || int(MatrixType::RowsAtCompileTime)==Dynamic
? Dynamic
: RowFactor * MatrixType::RowsAtCompileTime,
ColsAtCompileTime = ColFactor==Dynamic || int(MatrixType::ColsAtCompileTime)==Dynamic
? Dynamic
: ColFactor * MatrixType::ColsAtCompileTime,
//FIXME we don't propagate the max sizes !!!
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
IsRowMajor = MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1 ? 1
: MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1 ? 0
: (MatrixType::Flags & RowMajorBit) ? 1 : 0,
Flags = (_MatrixTypeNested::Flags & HereditaryBits & ~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0),
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};
}
template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
: public internal::dense_xpr_base< Replicate<MatrixType,RowFactor,ColFactor> >::type
{
public:
typedef typename internal::dense_xpr_base<Replicate>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Replicate)
template<typename OriginalMatrixType>
inline explicit Replicate(const OriginalMatrixType& matrix)
: m_matrix(matrix), m_rowFactor(RowFactor), m_colFactor(ColFactor)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::remove_const<MatrixType>::type,OriginalMatrixType>::value),
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE)
eigen_assert(RowFactor!=Dynamic && ColFactor!=Dynamic);
}
template<typename OriginalMatrixType>
inline Replicate(const OriginalMatrixType& matrix, int rowFactor, int colFactor)
: m_matrix(matrix), m_rowFactor(rowFactor), m_colFactor(colFactor)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::remove_const<MatrixType>::type,OriginalMatrixType>::value),
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE)
}
inline Index rows() const { return m_matrix.rows() * m_rowFactor.value(); }
inline Index cols() const { return m_matrix.cols() * m_colFactor.value(); }
inline Scalar coeff(Index row, Index col) const
{
// try to avoid using modulo; this is a pure optimization strategy
const Index actual_row = internal::traits<MatrixType>::RowsAtCompileTime==1 ? 0
: RowFactor==1 ? row
: row%m_matrix.rows();
const Index actual_col = internal::traits<MatrixType>::ColsAtCompileTime==1 ? 0
: ColFactor==1 ? col
: col%m_matrix.cols();
return m_matrix.coeff(actual_row, actual_col);
}
template<int LoadMode>
inline PacketScalar packet(Index row, Index col) const
{
const Index actual_row = internal::traits<MatrixType>::RowsAtCompileTime==1 ? 0
: RowFactor==1 ? row
: row%m_matrix.rows();
const Index actual_col = internal::traits<MatrixType>::ColsAtCompileTime==1 ? 0
: ColFactor==1 ? col
: col%m_matrix.cols();
return m_matrix.template packet<LoadMode>(actual_row, actual_col);
}
protected:
const typename MatrixType::Nested m_matrix;
const internal::variable_if_dynamic<Index, RowFactor> m_rowFactor;
const internal::variable_if_dynamic<Index, ColFactor> m_colFactor;
};
/**
* \return an expression of the replication of \c *this
*
* Example: \include MatrixBase_replicate.cpp
* Output: \verbinclude MatrixBase_replicate.out
*
* \sa VectorwiseOp::replicate(), DenseBase::replicate(Index,Index), class Replicate
*/
template<typename Derived>
template<int RowFactor, int ColFactor>
inline const Replicate<Derived,RowFactor,ColFactor>
DenseBase<Derived>::replicate() const
{
return Replicate<Derived,RowFactor,ColFactor>(derived());
}
/**
* \return an expression of the replication of \c *this
*
* Example: \include MatrixBase_replicate_int_int.cpp
* Output: \verbinclude MatrixBase_replicate_int_int.out
*
* \sa VectorwiseOp::replicate(), DenseBase::replicate<int,int>(), class Replicate
*/
template<typename Derived>
inline const Replicate<Derived,Dynamic,Dynamic>
DenseBase<Derived>::replicate(Index rowFactor,Index colFactor) const
{
return Replicate<Derived,Dynamic,Dynamic>(derived(),rowFactor,colFactor);
}
/**
* \return an expression of the replication of each column (or row) of \c *this
*
* Example: \include DirectionWise_replicate_int.cpp
* Output: \verbinclude DirectionWise_replicate_int.out
*
* \sa VectorwiseOp::replicate(), DenseBase::replicate(), class Replicate
*/
template<typename ExpressionType, int Direction>
const typename VectorwiseOp<ExpressionType,Direction>::ReplicateReturnType
VectorwiseOp<ExpressionType,Direction>::replicate(Index factor) const
{
return typename VectorwiseOp<ExpressionType,Direction>::ReplicateReturnType
(_expression(),Direction==Vertical?factor:1,Direction==Horizontal?factor:1);
}
#endif // EIGEN_REPLICATE_H

View file

@ -0,0 +1,99 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_RETURNBYVALUE_H
#define EIGEN_RETURNBYVALUE_H
/** \class ReturnByValue
* \ingroup Core_Module
*
*/
namespace internal {
template<typename Derived>
struct traits<ReturnByValue<Derived> >
: public traits<typename traits<Derived>::ReturnType>
{
enum {
// We're disabling the DirectAccess because e.g. the constructor of
// the Block-with-DirectAccess expression requires to have a coeffRef method.
// Also, we don't want to have to implement the stride stuff.
Flags = (traits<typename traits<Derived>::ReturnType>::Flags
| EvalBeforeNestingBit) & ~DirectAccessBit
};
};
/* The ReturnByValue object doesn't even have a coeff() method.
* So the only way that nesting it in an expression can work, is by evaluating it into a plain matrix.
* So internal::nested always gives the plain return matrix type.
*
* FIXME: I don't understand why we need this specialization: isn't this taken care of by the EvalBeforeNestingBit ??
*/
template<typename Derived,int n,typename PlainObject>
struct nested<ReturnByValue<Derived>, n, PlainObject>
{
typedef typename traits<Derived>::ReturnType type;
};
} // end namespace internal
template<typename Derived> class ReturnByValue
: public internal::dense_xpr_base< ReturnByValue<Derived> >::type
{
public:
typedef typename internal::traits<Derived>::ReturnType ReturnType;
typedef typename internal::dense_xpr_base<ReturnByValue>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ReturnByValue)
template<typename Dest>
inline void evalTo(Dest& dst) const
{ static_cast<const Derived*>(this)->evalTo(dst); }
inline Index rows() const { return static_cast<const Derived*>(this)->rows(); }
inline Index cols() const { return static_cast<const Derived*>(this)->cols(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
#define Unusable YOU_ARE_TRYING_TO_ACCESS_A_SINGLE_COEFFICIENT_IN_A_SPECIAL_EXPRESSION_WHERE_THAT_IS_NOT_ALLOWED_BECAUSE_THAT_WOULD_BE_INEFFICIENT
class Unusable{
Unusable(const Unusable&) {}
Unusable& operator=(const Unusable&) {return *this;}
};
const Unusable& coeff(Index) const { return *reinterpret_cast<const Unusable*>(this); }
const Unusable& coeff(Index,Index) const { return *reinterpret_cast<const Unusable*>(this); }
Unusable& coeffRef(Index) { return *reinterpret_cast<Unusable*>(this); }
Unusable& coeffRef(Index,Index) { return *reinterpret_cast<Unusable*>(this); }
#endif
};
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
{
other.evalTo(derived());
return derived();
}
#endif // EIGEN_RETURNBYVALUE_H

View file

@ -0,0 +1,230 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_REVERSE_H
#define EIGEN_REVERSE_H
/** \class Reverse
* \ingroup Core_Module
*
* \brief Expression of the reverse of a vector or matrix
*
* \param MatrixType the type of the object of which we are taking the reverse
*
* This class represents an expression of the reverse of a vector.
* It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::reverse(), VectorwiseOp::reverse()
*/
namespace internal {
template<typename MatrixType, int Direction>
struct traits<Reverse<MatrixType, Direction> >
: traits<MatrixType>
{
typedef typename MatrixType::Scalar Scalar;
typedef typename traits<MatrixType>::StorageKind StorageKind;
typedef typename traits<MatrixType>::XprKind XprKind;
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
// let's enable LinearAccess only with vectorization because of the product overhead
LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) )
? LinearAccessBit : 0,
Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess),
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};
template<typename PacketScalar, bool ReversePacket> struct reverse_packet_cond
{
static inline PacketScalar run(const PacketScalar& x) { return preverse(x); }
};
template<typename PacketScalar> struct reverse_packet_cond<PacketScalar,false>
{
static inline PacketScalar run(const PacketScalar& x) { return x; }
};
} // end namespace internal
template<typename MatrixType, int Direction> class Reverse
: public internal::dense_xpr_base< Reverse<MatrixType, Direction> >::type
{
public:
typedef typename internal::dense_xpr_base<Reverse>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
using Base::IsRowMajor;
// next line is necessary because otherwise const version of operator()
// is hidden by non-const version defined in this file
using Base::operator();
protected:
enum {
PacketSize = internal::packet_traits<Scalar>::size,
IsColMajor = !IsRowMajor,
ReverseRow = (Direction == Vertical) || (Direction == BothDirections),
ReverseCol = (Direction == Horizontal) || (Direction == BothDirections),
OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1,
OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1,
ReversePacket = (Direction == BothDirections)
|| ((Direction == Vertical) && IsColMajor)
|| ((Direction == Horizontal) && IsRowMajor)
};
typedef internal::reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet;
public:
inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { }
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse)
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
inline Index innerStride() const
{
return -m_matrix.innerStride();
}
inline Scalar& operator()(Index row, Index col)
{
eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
return coeffRef(row, col);
}
inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row,
ReverseCol ? m_matrix.cols() - col - 1 : col);
}
inline CoeffReturnType coeff(Index row, Index col) const
{
return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row,
ReverseCol ? m_matrix.cols() - col - 1 : col);
}
inline CoeffReturnType coeff(Index index) const
{
return m_matrix.coeff(m_matrix.size() - index - 1);
}
inline Scalar& coeffRef(Index index)
{
return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1);
}
inline Scalar& operator()(Index index)
{
eigen_assert(index >= 0 && index < m_matrix.size());
return coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return reverse_packet::run(m_matrix.template packet<LoadMode>(
ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
ReverseCol ? m_matrix.cols() - col - OffsetCol : col));
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(
ReverseRow ? m_matrix.rows() - row - OffsetRow : row,
ReverseCol ? m_matrix.cols() - col - OffsetCol : col,
reverse_packet::run(x));
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return internal::preverse(m_matrix.template packet<LoadMode>( m_matrix.size() - index - PacketSize ));
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(m_matrix.size() - index - PacketSize, internal::preverse(x));
}
protected:
const typename MatrixType::Nested m_matrix;
};
/** \returns an expression of the reverse of *this.
*
* Example: \include MatrixBase_reverse.cpp
* Output: \verbinclude MatrixBase_reverse.out
*
*/
template<typename Derived>
inline typename DenseBase<Derived>::ReverseReturnType
DenseBase<Derived>::reverse()
{
return derived();
}
/** This is the const version of reverse(). */
template<typename Derived>
inline const typename DenseBase<Derived>::ConstReverseReturnType
DenseBase<Derived>::reverse() const
{
return derived();
}
/** This is the "in place" version of reverse: it reverses \c *this.
*
* In most cases it is probably better to simply use the reversed expression
* of a matrix. However, when reversing the matrix data itself is really needed,
* then this "in-place" version is probably the right choice because it provides
* the following additional features:
* - less error prone: doing the same operation with .reverse() requires special care:
* \code m = m.reverse().eval(); \endcode
* - this API allows to avoid creating a temporary (the current implementation creates a temporary, but that could be avoided using swap)
* - it allows future optimizations (cache friendliness, etc.)
*
* \sa reverse() */
template<typename Derived>
inline void DenseBase<Derived>::reverseInPlace()
{
derived() = derived().reverse().eval();
}
#endif // EIGEN_REVERSE_H

View file

@ -0,0 +1,158 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SELECT_H
#define EIGEN_SELECT_H
/** \class Select
* \ingroup Core_Module
*
* \brief Expression of a coefficient wise version of the C++ ternary operator ?:
*
* \param ConditionMatrixType the type of the \em condition expression which must be a boolean matrix
* \param ThenMatrixType the type of the \em then expression
* \param ElseMatrixType the type of the \em else expression
*
* This class represents an expression of a coefficient wise version of the C++ ternary operator ?:.
* It is the return type of DenseBase::select() and most of the time this is the only way it is used.
*
* \sa DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const
*/
namespace internal {
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
struct traits<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
: traits<ThenMatrixType>
{
typedef typename traits<ThenMatrixType>::Scalar Scalar;
typedef Dense StorageKind;
typedef typename traits<ThenMatrixType>::XprKind XprKind;
typedef typename ConditionMatrixType::Nested ConditionMatrixNested;
typedef typename ThenMatrixType::Nested ThenMatrixNested;
typedef typename ElseMatrixType::Nested ElseMatrixNested;
enum {
RowsAtCompileTime = ConditionMatrixType::RowsAtCompileTime,
ColsAtCompileTime = ConditionMatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = ConditionMatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = ConditionMatrixType::MaxColsAtCompileTime,
Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & HereditaryBits,
CoeffReadCost = traits<typename remove_all<ConditionMatrixNested>::type>::CoeffReadCost
+ EIGEN_SIZE_MAX(traits<typename remove_all<ThenMatrixNested>::type>::CoeffReadCost,
traits<typename remove_all<ElseMatrixNested>::type>::CoeffReadCost)
};
};
}
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
class Select : internal::no_assignment_operator,
public internal::dense_xpr_base< Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >::type
{
public:
typedef typename internal::dense_xpr_base<Select>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Select)
Select(const ConditionMatrixType& conditionMatrix,
const ThenMatrixType& thenMatrix,
const ElseMatrixType& elseMatrix)
: m_condition(conditionMatrix), m_then(thenMatrix), m_else(elseMatrix)
{
eigen_assert(m_condition.rows() == m_then.rows() && m_condition.rows() == m_else.rows());
eigen_assert(m_condition.cols() == m_then.cols() && m_condition.cols() == m_else.cols());
}
Index rows() const { return m_condition.rows(); }
Index cols() const { return m_condition.cols(); }
const Scalar coeff(Index i, Index j) const
{
if (m_condition.coeff(i,j))
return m_then.coeff(i,j);
else
return m_else.coeff(i,j);
}
const Scalar coeff(Index i) const
{
if (m_condition.coeff(i))
return m_then.coeff(i);
else
return m_else.coeff(i);
}
protected:
const typename ConditionMatrixType::Nested m_condition;
const typename ThenMatrixType::Nested m_then;
const typename ElseMatrixType::Nested m_else;
};
/** \returns a matrix where each coefficient (i,j) is equal to \a thenMatrix(i,j)
* if \c *this(i,j), and \a elseMatrix(i,j) otherwise.
*
* Example: \include MatrixBase_select.cpp
* Output: \verbinclude MatrixBase_select.out
*
* \sa class Select
*/
template<typename Derived>
template<typename ThenDerived,typename ElseDerived>
inline const Select<Derived,ThenDerived,ElseDerived>
DenseBase<Derived>::select(const DenseBase<ThenDerived>& thenMatrix,
const DenseBase<ElseDerived>& elseMatrix) const
{
return Select<Derived,ThenDerived,ElseDerived>(derived(), thenMatrix.derived(), elseMatrix.derived());
}
/** Version of DenseBase::select(const DenseBase&, const DenseBase&) with
* the \em else expression being a scalar value.
*
* \sa DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const, class Select
*/
template<typename Derived>
template<typename ThenDerived>
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
DenseBase<Derived>::select(const DenseBase<ThenDerived>& thenMatrix,
typename ThenDerived::Scalar elseScalar) const
{
return Select<Derived,ThenDerived,typename ThenDerived::ConstantReturnType>(
derived(), thenMatrix.derived(), ThenDerived::Constant(rows(),cols(),elseScalar));
}
/** Version of DenseBase::select(const DenseBase&, const DenseBase&) with
* the \em then expression being a scalar value.
*
* \sa DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const, class Select
*/
template<typename Derived>
template<typename ElseDerived>
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
DenseBase<Derived>::select(typename ElseDerived::Scalar thenScalar,
const DenseBase<ElseDerived>& elseMatrix) const
{
return Select<Derived,typename ElseDerived::ConstantReturnType,ElseDerived>(
derived(), ElseDerived::Constant(rows(),cols(),thenScalar), elseMatrix.derived());
}
#endif // EIGEN_SELECT_H

View file

@ -0,0 +1,325 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SELFADJOINTMATRIX_H
#define EIGEN_SELFADJOINTMATRIX_H
/** \class SelfAdjointView
* \ingroup Core_Module
*
*
* \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
*
* \param MatrixType the type of the dense matrix storing the coefficients
* \param TriangularPart can be either \c Lower or \c Upper
*
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
* and most of the time this is the only way that it is used.
*
* \sa class TriangularBase, MatrixBase::selfAdjointView()
*/
namespace internal {
template<typename MatrixType, unsigned int UpLo>
struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
{
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
typedef MatrixType ExpressionType;
typedef typename MatrixType::PlainObject DenseMatrixType;
enum {
Mode = UpLo | SelfAdjoint,
Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits)
& (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved
CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
};
};
}
template <typename Lhs, int LhsMode, bool LhsIsVector,
typename Rhs, int RhsMode, bool RhsIsVector>
struct SelfadjointProductMatrix;
// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
: public TriangularBase<SelfAdjointView<MatrixType, UpLo> >
{
public:
typedef TriangularBase<SelfAdjointView> Base;
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
/** \brief The type of coefficients in this matrix */
typedef typename internal::traits<SelfAdjointView>::Scalar Scalar;
typedef typename MatrixType::Index Index;
enum {
Mode = internal::traits<SelfAdjointView>::Mode
};
typedef typename MatrixType::PlainObject PlainObject;
inline SelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
{}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
inline Index outerStride() const { return m_matrix.outerStride(); }
inline Index innerStride() const { return m_matrix.innerStride(); }
/** \sa MatrixBase::coeff()
* \warning the coordinates must fit into the referenced triangular part
*/
inline Scalar coeff(Index row, Index col) const
{
Base::check_coordinates_internal(row, col);
return m_matrix.coeff(row, col);
}
/** \sa MatrixBase::coeffRef()
* \warning the coordinates must fit into the referenced triangular part
*/
inline Scalar& coeffRef(Index row, Index col)
{
Base::check_coordinates_internal(row, col);
return m_matrix.const_cast_derived().coeffRef(row, col);
}
/** \internal */
const MatrixTypeNestedCleaned& _expression() const { return m_matrix; }
const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
/** Efficient self-adjoint matrix times vector/matrix product */
template<typename OtherDerived>
SelfadjointProductMatrix<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
return SelfadjointProductMatrix
<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
(m_matrix, rhs.derived());
}
/** Efficient vector/matrix times self-adjoint matrix product */
template<typename OtherDerived> friend
SelfadjointProductMatrix<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
{
return SelfadjointProductMatrix
<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
(lhs.derived(),rhs.m_matrix);
}
/** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
* \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$
* \returns a reference to \c *this
*
* The vectors \a u and \c v \b must be column vectors, however they can be
* a adjoint expression without any overhead. Only the meaningful triangular
* part of the matrix is updated, the rest is left unchanged.
*
* \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar)
*/
template<typename DerivedU, typename DerivedV>
SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha = Scalar(1));
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
* \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
*
* \returns a reference to \c *this
*
* Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
* call this function with u.adjoint().
*
* \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar)
*/
template<typename DerivedU>
SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, Scalar alpha = Scalar(1));
/////////// Cholesky module ///////////
const LLT<PlainObject, UpLo> llt() const;
const LDLT<PlainObject, UpLo> ldlt() const;
/////////// Eigenvalue module ///////////
/** Real part of #Scalar */
typedef typename NumTraits<Scalar>::Real RealScalar;
/** Return type of eigenvalues() */
typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType;
EigenvaluesReturnType eigenvalues() const;
RealScalar operatorNorm() const;
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
SelfAdjointView& operator=(const MatrixBase<OtherDerived>& other)
{
enum {
OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
};
m_matrix.const_cast_derived().template triangularView<UpLo>() = other;
m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.adjoint();
return *this;
}
template<typename OtherMatrixType, unsigned int OtherMode>
SelfAdjointView& operator=(const TriangularView<OtherMatrixType, OtherMode>& other)
{
enum {
OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
};
m_matrix.const_cast_derived().template triangularView<UpLo>() = other.toDenseMatrix();
m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.toDenseMatrix().adjoint();
return *this;
}
#endif
protected:
const MatrixTypeNested m_matrix;
};
// template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
// internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
// operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
// {
// return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
// }
// selfadjoint to dense matrix
namespace internal {
template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount, ClearOpposite>
{
enum {
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
};
inline static void run(Derived1 &dst, const Derived2 &src)
{
triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount-1, ClearOpposite>::run(dst, src);
if(row == col)
dst.coeffRef(row, col) = real(src.coeff(row, col));
else if(row < col)
dst.coeffRef(col, row) = conj(dst.coeffRef(row, col) = src.coeff(row, col));
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, 0, ClearOpposite>
{
inline static void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount, ClearOpposite>
{
enum {
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
};
inline static void run(Derived1 &dst, const Derived2 &src)
{
triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount-1, ClearOpposite>::run(dst, src);
if(row == col)
dst.coeffRef(row, col) = real(src.coeff(row, col));
else if(row > col)
dst.coeffRef(col, row) = conj(dst.coeffRef(row, col) = src.coeff(row, col));
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, 0, ClearOpposite>
{
inline static void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, Dynamic, ClearOpposite>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(Index j = 0; j < dst.cols(); ++j)
{
for(Index i = 0; i < j; ++i)
{
dst.copyCoeff(i, j, src);
dst.coeffRef(j,i) = conj(dst.coeff(i,j));
}
dst.copyCoeff(j, j, src);
}
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, Dynamic, ClearOpposite>
{
inline static void run(Derived1 &dst, const Derived2 &src)
{
typedef typename Derived1::Index Index;
for(Index i = 0; i < dst.rows(); ++i)
{
for(Index j = 0; j < i; ++j)
{
dst.copyCoeff(i, j, src);
dst.coeffRef(j,i) = conj(dst.coeff(i,j));
}
dst.copyCoeff(i, i, src);
}
}
};
} // end namespace internal
/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/
template<typename Derived>
template<unsigned int UpLo>
typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
MatrixBase<Derived>::selfadjointView() const
{
return derived();
}
template<typename Derived>
template<unsigned int UpLo>
typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
MatrixBase<Derived>::selfadjointView()
{
return derived();
}
#endif // EIGEN_SELFADJOINTMATRIX_H

View file

@ -0,0 +1,195 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SELFCWISEBINARYOP_H
#define EIGEN_SELFCWISEBINARYOP_H
/** \class SelfCwiseBinaryOp
* \ingroup Core_Module
*
* \internal
*
* \brief Internal helper class for optimizing operators like +=, -=
*
* This is a pseudo expression class re-implementing the copyCoeff/copyPacket
* method to directly performs a +=/-= operations in an optimal way. In particular,
* this allows to make sure that the input/output data are loaded only once using
* aligned packet loads.
*
* \sa class SwapWrapper for a similar trick.
*/
namespace internal {
template<typename BinaryOp, typename Lhs, typename Rhs>
struct traits<SelfCwiseBinaryOp<BinaryOp,Lhs,Rhs> >
: traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >
{
enum {
// Note that it is still a good idea to preserve the DirectAccessBit
// so that assign can correctly align the data.
Flags = traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >::Flags | (Lhs::Flags&DirectAccessBit) | (Lhs::Flags&LvalueBit),
OuterStrideAtCompileTime = Lhs::OuterStrideAtCompileTime,
InnerStrideAtCompileTime = Lhs::InnerStrideAtCompileTime
};
};
}
template<typename BinaryOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp
: public internal::dense_xpr_base< SelfCwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
{
public:
typedef typename internal::dense_xpr_base<SelfCwiseBinaryOp>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(SelfCwiseBinaryOp)
typedef typename internal::packet_traits<Scalar>::type Packet;
inline SelfCwiseBinaryOp(Lhs& xpr, const BinaryOp& func = BinaryOp()) : m_matrix(xpr), m_functor(func) {}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
inline Index outerStride() const { return m_matrix.outerStride(); }
inline Index innerStride() const { return m_matrix.innerStride(); }
inline const Scalar* data() const { return m_matrix.data(); }
// note that this function is needed by assign to correctly align loads/stores
// TODO make Assign use .data()
inline Scalar& coeffRef(Index row, Index col)
{
EIGEN_STATIC_ASSERT_LVALUE(Lhs)
return m_matrix.const_cast_derived().coeffRef(row, col);
}
inline const Scalar& coeffRef(Index row, Index col) const
{
return m_matrix.coeffRef(row, col);
}
// note that this function is needed by assign to correctly align loads/stores
// TODO make Assign use .data()
inline Scalar& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_LVALUE(Lhs)
return m_matrix.const_cast_derived().coeffRef(index);
}
inline const Scalar& coeffRef(Index index) const
{
return m_matrix.const_cast_derived().coeffRef(index);
}
template<typename OtherDerived>
void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
{
OtherDerived& _other = other.const_cast_derived();
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
Scalar& tmp = m_matrix.coeffRef(row,col);
tmp = m_functor(tmp, _other.coeff(row,col));
}
template<typename OtherDerived>
void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
{
OtherDerived& _other = other.const_cast_derived();
eigen_internal_assert(index >= 0 && index < m_matrix.size());
Scalar& tmp = m_matrix.coeffRef(index);
tmp = m_functor(tmp, _other.coeff(index));
}
template<typename OtherDerived, int StoreMode, int LoadMode>
void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
{
OtherDerived& _other = other.const_cast_derived();
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
m_matrix.template writePacket<StoreMode>(row, col,
m_functor.packetOp(m_matrix.template packet<StoreMode>(row, col),_other.template packet<LoadMode>(row, col)) );
}
template<typename OtherDerived, int StoreMode, int LoadMode>
void copyPacket(Index index, const DenseBase<OtherDerived>& other)
{
OtherDerived& _other = other.const_cast_derived();
eigen_internal_assert(index >= 0 && index < m_matrix.size());
m_matrix.template writePacket<StoreMode>(index,
m_functor.packetOp(m_matrix.template packet<StoreMode>(index),_other.template packet<LoadMode>(index)) );
}
// reimplement lazyAssign to handle complex *= real
// see CwiseBinaryOp ctor for details
template<typename RhsDerived>
EIGEN_STRONG_INLINE SelfCwiseBinaryOp& lazyAssign(const DenseBase<RhsDerived>& rhs)
{
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs,RhsDerived)
EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename RhsDerived::Scalar);
#ifdef EIGEN_DEBUG_ASSIGN
internal::assign_traits<SelfCwiseBinaryOp, RhsDerived>::debug();
#endif
eigen_assert(rows() == rhs.rows() && cols() == rhs.cols());
internal::assign_impl<SelfCwiseBinaryOp, RhsDerived>::run(*this,rhs.derived());
#ifndef EIGEN_NO_DEBUG
this->checkTransposeAliasing(rhs.derived());
#endif
return *this;
}
// overloaded to honor evaluation of special matrices
// maybe another solution would be to not use SelfCwiseBinaryOp
// at first...
SelfCwiseBinaryOp& operator=(const Rhs& _rhs)
{
typename internal::nested<Rhs>::type rhs(_rhs);
return Base::operator=(rhs);
}
protected:
Lhs& m_matrix;
const BinaryOp& m_functor;
private:
SelfCwiseBinaryOp& operator=(const SelfCwiseBinaryOp&);
};
template<typename Derived>
inline Derived& DenseBase<Derived>::operator*=(const Scalar& other)
{
typedef typename Derived::PlainObject PlainObject;
SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
tmp = PlainObject::Constant(rows(),cols(),other);
return derived();
}
template<typename Derived>
inline Derived& DenseBase<Derived>::operator/=(const Scalar& other)
{
typedef typename internal::conditional<NumTraits<Scalar>::IsInteger,
internal::scalar_quotient_op<Scalar>,
internal::scalar_product_op<Scalar> >::type BinOp;
typedef typename Derived::PlainObject PlainObject;
SelfCwiseBinaryOp<BinOp, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
tmp = PlainObject::Constant(rows(),cols(), NumTraits<Scalar>::IsInteger ? other : Scalar(1)/other);
return derived();
}
#endif // EIGEN_SELFCWISEBINARYOP_H

View file

@ -0,0 +1,270 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SOLVETRIANGULAR_H
#define EIGEN_SOLVETRIANGULAR_H
namespace internal {
// Forward declarations:
// The following two routines are implemented in the products/TriangularSolver*.h files
template<typename LhsScalar, typename RhsScalar, typename Index, int Side, int Mode, bool Conjugate, int StorageOrder>
struct triangular_solve_vector;
template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder, int OtherStorageOrder>
struct triangular_solve_matrix;
// small helper struct extracting some traits on the underlying solver operation
template<typename Lhs, typename Rhs, int Side>
class trsolve_traits
{
private:
enum {
RhsIsVectorAtCompileTime = (Side==OnTheLeft ? Rhs::ColsAtCompileTime : Rhs::RowsAtCompileTime)==1
};
public:
enum {
Unrolling = (RhsIsVectorAtCompileTime && Rhs::SizeAtCompileTime != Dynamic && Rhs::SizeAtCompileTime <= 8)
? CompleteUnrolling : NoUnrolling,
RhsVectors = RhsIsVectorAtCompileTime ? 1 : Dynamic
};
};
template<typename Lhs, typename Rhs,
int Side, // can be OnTheLeft/OnTheRight
int Mode, // can be Upper/Lower | UnitDiag
int Unrolling = trsolve_traits<Lhs,Rhs,Side>::Unrolling,
int RhsVectors = trsolve_traits<Lhs,Rhs,Side>::RhsVectors
>
struct triangular_solver_selector;
template<typename Lhs, typename Rhs, int Side, int Mode>
struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,1>
{
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef blas_traits<Lhs> LhsProductTraits;
typedef typename LhsProductTraits::ExtractType ActualLhsType;
typedef Map<Matrix<RhsScalar,Dynamic,1>, Aligned> MappedRhs;
static void run(const Lhs& lhs, Rhs& rhs)
{
ActualLhsType actualLhs = LhsProductTraits::extract(lhs);
// FIXME find a way to allow an inner stride if packet_traits<Scalar>::size==1
bool useRhsDirectly = Rhs::InnerStrideAtCompileTime==1 || rhs.innerStride()==1;
RhsScalar* actualRhs;
if(useRhsDirectly)
{
actualRhs = &rhs.coeffRef(0);
}
else
{
actualRhs = ei_aligned_stack_new(RhsScalar,rhs.size());
MappedRhs(actualRhs,rhs.size()) = rhs;
}
triangular_solve_vector<LhsScalar, RhsScalar, typename Lhs::Index, Side, Mode, LhsProductTraits::NeedToConjugate,
(int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor>
::run(actualLhs.cols(), actualLhs.data(), actualLhs.outerStride(), actualRhs);
if(!useRhsDirectly)
{
rhs = MappedRhs(actualRhs, rhs.size());
ei_aligned_stack_delete(RhsScalar, actualRhs, rhs.size());
}
}
};
// the rhs is a matrix
template<typename Lhs, typename Rhs, int Side, int Mode>
struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,Dynamic>
{
typedef typename Rhs::Scalar Scalar;
typedef typename Rhs::Index Index;
typedef blas_traits<Lhs> LhsProductTraits;
typedef typename LhsProductTraits::DirectLinearAccessType ActualLhsType;
static void run(const Lhs& lhs, Rhs& rhs)
{
const ActualLhsType actualLhs = LhsProductTraits::extract(lhs);
triangular_solve_matrix<Scalar,Index,Side,Mode,LhsProductTraits::NeedToConjugate,(int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor,
(Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor>
::run(lhs.rows(), Side==OnTheLeft? rhs.cols() : rhs.rows(), &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.outerStride());
}
};
/***************************************************************************
* meta-unrolling implementation
***************************************************************************/
template<typename Lhs, typename Rhs, int Mode, int Index, int Size,
bool Stop = Index==Size>
struct triangular_solver_unroller;
template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,false> {
enum {
IsLower = ((Mode&Lower)==Lower),
I = IsLower ? Index : Size - Index - 1,
S = IsLower ? 0 : I+1
};
static void run(const Lhs& lhs, Rhs& rhs)
{
if (Index>0)
rhs.coeffRef(I) -= lhs.row(I).template segment<Index>(S).transpose()
.cwiseProduct(rhs.template segment<Index>(S)).sum();
if(!(Mode & UnitDiag))
rhs.coeffRef(I) /= lhs.coeff(I,I);
triangular_solver_unroller<Lhs,Rhs,Mode,Index+1,Size>::run(lhs,rhs);
}
};
template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,true> {
static void run(const Lhs&, Rhs&) {}
};
template<typename Lhs, typename Rhs, int Mode>
struct triangular_solver_selector<Lhs,Rhs,OnTheLeft,Mode,CompleteUnrolling,1> {
static void run(const Lhs& lhs, Rhs& rhs)
{ triangular_solver_unroller<Lhs,Rhs,Mode,0,Rhs::SizeAtCompileTime>::run(lhs,rhs); }
};
template<typename Lhs, typename Rhs, int Mode>
struct triangular_solver_selector<Lhs,Rhs,OnTheRight,Mode,CompleteUnrolling,1> {
static void run(const Lhs& lhs, Rhs& rhs)
{
Transpose<const Lhs> trLhs(lhs);
Transpose<Rhs> trRhs(rhs);
triangular_solver_unroller<Transpose<const Lhs>,Transpose<Rhs>,
((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag),
0,Rhs::SizeAtCompileTime>::run(trLhs,trRhs);
}
};
} // end namespace internal
/***************************************************************************
* TriangularView methods
***************************************************************************/
/** "in-place" version of TriangularView::solve() where the result is written in \a other
*
* \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
* This function will const_cast it, so constness isn't honored here.
*
* See TriangularView:solve() for the details.
*/
template<typename MatrixType, unsigned int Mode>
template<int Side, typename OtherDerived>
void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived>& _other) const
{
OtherDerived& other = _other.const_cast_derived();
eigen_assert(cols() == rows());
eigen_assert( (Side==OnTheLeft && cols() == other.rows()) || (Side==OnTheRight && cols() == other.cols()) );
eigen_assert(!(Mode & ZeroDiag));
eigen_assert(Mode & (Upper|Lower));
enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit && OtherDerived::IsVectorAtCompileTime };
typedef typename internal::conditional<copy,
typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
OtherCopy otherCopy(other);
internal::triangular_solver_selector<MatrixType, typename internal::remove_reference<OtherCopy>::type,
Side, Mode>::run(nestedExpression(), otherCopy);
if (copy)
other = otherCopy;
}
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
*
* This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if
* \a Side==OnTheLeft (the default), or the right-inverse-multiply \a other * inverse(\c *this) if
* \a Side==OnTheRight.
*
* The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
* diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
* is an upper (resp. lower) triangular matrix.
*
* Example: \include MatrixBase_marked.cpp
* Output: \verbinclude MatrixBase_marked.out
*
* This function returns an expression of the inverse-multiply and can works in-place if it is assigned
* to the same matrix or vector \a other.
*
* For users coming from BLAS, this function (and more specifically solveInPlace()) offer
* all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
*
* \sa TriangularView::solveInPlace()
*/
template<typename Derived, unsigned int Mode>
template<int Side, typename Other>
const internal::triangular_solve_retval<Side,TriangularView<Derived,Mode>,Other>
TriangularView<Derived,Mode>::solve(const MatrixBase<Other>& other) const
{
return internal::triangular_solve_retval<Side,TriangularView,Other>(*this, other.derived());
}
namespace internal {
template<int Side, typename TriangularType, typename Rhs>
struct traits<triangular_solve_retval<Side, TriangularType, Rhs> >
{
typedef typename internal::plain_matrix_type_column_major<Rhs>::type ReturnType;
};
template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval
: public ReturnByValue<triangular_solve_retval<Side, TriangularType, Rhs> >
{
typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
typedef ReturnByValue<triangular_solve_retval> Base;
typedef typename Base::Index Index;
triangular_solve_retval(const TriangularType& tri, const Rhs& rhs)
: m_triangularMatrix(tri), m_rhs(rhs)
{}
inline Index rows() const { return m_rhs.rows(); }
inline Index cols() const { return m_rhs.cols(); }
template<typename Dest> inline void evalTo(Dest& dst) const
{
if(!(is_same<RhsNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_rhs)))
dst = m_rhs;
m_triangularMatrix.template solveInPlace<Side>(dst);
}
protected:
const TriangularType& m_triangularMatrix;
const typename Rhs::Nested m_rhs;
};
} // namespace internal
#endif // EIGEN_SOLVETRIANGULAR_H

View file

@ -0,0 +1,186 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_STABLENORM_H
#define EIGEN_STABLENORM_H
namespace internal {
template<typename ExpressionType, typename Scalar>
inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
{
Scalar max = bl.cwiseAbs().maxCoeff();
if (max>scale)
{
ssq = ssq * abs2(scale/max);
scale = max;
invScale = Scalar(1)/scale;
}
// TODO if the max is much much smaller than the current scale,
// then we can neglect this sub vector
ssq += (bl*invScale).squaredNorm();
}
}
/** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
* This version use a blockwise two passes algorithm:
* 1 - find the absolute largest coefficient \c s
* 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
*
* For architecture/scalar types supporting vectorization, this version
* is faster than blueNorm(). Otherwise the blueNorm() is much faster.
*
* \sa norm(), blueNorm(), hypotNorm()
*/
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::stableNorm() const
{
const Index blockSize = 4096;
RealScalar scale = 0;
RealScalar invScale = 1;
RealScalar ssq = 0; // sum of square
enum {
Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
};
Index n = size();
Index bi = internal::first_aligned(derived());
if (bi>0)
internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
for (; bi<n; bi+=blockSize)
internal::stable_norm_kernel(this->segment(bi,std::min(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
return scale * internal::sqrt(ssq);
}
/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
* A Portable Fortran Program to Find the Euclidean Norm of a Vector,
* ACM TOMS, Vol 4, Issue 1, 1978.
*
* For architecture/scalar types without vectorization, this version
* is much faster than stableNorm(). Otherwise the stableNorm() is faster.
*
* \sa norm(), stableNorm(), hypotNorm()
*/
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::blueNorm() const
{
static Index nmax = -1;
static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
if(nmax <= 0)
{
int nbig, ibeta, it, iemin, iemax, iexp;
RealScalar abig, eps;
// This program calculates the machine-dependent constants
// bl, b2, slm, s2m, relerr overfl, nmax
// from the "basic" machine-dependent numbers
// nbig, ibeta, it, iemin, iemax, rbig.
// The following define the basic machine-dependent constants.
// For portability, the PORT subprograms "ilmaeh" and "rlmach"
// are used. For any specific computer, each of the assignment
// statements can be replaced
nbig = std::numeric_limits<Index>::max(); // largest integer
ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
rbig = std::numeric_limits<RealScalar>::max(); // largest floating-point number
iexp = -((1-iemin)/2);
b1 = RealScalar(std::pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange
iexp = (iemax + 1 - it)/2;
b2 = RealScalar(std::pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange
iexp = (2-iemin)/2;
s1m = RealScalar(std::pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range
iexp = - ((iemax+it)/2);
s2m = RealScalar(std::pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range
overfl = rbig*s2m; // overflow boundary for abig
eps = RealScalar(std::pow(double(ibeta), 1-it));
relerr = internal::sqrt(eps); // tolerance for neglecting asml
abig = RealScalar(1.0/eps - 1.0);
if (RealScalar(nbig)>abig) nmax = int(abig); // largest safe n
else nmax = nbig;
}
Index n = size();
RealScalar ab2 = b2 / RealScalar(n);
RealScalar asml = RealScalar(0);
RealScalar amed = RealScalar(0);
RealScalar abig = RealScalar(0);
for(Index j=0; j<n; ++j)
{
RealScalar ax = internal::abs(coeff(j));
if(ax > ab2) abig += internal::abs2(ax*s2m);
else if(ax < b1) asml += internal::abs2(ax*s1m);
else amed += internal::abs2(ax);
}
if(abig > RealScalar(0))
{
abig = internal::sqrt(abig);
if(abig > overfl)
{
eigen_assert(false && "overflow");
return rbig;
}
if(amed > RealScalar(0))
{
abig = abig/s2m;
amed = internal::sqrt(amed);
}
else
return abig/s2m;
}
else if(asml > RealScalar(0))
{
if (amed > RealScalar(0))
{
abig = internal::sqrt(amed);
amed = internal::sqrt(asml) / s1m;
}
else
return internal::sqrt(asml)/s1m;
}
else
return internal::sqrt(amed);
asml = std::min(abig, amed);
abig = std::max(abig, amed);
if(asml <= abig*relerr)
return abig;
else
return abig * internal::sqrt(RealScalar(1) + internal::abs2(asml/abig));
}
/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
* This version use a concatenation of hypot() calls, and it is very slow.
*
* \sa norm(), stableNorm()
*/
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::hypotNorm() const
{
return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
}
#endif // EIGEN_STABLENORM_H

View file

@ -0,0 +1,119 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_STRIDE_H
#define EIGEN_STRIDE_H
/** \class Stride
* \ingroup Core_Module
*
* \brief Holds strides information for Map
*
* This class holds the strides information for mapping arrays with strides with class Map.
*
* It holds two values: the inner stride and the outer stride.
*
* The inner stride is the pointer increment between two consecutive entries within a given row of a
* row-major matrix or within a given column of a column-major matrix.
*
* The outer stride is the pointer increment between two consecutive rows of a row-major matrix or
* between two consecutive columns of a column-major matrix.
*
* These two values can be passed either at compile-time as template parameters, or at runtime as
* arguments to the constructor.
*
* Indeed, this class takes two template parameters:
* \param _OuterStrideAtCompileTime the outer stride, or Dynamic if you want to specify it at runtime.
* \param _InnerStrideAtCompileTime the inner stride, or Dynamic if you want to specify it at runtime.
*
* Here is an example:
* \include Map_general_stride.cpp
* Output: \verbinclude Map_general_stride.out
*
* \sa class InnerStride, class OuterStride, \ref TopicStorageOrders
*/
template<int _OuterStrideAtCompileTime, int _InnerStrideAtCompileTime>
class Stride
{
public:
typedef DenseIndex Index;
enum {
InnerStrideAtCompileTime = _InnerStrideAtCompileTime,
OuterStrideAtCompileTime = _OuterStrideAtCompileTime
};
/** Default constructor, for use when strides are fixed at compile time */
Stride()
: m_outer(OuterStrideAtCompileTime), m_inner(InnerStrideAtCompileTime)
{
eigen_assert(InnerStrideAtCompileTime != Dynamic && OuterStrideAtCompileTime != Dynamic);
}
/** Constructor allowing to pass the strides at runtime */
Stride(Index outerStride, Index innerStride)
: m_outer(outerStride), m_inner(innerStride)
{
eigen_assert(innerStride>=0 && outerStride>=0);
}
/** Copy constructor */
Stride(const Stride& other)
: m_outer(other.outer()), m_inner(other.inner())
{}
/** \returns the outer stride */
inline Index outer() const { return m_outer.value(); }
/** \returns the inner stride */
inline Index inner() const { return m_inner.value(); }
protected:
internal::variable_if_dynamic<Index, OuterStrideAtCompileTime> m_outer;
internal::variable_if_dynamic<Index, InnerStrideAtCompileTime> m_inner;
};
/** \brief Convenience specialization of Stride to specify only an inner stride
* See class Map for some examples */
template<int Value = Dynamic>
class InnerStride : public Stride<0, Value>
{
typedef Stride<0, Value> Base;
public:
typedef DenseIndex Index;
InnerStride() : Base() {}
InnerStride(Index v) : Base(0, v) {}
};
/** \brief Convenience specialization of Stride to specify only an outer stride
* See class Map for some examples */
template<int Value = Dynamic>
class OuterStride : public Stride<Value, 0>
{
typedef Stride<Value, 0> Base;
public:
typedef DenseIndex Index;
OuterStride() : Base() {}
OuterStride(Index v) : Base(v,0) {}
};
#endif // EIGEN_STRIDE_H

View file

@ -0,0 +1,126 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SWAP_H
#define EIGEN_SWAP_H
/** \class SwapWrapper
* \ingroup Core_Module
*
* \internal
*
* \brief Internal helper class for swapping two expressions
*/
namespace internal {
template<typename ExpressionType>
struct traits<SwapWrapper<ExpressionType> > : traits<ExpressionType> {};
}
template<typename ExpressionType> class SwapWrapper
: public internal::dense_xpr_base<SwapWrapper<ExpressionType> >::type
{
public:
typedef typename internal::dense_xpr_base<SwapWrapper>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(SwapWrapper)
typedef typename internal::packet_traits<Scalar>::type Packet;
inline SwapWrapper(ExpressionType& xpr) : m_expression(xpr) {}
inline Index rows() const { return m_expression.rows(); }
inline Index cols() const { return m_expression.cols(); }
inline Index outerStride() const { return m_expression.outerStride(); }
inline Index innerStride() const { return m_expression.innerStride(); }
inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
inline Scalar& coeffRef(Index row, Index col) const
{
return m_expression.coeffRef(row, col);
}
inline Scalar& coeffRef(Index index) const
{
return m_expression.coeffRef(index);
}
template<typename OtherDerived>
void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
{
OtherDerived& _other = other.const_cast_derived();
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
Scalar tmp = m_expression.coeff(row, col);
m_expression.coeffRef(row, col) = _other.coeff(row, col);
_other.coeffRef(row, col) = tmp;
}
template<typename OtherDerived>
void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
{
OtherDerived& _other = other.const_cast_derived();
eigen_internal_assert(index >= 0 && index < m_expression.size());
Scalar tmp = m_expression.coeff(index);
m_expression.coeffRef(index) = _other.coeff(index);
_other.coeffRef(index) = tmp;
}
template<typename OtherDerived, int StoreMode, int LoadMode>
void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
{
OtherDerived& _other = other.const_cast_derived();
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
Packet tmp = m_expression.template packet<StoreMode>(row, col);
m_expression.template writePacket<StoreMode>(row, col,
_other.template packet<LoadMode>(row, col)
);
_other.template writePacket<LoadMode>(row, col, tmp);
}
template<typename OtherDerived, int StoreMode, int LoadMode>
void copyPacket(Index index, const DenseBase<OtherDerived>& other)
{
OtherDerived& _other = other.const_cast_derived();
eigen_internal_assert(index >= 0 && index < m_expression.size());
Packet tmp = m_expression.template packet<StoreMode>(index);
m_expression.template writePacket<StoreMode>(index,
_other.template packet<LoadMode>(index)
);
_other.template writePacket<LoadMode>(index, tmp);
}
protected:
ExpressionType& m_expression;
};
#endif // EIGEN_SWAP_H

View file

@ -0,0 +1,426 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSPOSE_H
#define EIGEN_TRANSPOSE_H
/** \class Transpose
* \ingroup Core_Module
*
* \brief Expression of the transpose of a matrix
*
* \param MatrixType the type of the object of which we are taking the transpose
*
* This class represents an expression of the transpose of a matrix.
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
*/
namespace internal {
template<typename MatrixType>
struct traits<Transpose<MatrixType> > : traits<MatrixType>
{
typedef typename MatrixType::Scalar Scalar;
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedPlain;
typedef typename traits<MatrixType>::StorageKind StorageKind;
typedef typename traits<MatrixType>::XprKind XprKind;
enum {
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
Flags0 = MatrixTypeNestedPlain::Flags & ~(LvalueBit | NestByRefBit),
Flags1 = Flags0 | FlagsLvalueBit,
Flags = Flags1 ^ RowMajorBit,
CoeffReadCost = MatrixTypeNestedPlain::CoeffReadCost,
InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret,
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret
};
};
}
template<typename MatrixType, typename StorageKind> class TransposeImpl;
template<typename MatrixType> class Transpose
: public TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>
{
public:
typedef typename TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
inline Transpose(MatrixType& matrix) : m_matrix(matrix) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
inline Index rows() const { return m_matrix.cols(); }
inline Index cols() const { return m_matrix.rows(); }
/** \returns the nested expression */
const typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() const { return m_matrix; }
/** \returns the nested expression */
typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() { return m_matrix.const_cast_derived(); }
protected:
const typename MatrixType::Nested m_matrix;
};
namespace internal {
template<typename MatrixType, bool HasDirectAccess = has_direct_access<MatrixType>::ret>
struct TransposeImpl_base
{
typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
};
template<typename MatrixType>
struct TransposeImpl_base<MatrixType, false>
{
typedef typename dense_xpr_base<Transpose<MatrixType> >::type type;
};
} // end namespace internal
template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
: public internal::TransposeImpl_base<MatrixType>::type
{
public:
typedef typename internal::TransposeImpl_base<MatrixType>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
typedef typename internal::conditional<
internal::is_lvalue<MatrixType>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
inline ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); }
inline const Scalar* data() const { return derived().nestedExpression().data(); }
inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col)
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return derived().nestedExpression().const_cast_derived().coeffRef(col, row);
}
inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return derived().nestedExpression().const_cast_derived().coeffRef(index);
}
inline const Scalar& coeffRef(Index row, Index col) const
{
return derived().nestedExpression().coeffRef(col, row);
}
inline const Scalar& coeffRef(Index index) const
{
return derived().nestedExpression().coeffRef(index);
}
inline const CoeffReturnType coeff(Index row, Index col) const
{
return derived().nestedExpression().coeff(col, row);
}
inline const CoeffReturnType coeff(Index index) const
{
return derived().nestedExpression().coeff(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return derived().nestedExpression().template packet<LoadMode>(col, row);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(col, row, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return derived().nestedExpression().template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(index, x);
}
};
/** \returns an expression of the transpose of *this.
*
* Example: \include MatrixBase_transpose.cpp
* Output: \verbinclude MatrixBase_transpose.out
*
* \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
* \code
* m = m.transpose(); // bug!!! caused by aliasing effect
* \endcode
* Instead, use the transposeInPlace() method:
* \code
* m.transposeInPlace();
* \endcode
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
* \code
* m = m.transpose().eval();
* \endcode
*
* \sa transposeInPlace(), adjoint() */
template<typename Derived>
inline Transpose<Derived>
DenseBase<Derived>::transpose()
{
return derived();
}
/** This is the const version of transpose().
*
* Make sure you read the warning for transpose() !
*
* \sa transposeInPlace(), adjoint() */
template<typename Derived>
inline const typename DenseBase<Derived>::ConstTransposeReturnType
DenseBase<Derived>::transpose() const
{
return ConstTransposeReturnType(derived());
}
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
*
* Example: \include MatrixBase_adjoint.cpp
* Output: \verbinclude MatrixBase_adjoint.out
*
* \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
* \code
* m = m.adjoint(); // bug!!! caused by aliasing effect
* \endcode
* Instead, use the adjointInPlace() method:
* \code
* m.adjointInPlace();
* \endcode
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
* \code
* m = m.adjoint().eval();
* \endcode
*
* \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */
template<typename Derived>
inline const typename MatrixBase<Derived>::AdjointReturnType
MatrixBase<Derived>::adjoint() const
{
return this->transpose(); // in the complex case, the .conjugate() is be implicit here
// due to implicit conversion to return type
}
/***************************************************************************
* "in place" transpose implementation
***************************************************************************/
namespace internal {
template<typename MatrixType,
bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
struct inplace_transpose_selector;
template<typename MatrixType>
struct inplace_transpose_selector<MatrixType,true> { // square matrix
static void run(MatrixType& m) {
m.template triangularView<StrictlyUpper>().swap(m.transpose());
}
};
template<typename MatrixType>
struct inplace_transpose_selector<MatrixType,false> { // non square matrix
static void run(MatrixType& m) {
if (m.rows()==m.cols())
m.template triangularView<StrictlyUpper>().swap(m.transpose());
else
m = m.transpose().eval();
}
};
} // end namespace internal
/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
* Thus, doing
* \code
* m.transposeInPlace();
* \endcode
* has the same effect on m as doing
* \code
* m = m.transpose().eval();
* \endcode
* and is faster and also safer because in the latter line of code, forgetting the eval() results
* in a bug caused by aliasing.
*
* Notice however that this method is only useful if you want to replace a matrix by its own transpose.
* If you just need the transpose of a matrix, use transpose().
*
* \note if the matrix is not square, then \c *this must be a resizable matrix.
*
* \sa transpose(), adjoint(), adjointInPlace() */
template<typename Derived>
inline void DenseBase<Derived>::transposeInPlace()
{
internal::inplace_transpose_selector<Derived>::run(derived());
}
/***************************************************************************
* "in place" adjoint implementation
***************************************************************************/
/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose.
* Thus, doing
* \code
* m.adjointInPlace();
* \endcode
* has the same effect on m as doing
* \code
* m = m.adjoint().eval();
* \endcode
* and is faster and also safer because in the latter line of code, forgetting the eval() results
* in a bug caused by aliasing.
*
* Notice however that this method is only useful if you want to replace a matrix by its own adjoint.
* If you just need the adjoint of a matrix, use adjoint().
*
* \note if the matrix is not square, then \c *this must be a resizable matrix.
*
* \sa transpose(), adjoint(), transposeInPlace() */
template<typename Derived>
inline void MatrixBase<Derived>::adjointInPlace()
{
derived() = adjoint().eval();
}
#ifndef EIGEN_NO_DEBUG
// The following is to detect aliasing problems in most common cases.
namespace internal {
template<typename BinOp,typename NestedXpr,typename Rhs>
struct blas_traits<SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> >
: blas_traits<NestedXpr>
{
typedef SelfCwiseBinaryOp<BinOp,NestedXpr,Rhs> XprType;
static inline const XprType extract(const XprType& x) { return x; }
};
template<bool DestIsTransposed, typename OtherDerived>
struct check_transpose_aliasing_compile_time_selector
{
enum { ret = blas_traits<OtherDerived>::IsTransposed != DestIsTransposed
};
};
template<bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
struct check_transpose_aliasing_compile_time_selector<DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
{
enum { ret = blas_traits<DerivedA>::IsTransposed != DestIsTransposed
|| blas_traits<DerivedB>::IsTransposed != DestIsTransposed
};
};
template<typename Scalar, bool DestIsTransposed, typename OtherDerived>
struct check_transpose_aliasing_run_time_selector
{
static bool run(const Scalar* dest, const OtherDerived& src)
{
return (blas_traits<OtherDerived>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)extract_data(src));
}
};
template<typename Scalar, bool DestIsTransposed, typename BinOp, typename DerivedA, typename DerivedB>
struct check_transpose_aliasing_run_time_selector<Scalar,DestIsTransposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
{
static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp,DerivedA,DerivedB>& src)
{
return ((blas_traits<DerivedA>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)extract_data(src.lhs())))
|| ((blas_traits<DerivedB>::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(Scalar*)extract_data(src.rhs())));
}
};
// the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing,
// is because when the condition controlling the assert is known at compile time, ICC emits a warning.
// This is actually a good warning: in expressions that don't have any transposing, the condition is
// known at compile time to be false, and using that, we can avoid generating the code of the assert again
// and again for all these expressions that don't need it.
template<typename Derived, typename OtherDerived,
bool MightHaveTransposeAliasing
= check_transpose_aliasing_compile_time_selector
<blas_traits<Derived>::IsTransposed,OtherDerived>::ret
>
struct checkTransposeAliasing_impl
{
static void run(const Derived& dst, const OtherDerived& other)
{
eigen_assert((!check_transpose_aliasing_run_time_selector
<typename Derived::Scalar,blas_traits<Derived>::IsTransposed,OtherDerived>
::run(extract_data(dst), other))
&& "aliasing detected during tranposition, use transposeInPlace() "
"or evaluate the rhs into a temporary using .eval()");
}
};
template<typename Derived, typename OtherDerived>
struct checkTransposeAliasing_impl<Derived, OtherDerived, false>
{
static void run(const Derived&, const OtherDerived&)
{
}
};
} // end namespace internal
template<typename Derived>
template<typename OtherDerived>
void DenseBase<Derived>::checkTransposeAliasing(const OtherDerived& other) const
{
internal::checkTransposeAliasing_impl<Derived, OtherDerived>::run(derived(), other);
}
#endif
#endif // EIGEN_TRANSPOSE_H

View file

@ -0,0 +1,447 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSPOSITIONS_H
#define EIGEN_TRANSPOSITIONS_H
/** \class Transpositions
* \ingroup Core_Module
*
* \brief Represents a sequence of transpositions (row/column interchange)
*
* \param SizeAtCompileTime the number of transpositions, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
*
* This class represents a permutation transformation as a sequence of \em n transpositions
* \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
* Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
* the rows \c i and \c indices[i] of the matrix \c M.
* A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
*
* Compared to the class PermutationMatrix, such a sequence of transpositions is what is
* computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
*
* To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
* \code
* Transpositions tr;
* MatrixXf mat;
* mat = tr * mat;
* \endcode
* In this example, we detect that the matrix appears on both side, and so the transpositions
* are applied in-place without any temporary or extra copy.
*
* \sa class PermutationMatrix
*/
namespace internal {
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed=false> struct transposition_matrix_product_retval;
}
template<typename Derived>
class TranspositionsBase
{
typedef internal::traits<Derived> Traits;
public:
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
Derived& operator=(const TranspositionsBase<OtherDerived>& other)
{
indices() = other.indices();
return derived();
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Derived& operator=(const TranspositionsBase& other)
{
indices() = other.indices();
return derived();
}
#endif
/** \returns the number of transpositions */
inline Index size() const { return indices().size(); }
/** Direct access to the underlying index vector */
inline const Index& coeff(Index i) const { return indices().coeff(i); }
/** Direct access to the underlying index vector */
inline Index& coeffRef(Index i) { return indices().coeffRef(i); }
/** Direct access to the underlying index vector */
inline const Index& operator()(Index i) const { return indices()(i); }
/** Direct access to the underlying index vector */
inline Index& operator()(Index i) { return indices()(i); }
/** Direct access to the underlying index vector */
inline const Index& operator[](Index i) const { return indices()(i); }
/** Direct access to the underlying index vector */
inline Index& operator[](Index i) { return indices()(i); }
/** const version of indices(). */
const IndicesType& indices() const { return derived().indices(); }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return derived().indices(); }
/** Resizes to given size. */
inline void resize(int size)
{
indices().resize(size);
}
/** Sets \c *this to represents an identity transformation */
void setIdentity()
{
for(int i = 0; i < indices().size(); ++i)
coeffRef(i) = i;
}
// FIXME: do we want such methods ?
// might be usefull when the target matrix expression is complex, e.g.:
// object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
/*
template<typename MatrixType>
void applyForwardToRows(MatrixType& mat) const
{
for(Index k=0 ; k<size() ; ++k)
if(m_indices(k)!=k)
mat.row(k).swap(mat.row(m_indices(k)));
}
template<typename MatrixType>
void applyBackwardToRows(MatrixType& mat) const
{
for(Index k=size()-1 ; k>=0 ; --k)
if(m_indices(k)!=k)
mat.row(k).swap(mat.row(m_indices(k)));
}
*/
/** \returns the inverse transformation */
inline Transpose<TranspositionsBase> inverse() const
{ return Transpose<TranspositionsBase>(derived()); }
/** \returns the tranpose transformation */
inline Transpose<TranspositionsBase> transpose() const
{ return Transpose<TranspositionsBase>(derived()); }
protected:
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
{
typedef IndexType Index;
typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
{
typedef internal::traits<Transpositions> Traits;
public:
typedef TranspositionsBase<Transpositions> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
inline Transpositions() {}
/** Copy constructor. */
template<typename OtherDerived>
inline Transpositions(const TranspositionsBase<OtherDerived>& other)
: m_indices(other.indices()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Standard copy constructor. Defined only to prevent a default copy constructor
* from hiding the other templated constructor */
inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
#endif
/** Generic constructor from expression of the transposition indices. */
template<typename Other>
explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices)
{}
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
Transpositions& operator=(const TranspositionsBase<OtherDerived>& other)
{
return Base::operator=(other);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Transpositions& operator=(const Transpositions& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** Constructs an uninitialized permutation matrix of given size.
*/
inline Transpositions(Index size) : m_indices(size)
{}
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
protected:
IndicesType m_indices;
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,_PacketAccess> >
{
typedef IndexType Index;
typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int PacketAccess>
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess>
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess> >
{
typedef internal::traits<Map> Traits;
public:
typedef TranspositionsBase<Map> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
inline Map(const Index* indices)
: m_indices(indices)
{}
inline Map(const Index* indices, Index size)
: m_indices(indices,size)
{}
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
Map& operator=(const TranspositionsBase<OtherDerived>& other)
{
return Base::operator=(other);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Map& operator=(const Map& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
protected:
IndicesType m_indices;
};
namespace internal {
template<typename _IndicesType>
struct traits<TranspositionsWrapper<_IndicesType> >
{
typedef typename _IndicesType::Scalar Index;
typedef _IndicesType IndicesType;
};
}
template<typename _IndicesType>
class TranspositionsWrapper
: public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
{
typedef internal::traits<TranspositionsWrapper> Traits;
public:
typedef TranspositionsBase<TranspositionsWrapper> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
inline TranspositionsWrapper(IndicesType& indices)
: m_indices(indices)
{}
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other)
{
return Base::operator=(other);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
TranspositionsWrapper& operator=(const TranspositionsWrapper& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
protected:
const typename IndicesType::Nested m_indices;
};
/** \returns the \a matrix with the \a transpositions applied to the columns.
*/
template<typename Derived, typename TranspositionsDerived>
inline const internal::transposition_matrix_product_retval<TranspositionsDerived, Derived, OnTheRight>
operator*(const MatrixBase<Derived>& matrix,
const TranspositionsBase<TranspositionsDerived> &transpositions)
{
return internal::transposition_matrix_product_retval
<TranspositionsDerived, Derived, OnTheRight>
(transpositions.derived(), matrix.derived());
}
/** \returns the \a matrix with the \a transpositions applied to the rows.
*/
template<typename Derived, typename TranspositionDerived>
inline const internal::transposition_matrix_product_retval
<TranspositionDerived, Derived, OnTheLeft>
operator*(const TranspositionsBase<TranspositionDerived> &transpositions,
const MatrixBase<Derived>& matrix)
{
return internal::transposition_matrix_product_retval
<TranspositionDerived, Derived, OnTheLeft>
(transpositions.derived(), matrix.derived());
}
namespace internal {
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
struct traits<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
{
typedef typename MatrixType::PlainObject ReturnType;
};
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed>
struct transposition_matrix_product_retval
: public ReturnByValue<transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> >
{
typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
typedef typename TranspositionType::Index Index;
transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix)
: m_transpositions(tr), m_matrix(matrix)
{}
inline int rows() const { return m_matrix.rows(); }
inline int cols() const { return m_matrix.cols(); }
template<typename Dest> inline void evalTo(Dest& dst) const
{
const int size = m_transpositions.size();
Index j = 0;
if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)))
dst = m_matrix;
for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
if((j=m_transpositions.coeff(k))!=k)
{
if(Side==OnTheLeft)
dst.row(k).swap(dst.row(j));
else if(Side==OnTheRight)
dst.col(k).swap(dst.col(j));
}
}
protected:
const TranspositionType& m_transpositions;
const typename MatrixType::Nested m_matrix;
};
} // end namespace internal
/* Template partial specialization for transposed/inverse transpositions */
template<typename TranspositionsDerived>
class Transpose<TranspositionsBase<TranspositionsDerived> >
{
typedef TranspositionsDerived TranspositionType;
typedef typename TranspositionType::IndicesType IndicesType;
public:
Transpose(const TranspositionType& t) : m_transpositions(t) {}
inline int size() const { return m_transpositions.size(); }
/** \returns the \a matrix with the inverse transpositions applied to the columns.
*/
template<typename Derived> friend
inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>
operator*(const MatrixBase<Derived>& matrix, const Transpose& trt)
{
return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>(trt.m_transpositions, matrix.derived());
}
/** \returns the \a matrix with the inverse transpositions applied to the rows.
*/
template<typename Derived>
inline const internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>
operator*(const MatrixBase<Derived>& matrix) const
{
return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>(m_transpositions, matrix.derived());
}
protected:
const TranspositionType& m_transpositions;
};
#endif // EIGEN_TRANSPOSITIONS_H

View file

@ -0,0 +1,834 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRIANGULARMATRIX_H
#define EIGEN_TRIANGULARMATRIX_H
namespace internal {
template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval;
}
/** \internal
*
* \class TriangularBase
* \ingroup Core_Module
*
* \brief Base class for triangular part in a matrix
*/
template<typename Derived> class TriangularBase : public EigenBase<Derived>
{
public:
enum {
Mode = internal::traits<Derived>::Mode,
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime
};
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::DenseMatrixType DenseMatrixType;
typedef DenseMatrixType DenseType;
inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); }
inline Index rows() const { return derived().rows(); }
inline Index cols() const { return derived().cols(); }
inline Index outerStride() const { return derived().outerStride(); }
inline Index innerStride() const { return derived().innerStride(); }
inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); }
inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); }
/** \see MatrixBase::copyCoeff(row,col)
*/
template<typename Other>
EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other)
{
derived().coeffRef(row, col) = other.coeff(row, col);
}
inline Scalar operator()(Index row, Index col) const
{
check_coordinates(row, col);
return coeff(row,col);
}
inline Scalar& operator()(Index row, Index col)
{
check_coordinates(row, col);
return coeffRef(row,col);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
#endif // not EIGEN_PARSED_BY_DOXYGEN
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived> &other) const;
template<typename DenseDerived>
void evalToLazy(MatrixBase<DenseDerived> &other) const;
DenseMatrixType toDenseMatrix() const
{
DenseMatrixType res(rows(), cols());
evalToLazy(res);
return res;
}
protected:
void check_coordinates(Index row, Index col) const
{
EIGEN_ONLY_USED_FOR_DEBUG(row);
EIGEN_ONLY_USED_FOR_DEBUG(col);
eigen_assert(col>=0 && col<cols() && row>=0 && row<rows());
const int mode = int(Mode) & ~SelfAdjoint;
eigen_assert((mode==Upper && col>=row)
|| (mode==Lower && col<=row)
|| ((mode==StrictlyUpper || mode==UnitUpper) && col>row)
|| ((mode==StrictlyLower || mode==UnitLower) && col<row));
}
#ifdef EIGEN_INTERNAL_DEBUGGING
void check_coordinates_internal(Index row, Index col) const
{
check_coordinates(row, col);
}
#else
void check_coordinates_internal(Index , Index ) const {}
#endif
};
/** \class TriangularView
* \ingroup Core_Module
*
* \brief Base class for triangular part in a matrix
*
* \param MatrixType the type of the object in which we are taking the triangular part
* \param Mode the kind of triangular matrix expression to construct. Can be Upper,
* Lower, UpperSelfadjoint, or LowerSelfadjoint. This is in fact a bit field;
* it must have either Upper or Lower, and additionnaly it may have either
* UnitDiag or Selfadjoint.
*
* This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular
* matrices one should speak ok "trapezoid" parts. This class is the return type
* of MatrixBase::triangularView() and most of the time this is the only way it is used.
*
* \sa MatrixBase::triangularView()
*/
namespace internal {
template<typename MatrixType, unsigned int _Mode>
struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
{
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
typedef MatrixType ExpressionType;
typedef typename MatrixType::PlainObject DenseMatrixType;
enum {
Mode = _Mode,
Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode,
CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
};
};
}
template<int Mode, bool LhsIsTriangular,
typename Lhs, bool LhsIsVector,
typename Rhs, bool RhsIsVector>
struct TriangularProduct;
template<typename _MatrixType, unsigned int _Mode> class TriangularView
: public TriangularBase<TriangularView<_MatrixType, _Mode> >
{
public:
typedef TriangularBase<TriangularView> Base;
typedef typename internal::traits<TriangularView>::Scalar Scalar;
typedef _MatrixType MatrixType;
typedef typename internal::traits<TriangularView>::DenseMatrixType DenseMatrixType;
typedef DenseMatrixType PlainObject;
protected:
typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
public:
using Base::evalToLazy;
typedef typename internal::traits<TriangularView>::StorageKind StorageKind;
typedef typename internal::traits<TriangularView>::Index Index;
enum {
Mode = _Mode,
TransposeMode = (Mode & Upper ? Lower : 0)
| (Mode & Lower ? Upper : 0)
| (Mode & (UnitDiag))
| (Mode & (ZeroDiag))
};
inline TriangularView(const MatrixType& matrix) : m_matrix(matrix)
{}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
inline Index outerStride() const { return m_matrix.outerStride(); }
inline Index innerStride() const { return m_matrix.innerStride(); }
/** \sa MatrixBase::operator+=() */
template<typename Other> TriangularView& operator+=(const DenseBase<Other>& other) { return *this = m_matrix + other.derived(); }
/** \sa MatrixBase::operator-=() */
template<typename Other> TriangularView& operator-=(const DenseBase<Other>& other) { return *this = m_matrix - other.derived(); }
/** \sa MatrixBase::operator*=() */
TriangularView& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix * other; }
/** \sa MatrixBase::operator/=() */
TriangularView& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix / other; }
/** \sa MatrixBase::fill() */
void fill(const Scalar& value) { setConstant(value); }
/** \sa MatrixBase::setConstant() */
TriangularView& setConstant(const Scalar& value)
{ return *this = MatrixType::Constant(rows(), cols(), value); }
/** \sa MatrixBase::setZero() */
TriangularView& setZero() { return setConstant(Scalar(0)); }
/** \sa MatrixBase::setOnes() */
TriangularView& setOnes() { return setConstant(Scalar(1)); }
/** \sa MatrixBase::coeff()
* \warning the coordinates must fit into the referenced triangular part
*/
inline Scalar coeff(Index row, Index col) const
{
Base::check_coordinates_internal(row, col);
return m_matrix.coeff(row, col);
}
/** \sa MatrixBase::coeffRef()
* \warning the coordinates must fit into the referenced triangular part
*/
inline Scalar& coeffRef(Index row, Index col)
{
Base::check_coordinates_internal(row, col);
return m_matrix.const_cast_derived().coeffRef(row, col);
}
const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
/** Assigns a triangular matrix to a triangular part of a dense matrix */
template<typename OtherDerived>
TriangularView& operator=(const TriangularBase<OtherDerived>& other);
template<typename OtherDerived>
TriangularView& operator=(const MatrixBase<OtherDerived>& other);
TriangularView& operator=(const TriangularView& other)
{ return *this = other.nestedExpression(); }
template<typename OtherDerived>
void lazyAssign(const TriangularBase<OtherDerived>& other);
template<typename OtherDerived>
void lazyAssign(const MatrixBase<OtherDerived>& other);
/** \sa MatrixBase::conjugate() */
inline TriangularView<MatrixConjugateReturnType,Mode> conjugate()
{ return m_matrix.conjugate(); }
/** \sa MatrixBase::conjugate() const */
inline const TriangularView<MatrixConjugateReturnType,Mode> conjugate() const
{ return m_matrix.conjugate(); }
/** \sa MatrixBase::adjoint() */
inline TriangularView<typename MatrixType::AdjointReturnType,TransposeMode> adjoint()
{ return m_matrix.adjoint(); }
/** \sa MatrixBase::adjoint() const */
inline const TriangularView<typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const
{ return m_matrix.adjoint(); }
/** \sa MatrixBase::transpose() */
inline TriangularView<Transpose<MatrixType>,TransposeMode> transpose()
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return m_matrix.const_cast_derived().transpose();
}
/** \sa MatrixBase::transpose() const */
inline const TriangularView<Transpose<MatrixType>,TransposeMode> transpose() const
{ return m_matrix.transpose(); }
/** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
TriangularProduct<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
return TriangularProduct
<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
(m_matrix, rhs.derived());
}
/** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
{
return TriangularProduct
<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
(lhs.derived(),rhs.m_matrix);
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
struct eigen2_product_return_type
{
typedef typename TriangularView<MatrixType,Mode>::DenseMatrixType DenseMatrixType;
typedef typename OtherDerived::PlainObject::DenseType OtherPlainObject;
typedef typename ProductReturnType<DenseMatrixType, OtherPlainObject>::Type ProdRetType;
typedef typename ProdRetType::PlainObject type;
};
template<typename OtherDerived>
const typename eigen2_product_return_type<OtherDerived>::type
operator*(const EigenBase<OtherDerived>& rhs) const
{
typename OtherDerived::PlainObject::DenseType rhsPlainObject;
rhs.evalTo(rhsPlainObject);
return this->toDenseMatrix() * rhsPlainObject;
}
template<typename OtherMatrixType>
bool isApprox(const TriangularView<OtherMatrixType, Mode>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
{
return this->toDenseMatrix().isApprox(other.toDenseMatrix(), precision);
}
template<typename OtherDerived>
bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
{
return this->toDenseMatrix().isApprox(other, precision);
}
#endif // EIGEN2_SUPPORT
template<int Side, typename Other>
inline const internal::triangular_solve_retval<Side,TriangularView, Other>
solve(const MatrixBase<Other>& other) const;
template<int Side, typename OtherDerived>
void solveInPlace(const MatrixBase<OtherDerived>& other) const;
template<typename Other>
inline const internal::triangular_solve_retval<OnTheLeft,TriangularView, Other>
solve(const MatrixBase<Other>& other) const
{ return solve<OnTheLeft>(other); }
template<typename OtherDerived>
void solveInPlace(const MatrixBase<OtherDerived>& other) const
{ return solveInPlace<OnTheLeft>(other); }
const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
{
EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
}
SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
{
EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
}
template<typename OtherDerived>
void swap(TriangularBase<OtherDerived> const & other)
{
TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
}
template<typename OtherDerived>
void swap(MatrixBase<OtherDerived> const & other)
{
TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
}
Scalar determinant() const
{
if (Mode & UnitDiag)
return 1;
else if (Mode & ZeroDiag)
return 0;
else
return m_matrix.diagonal().prod();
}
// TODO simplify the following:
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE TriangularView& operator=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{
setZero();
return assignProduct(other,1);
}
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE TriangularView& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{
return assignProduct(other,1);
}
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE TriangularView& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{
return assignProduct(other,-1);
}
template<typename ProductDerived>
EIGEN_STRONG_INLINE TriangularView& operator=(const ScaledProduct<ProductDerived>& other)
{
setZero();
return assignProduct(other,other.alpha());
}
template<typename ProductDerived>
EIGEN_STRONG_INLINE TriangularView& operator+=(const ScaledProduct<ProductDerived>& other)
{
return assignProduct(other,other.alpha());
}
template<typename ProductDerived>
EIGEN_STRONG_INLINE TriangularView& operator-=(const ScaledProduct<ProductDerived>& other)
{
return assignProduct(other,-other.alpha());
}
protected:
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE TriangularView& assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha);
const MatrixTypeNested m_matrix;
};
/***************************************************************************
* Implementation of triangular evaluation/assignment
***************************************************************************/
namespace internal {
template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount, bool ClearOpposite>
struct triangular_assignment_selector
{
enum {
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
};
inline static void run(Derived1 &dst, const Derived2 &src)
{
triangular_assignment_selector<Derived1, Derived2, Mode, UnrollCount-1, ClearOpposite>::run(dst, src);
eigen_assert( Mode == Upper || Mode == Lower
|| Mode == StrictlyUpper || Mode == StrictlyLower
|| Mode == UnitUpper || Mode == UnitLower);
if((Mode == Upper && row <= col)
|| (Mode == Lower && row >= col)
|| (Mode == StrictlyUpper && row < col)
|| (Mode == StrictlyLower && row > col)
|| (Mode == UnitUpper && row < col)
|| (Mode == UnitLower && row > col))
dst.copyCoeff(row, col, src);
else if(ClearOpposite)
{
if (Mode&UnitDiag && row==col)
dst.coeffRef(row, col) = 1;
else
dst.coeffRef(row, col) = 0;
}
}
};
// prevent buggy user code from causing an infinite recursion
template<typename Derived1, typename Derived2, unsigned int Mode, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, Mode, 0, ClearOpposite>
{
inline static void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, Upper, Dynamic, ClearOpposite>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(Index j = 0; j < dst.cols(); ++j)
{
Index maxi = std::min(j, dst.rows()-1);
for(Index i = 0; i <= maxi; ++i)
dst.copyCoeff(i, j, src);
if (ClearOpposite)
for(Index i = maxi+1; i < dst.rows(); ++i)
dst.coeffRef(i, j) = 0;
}
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, Lower, Dynamic, ClearOpposite>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(Index j = 0; j < dst.cols(); ++j)
{
for(Index i = j; i < dst.rows(); ++i)
dst.copyCoeff(i, j, src);
Index maxi = std::min(j, dst.rows());
if (ClearOpposite)
for(Index i = 0; i < maxi; ++i)
dst.coeffRef(i, j) = 0;
}
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic, ClearOpposite>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(Index j = 0; j < dst.cols(); ++j)
{
Index maxi = std::min(j, dst.rows());
for(Index i = 0; i < maxi; ++i)
dst.copyCoeff(i, j, src);
if (ClearOpposite)
for(Index i = maxi; i < dst.rows(); ++i)
dst.coeffRef(i, j) = 0;
}
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, StrictlyLower, Dynamic, ClearOpposite>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(Index j = 0; j < dst.cols(); ++j)
{
for(Index i = j+1; i < dst.rows(); ++i)
dst.copyCoeff(i, j, src);
Index maxi = std::min(j, dst.rows()-1);
if (ClearOpposite)
for(Index i = 0; i <= maxi; ++i)
dst.coeffRef(i, j) = 0;
}
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, UnitUpper, Dynamic, ClearOpposite>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(Index j = 0; j < dst.cols(); ++j)
{
Index maxi = std::min(j, dst.rows());
for(Index i = 0; i < maxi; ++i)
dst.copyCoeff(i, j, src);
if (ClearOpposite)
{
for(Index i = maxi+1; i < dst.rows(); ++i)
dst.coeffRef(i, j) = 0;
}
}
dst.diagonal().setOnes();
}
};
template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, UnitLower, Dynamic, ClearOpposite>
{
typedef typename Derived1::Index Index;
inline static void run(Derived1 &dst, const Derived2 &src)
{
for(Index j = 0; j < dst.cols(); ++j)
{
Index maxi = std::min(j, dst.rows());
for(Index i = maxi+1; i < dst.rows(); ++i)
dst.copyCoeff(i, j, src);
if (ClearOpposite)
{
for(Index i = 0; i < maxi; ++i)
dst.coeffRef(i, j) = 0;
}
}
dst.diagonal().setOnes();
}
};
} // end namespace internal
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
TriangularView<MatrixType, Mode>::operator=(const MatrixBase<OtherDerived>& other)
{
if(OtherDerived::Flags & EvalBeforeAssigningBit)
{
typename internal::plain_matrix_type<OtherDerived>::type other_evaluated(other.rows(), other.cols());
other_evaluated.template triangularView<Mode>().lazyAssign(other.derived());
lazyAssign(other_evaluated);
}
else
lazyAssign(other.derived());
return *this;
}
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>& other)
{
enum {
unroll = MatrixType::SizeAtCompileTime != Dynamic
&& internal::traits<OtherDerived>::CoeffReadCost != Dynamic
&& MatrixType::SizeAtCompileTime*internal::traits<OtherDerived>::CoeffReadCost/2 <= EIGEN_UNROLLING_LIMIT
};
eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
internal::triangular_assignment_selector
<MatrixType, OtherDerived, int(Mode),
unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
false // do not change the opposite triangular part
>::run(m_matrix.const_cast_derived(), other.derived());
}
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
TriangularView<MatrixType, Mode>::operator=(const TriangularBase<OtherDerived>& other)
{
eigen_assert(Mode == int(OtherDerived::Mode));
if(internal::traits<OtherDerived>::Flags & EvalBeforeAssigningBit)
{
typename OtherDerived::DenseMatrixType other_evaluated(other.rows(), other.cols());
other_evaluated.template triangularView<Mode>().lazyAssign(other.derived().nestedExpression());
lazyAssign(other_evaluated);
}
else
lazyAssign(other.derived().nestedExpression());
return *this;
}
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
void TriangularView<MatrixType, Mode>::lazyAssign(const TriangularBase<OtherDerived>& other)
{
enum {
unroll = MatrixType::SizeAtCompileTime != Dynamic
&& internal::traits<OtherDerived>::CoeffReadCost != Dynamic
&& MatrixType::SizeAtCompileTime * internal::traits<OtherDerived>::CoeffReadCost / 2
<= EIGEN_UNROLLING_LIMIT
};
eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
internal::triangular_assignment_selector
<MatrixType, OtherDerived, int(Mode),
unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
false // preserve the opposite triangular part
>::run(m_matrix.const_cast_derived(), other.derived().nestedExpression());
}
/***************************************************************************
* Implementation of TriangularBase methods
***************************************************************************/
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
* If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
{
if(internal::traits<Derived>::Flags & EvalBeforeAssigningBit)
{
typename internal::plain_matrix_type<Derived>::type other_evaluated(rows(), cols());
evalToLazy(other_evaluated);
other.derived().swap(other_evaluated);
}
else
evalToLazy(other.derived());
}
/** Assigns a triangular or selfadjoint matrix to a dense matrix.
* If the matrix is triangular, the opposite part is set to zero. */
template<typename Derived>
template<typename DenseDerived>
void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
{
enum {
unroll = DenseDerived::SizeAtCompileTime != Dynamic
&& internal::traits<Derived>::CoeffReadCost != Dynamic
&& DenseDerived::SizeAtCompileTime * internal::traits<Derived>::CoeffReadCost / 2
<= EIGEN_UNROLLING_LIMIT
};
other.derived().resize(this->rows(), this->cols());
internal::triangular_assignment_selector
<DenseDerived, typename internal::traits<Derived>::MatrixTypeNestedCleaned, Derived::Mode,
unroll ? int(DenseDerived::SizeAtCompileTime) : Dynamic,
true // clear the opposite triangular part
>::run(other.derived(), derived().nestedExpression());
}
/***************************************************************************
* Implementation of TriangularView methods
***************************************************************************/
/***************************************************************************
* Implementation of MatrixBase methods
***************************************************************************/
#ifdef EIGEN2_SUPPORT
// implementation of part<>(), including the SelfAdjoint case.
namespace internal {
template<typename MatrixType, unsigned int Mode>
struct eigen2_part_return_type
{
typedef TriangularView<MatrixType, Mode> type;
};
template<typename MatrixType>
struct eigen2_part_return_type<MatrixType, SelfAdjoint>
{
typedef SelfAdjointView<MatrixType, Upper> type;
};
}
/** \deprecated use MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
const typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part() const
{
return derived();
}
/** \deprecated use MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part()
{
return derived();
}
#endif
/**
* \returns an expression of a triangular view extracted from the current matrix
*
* The parameter \a Mode can have the following values: \c Upper, \c StrictlyUpper, \c UnitUpper,
* \c Lower, \c StrictlyLower, \c UnitLower.
*
* Example: \include MatrixBase_extract.cpp
* Output: \verbinclude MatrixBase_extract.out
*
* \sa class TriangularView
*/
template<typename Derived>
template<unsigned int Mode>
typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView()
{
return derived();
}
/** This is the const version of MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView() const
{
return derived();
}
/** \returns true if *this is approximately equal to an upper triangular matrix,
* within the precision given by \a prec.
*
* \sa isLowerTriangular()
*/
template<typename Derived>
bool MatrixBase<Derived>::isUpperTriangular(RealScalar prec) const
{
RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1);
for(Index j = 0; j < cols(); ++j)
{
Index maxi = std::min(j, rows()-1);
for(Index i = 0; i <= maxi; ++i)
{
RealScalar absValue = internal::abs(coeff(i,j));
if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue;
}
}
RealScalar threshold = maxAbsOnUpperPart * prec;
for(Index j = 0; j < cols(); ++j)
for(Index i = j+1; i < rows(); ++i)
if(internal::abs(coeff(i, j)) > threshold) return false;
return true;
}
/** \returns true if *this is approximately equal to a lower triangular matrix,
* within the precision given by \a prec.
*
* \sa isUpperTriangular()
*/
template<typename Derived>
bool MatrixBase<Derived>::isLowerTriangular(RealScalar prec) const
{
RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1);
for(Index j = 0; j < cols(); ++j)
for(Index i = j; i < rows(); ++i)
{
RealScalar absValue = internal::abs(coeff(i,j));
if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue;
}
RealScalar threshold = maxAbsOnLowerPart * prec;
for(Index j = 1; j < cols(); ++j)
{
Index maxi = std::min(j, rows()-1);
for(Index i = 0; i < maxi; ++i)
if(internal::abs(coeff(i, j)) > threshold) return false;
}
return true;
}
#endif // EIGEN_TRIANGULARMATRIX_H

View file

@ -0,0 +1,296 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_VECTORBLOCK_H
#define EIGEN_VECTORBLOCK_H
/** \class VectorBlock
* \ingroup Core_Module
*
* \brief Expression of a fixed-size or dynamic-size sub-vector
*
* \param VectorType the type of the object in which we are taking a sub-vector
* \param Size size of the sub-vector we are taking at compile time (optional)
*
* This class represents an expression of either a fixed-size or dynamic-size sub-vector.
* It is the return type of DenseBase::segment(Index,Index) and DenseBase::segment<int>(Index) and
* most of the time this is the only way it is used.
*
* However, if you want to directly maniputate sub-vector expressions,
* for instance if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating the dynamic case:
* \include class_VectorBlock.cpp
* Output: \verbinclude class_VectorBlock.out
*
* \note Even though this expression has dynamic size, in the case where \a VectorType
* has fixed size, this expression inherits a fixed maximal size which means that evaluating
* it does not cause a dynamic memory allocation.
*
* Here is an example illustrating the fixed-size case:
* \include class_FixedVectorBlock.cpp
* Output: \verbinclude class_FixedVectorBlock.out
*
* \sa class Block, DenseBase::segment(Index,Index,Index,Index), DenseBase::segment(Index,Index)
*/
namespace internal {
template<typename VectorType, int Size>
struct traits<VectorBlock<VectorType, Size> >
: public traits<Block<VectorType,
traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
traits<VectorType>::Flags & RowMajorBit ? Size : 1> >
{
};
}
template<typename VectorType, int Size> class VectorBlock
: public Block<VectorType,
internal::traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
internal::traits<VectorType>::Flags & RowMajorBit ? Size : 1>
{
typedef Block<VectorType,
internal::traits<VectorType>::Flags & RowMajorBit ? 1 : Size,
internal::traits<VectorType>::Flags & RowMajorBit ? Size : 1> Base;
enum {
IsColVector = !(internal::traits<VectorType>::Flags & RowMajorBit)
};
public:
EIGEN_DENSE_PUBLIC_INTERFACE(VectorBlock)
using Base::operator=;
/** Dynamic-size constructor
*/
inline VectorBlock(VectorType& vector, Index start, Index size)
: Base(vector,
IsColVector ? start : 0, IsColVector ? 0 : start,
IsColVector ? size : 1, IsColVector ? 1 : size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock);
}
/** Fixed-size constructor
*/
inline VectorBlock(VectorType& vector, Index start)
: Base(vector, IsColVector ? start : 0, IsColVector ? 0 : start)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock);
}
};
/** \returns a dynamic-size expression of a segment (i.e. a vector block) in *this.
*
* \only_for_vectors
*
* \param start the first coefficient in the segment
* \param size the number of coefficients in the segment
*
* Example: \include MatrixBase_segment_int_int.cpp
* Output: \verbinclude MatrixBase_segment_int_int.out
*
* \note Even though the returned expression has dynamic size, in the case
* when it is applied to a fixed-size vector, it inherits a fixed maximal size,
* which means that evaluating it does not cause a dynamic memory allocation.
*
* \sa class Block, segment(Index)
*/
template<typename Derived>
inline typename DenseBase<Derived>::SegmentReturnType
DenseBase<Derived>::segment(Index start, Index size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return SegmentReturnType(derived(), start, size);
}
/** This is the const version of segment(Index,Index).*/
template<typename Derived>
inline typename DenseBase<Derived>::ConstSegmentReturnType
DenseBase<Derived>::segment(Index start, Index size) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return ConstSegmentReturnType(derived(), start, size);
}
/** \returns a dynamic-size expression of the first coefficients of *this.
*
* \only_for_vectors
*
* \param size the number of coefficients in the block
*
* Example: \include MatrixBase_start_int.cpp
* Output: \verbinclude MatrixBase_start_int.out
*
* \note Even though the returned expression has dynamic size, in the case
* when it is applied to a fixed-size vector, it inherits a fixed maximal size,
* which means that evaluating it does not cause a dynamic memory allocation.
*
* \sa class Block, block(Index,Index)
*/
template<typename Derived>
inline typename DenseBase<Derived>::SegmentReturnType
DenseBase<Derived>::head(Index size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return SegmentReturnType(derived(), 0, size);
}
/** This is the const version of head(Index).*/
template<typename Derived>
inline typename DenseBase<Derived>::ConstSegmentReturnType
DenseBase<Derived>::head(Index size) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return ConstSegmentReturnType(derived(), 0, size);
}
/** \returns a dynamic-size expression of the last coefficients of *this.
*
* \only_for_vectors
*
* \param size the number of coefficients in the block
*
* Example: \include MatrixBase_end_int.cpp
* Output: \verbinclude MatrixBase_end_int.out
*
* \note Even though the returned expression has dynamic size, in the case
* when it is applied to a fixed-size vector, it inherits a fixed maximal size,
* which means that evaluating it does not cause a dynamic memory allocation.
*
* \sa class Block, block(Index,Index)
*/
template<typename Derived>
inline typename DenseBase<Derived>::SegmentReturnType
DenseBase<Derived>::tail(Index size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return SegmentReturnType(derived(), this->size() - size, size);
}
/** This is the const version of tail(Index).*/
template<typename Derived>
inline typename DenseBase<Derived>::ConstSegmentReturnType
DenseBase<Derived>::tail(Index size) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return ConstSegmentReturnType(derived(), this->size() - size, size);
}
/** \returns a fixed-size expression of a segment (i.e. a vector block) in \c *this
*
* \only_for_vectors
*
* The template parameter \a Size is the number of coefficients in the block
*
* \param start the index of the first element of the sub-vector
*
* Example: \include MatrixBase_template_int_segment.cpp
* Output: \verbinclude MatrixBase_template_int_segment.out
*
* \sa class Block
*/
template<typename Derived>
template<int Size>
inline typename DenseBase<Derived>::template FixedSegmentReturnType<Size>::Type
DenseBase<Derived>::segment(Index start)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return typename FixedSegmentReturnType<Size>::Type(derived(), start);
}
/** This is the const version of segment<int>(Index).*/
template<typename Derived>
template<int Size>
inline typename DenseBase<Derived>::template ConstFixedSegmentReturnType<Size>::Type
DenseBase<Derived>::segment(Index start) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return typename ConstFixedSegmentReturnType<Size>::Type(derived(), start);
}
/** \returns a fixed-size expression of the first coefficients of *this.
*
* \only_for_vectors
*
* The template parameter \a Size is the number of coefficients in the block
*
* Example: \include MatrixBase_template_int_start.cpp
* Output: \verbinclude MatrixBase_template_int_start.out
*
* \sa class Block
*/
template<typename Derived>
template<int Size>
inline typename DenseBase<Derived>::template FixedSegmentReturnType<Size>::Type
DenseBase<Derived>::head()
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return typename FixedSegmentReturnType<Size>::Type(derived(), 0);
}
/** This is the const version of head<int>().*/
template<typename Derived>
template<int Size>
inline typename DenseBase<Derived>::template ConstFixedSegmentReturnType<Size>::Type
DenseBase<Derived>::head() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return typename ConstFixedSegmentReturnType<Size>::Type(derived(), 0);
}
/** \returns a fixed-size expression of the last coefficients of *this.
*
* \only_for_vectors
*
* The template parameter \a Size is the number of coefficients in the block
*
* Example: \include MatrixBase_template_int_end.cpp
* Output: \verbinclude MatrixBase_template_int_end.out
*
* \sa class Block
*/
template<typename Derived>
template<int Size>
inline typename DenseBase<Derived>::template FixedSegmentReturnType<Size>::Type
DenseBase<Derived>::tail()
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return typename FixedSegmentReturnType<Size>::Type(derived(), size() - Size);
}
/** This is the const version of tail<int>.*/
template<typename Derived>
template<int Size>
inline typename DenseBase<Derived>::template ConstFixedSegmentReturnType<Size>::Type
DenseBase<Derived>::tail() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return typename ConstFixedSegmentReturnType<Size>::Type(derived(), size() - Size);
}
#endif // EIGEN_VECTORBLOCK_H

View file

@ -0,0 +1,557 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PARTIAL_REDUX_H
#define EIGEN_PARTIAL_REDUX_H
/** \class PartialReduxExpr
* \ingroup Core_Module
*
* \brief Generic expression of a partially reduxed matrix
*
* \param MatrixType the type of the matrix we are applying the redux operation
* \param MemberOp type of the member functor
* \param Direction indicates the direction of the redux (Vertical or Horizontal)
*
* This class represents an expression of a partial redux operator of a matrix.
* It is the return type of some VectorwiseOp functions,
* and most of the time this is the only way it is used.
*
* \sa class VectorwiseOp
*/
template< typename MatrixType, typename MemberOp, int Direction>
class PartialReduxExpr;
namespace internal {
template<typename MatrixType, typename MemberOp, int Direction>
struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
: traits<MatrixType>
{
typedef typename MemberOp::result_type Scalar;
typedef typename traits<MatrixType>::StorageKind StorageKind;
typedef typename traits<MatrixType>::XprKind XprKind;
typedef typename MatrixType::Scalar InputScalar;
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime,
ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
Flags0 = (unsigned int)_MatrixTypeNested::Flags & HereditaryBits,
Flags = (Flags0 & ~RowMajorBit) | (RowsAtCompileTime == 1 ? RowMajorBit : 0),
TraversalSize = Direction==Vertical ? RowsAtCompileTime : ColsAtCompileTime
};
#if EIGEN_GNUC_AT_LEAST(3,4)
typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
#else
typedef typename MemberOp::template Cost<InputScalar,TraversalSize> CostOpType;
#endif
enum {
CoeffReadCost = TraversalSize * traits<_MatrixTypeNested>::CoeffReadCost + int(CostOpType::value)
};
};
}
template< typename MatrixType, typename MemberOp, int Direction>
class PartialReduxExpr : internal::no_assignment_operator,
public internal::dense_xpr_base< PartialReduxExpr<MatrixType, MemberOp, Direction> >::type
{
public:
typedef typename internal::dense_xpr_base<PartialReduxExpr>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(PartialReduxExpr)
typedef typename internal::traits<PartialReduxExpr>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<PartialReduxExpr>::_MatrixTypeNested _MatrixTypeNested;
PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp())
: m_matrix(mat), m_functor(func) {}
Index rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); }
Index cols() const { return (Direction==Horizontal ? 1 : m_matrix.cols()); }
EIGEN_STRONG_INLINE const Scalar coeff(Index i, Index j) const
{
if (Direction==Vertical)
return m_functor(m_matrix.col(j));
else
return m_functor(m_matrix.row(i));
}
const Scalar coeff(Index index) const
{
if (Direction==Vertical)
return m_functor(m_matrix.col(index));
else
return m_functor(m_matrix.row(index));
}
protected:
const MatrixTypeNested m_matrix;
const MemberOp m_functor;
};
#define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \
template <typename ResultType> \
struct member_##MEMBER { \
EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \
typedef ResultType result_type; \
template<typename Scalar, int Size> struct Cost \
{ enum { value = COST }; }; \
template<typename XprType> \
EIGEN_STRONG_INLINE ResultType operator()(const XprType& mat) const \
{ return mat.MEMBER(); } \
}
namespace internal {
EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits<scalar_hypot_op<Scalar> >::Cost );
EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(mean, (Size-1)*NumTraits<Scalar>::AddCost + NumTraits<Scalar>::MulCost);
EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost);
template <typename BinaryOp, typename Scalar>
struct member_redux {
typedef typename result_of<
BinaryOp(Scalar)
>::type result_type;
template<typename _Scalar, int Size> struct Cost
{ enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; };
member_redux(const BinaryOp func) : m_functor(func) {}
template<typename Derived>
inline result_type operator()(const DenseBase<Derived>& mat) const
{ return mat.redux(m_functor); }
const BinaryOp m_functor;
};
}
/** \class VectorwiseOp
* \ingroup Core_Module
*
* \brief Pseudo expression providing partial reduction operations
*
* \param ExpressionType the type of the object on which to do partial reductions
* \param Direction indicates the direction of the redux (Vertical or Horizontal)
*
* This class represents a pseudo expression with partial reduction features.
* It is the return type of DenseBase::colwise() and DenseBase::rowwise()
* and most of the time this is the only way it is used.
*
* Example: \include MatrixBase_colwise.cpp
* Output: \verbinclude MatrixBase_colwise.out
*
* \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr
*/
template<typename ExpressionType, int Direction> class VectorwiseOp
{
public:
typedef typename ExpressionType::Scalar Scalar;
typedef typename ExpressionType::RealScalar RealScalar;
typedef typename ExpressionType::Index Index;
typedef typename internal::conditional<internal::must_nest_by_value<ExpressionType>::ret,
ExpressionType, ExpressionType&>::type ExpressionTypeNested;
typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned;
template<template<typename _Scalar> class Functor,
typename Scalar=typename internal::traits<ExpressionType>::Scalar> struct ReturnType
{
typedef PartialReduxExpr<ExpressionType,
Functor<Scalar>,
Direction
> Type;
};
template<typename BinaryOp> struct ReduxReturnType
{
typedef PartialReduxExpr<ExpressionType,
internal::member_redux<BinaryOp,typename internal::traits<ExpressionType>::Scalar>,
Direction
> Type;
};
enum {
IsVertical = (Direction==Vertical) ? 1 : 0,
IsHorizontal = (Direction==Horizontal) ? 1 : 0
};
protected:
/** \internal
* \returns the i-th subvector according to the \c Direction */
typedef typename internal::conditional<Direction==Vertical,
typename ExpressionType::ColXpr,
typename ExpressionType::RowXpr>::type SubVector;
SubVector subVector(Index i)
{
return SubVector(m_matrix.derived(),i);
}
/** \internal
* \returns the number of subvectors in the direction \c Direction */
Index subVectors() const
{ return Direction==Vertical?m_matrix.cols():m_matrix.rows(); }
template<typename OtherDerived> struct ExtendedType {
typedef Replicate<OtherDerived,
Direction==Vertical ? 1 : ExpressionType::RowsAtCompileTime,
Direction==Horizontal ? 1 : ExpressionType::ColsAtCompileTime> Type;
};
/** \internal
* Replicates a vector to match the size of \c *this */
template<typename OtherDerived>
typename ExtendedType<OtherDerived>::Type
extendedTo(const DenseBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived);
return typename ExtendedType<OtherDerived>::Type
(other.derived(),
Direction==Vertical ? 1 : m_matrix.rows(),
Direction==Horizontal ? 1 : m_matrix.cols());
}
public:
inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {}
/** \internal */
inline const ExpressionType& _expression() const { return m_matrix; }
/** \returns a row or column vector expression of \c *this reduxed by \a func
*
* The template parameter \a BinaryOp is the type of the functor
* of the custom redux operator. Note that func must be an associative operator.
*
* \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise()
*/
template<typename BinaryOp>
const typename ReduxReturnType<BinaryOp>::Type
redux(const BinaryOp& func = BinaryOp()) const
{ return typename ReduxReturnType<BinaryOp>::Type(_expression(), func); }
/** \returns a row (or column) vector expression of the smallest coefficient
* of each column (or row) of the referenced expression.
*
* Example: \include PartialRedux_minCoeff.cpp
* Output: \verbinclude PartialRedux_minCoeff.out
*
* \sa DenseBase::minCoeff() */
const typename ReturnType<internal::member_minCoeff>::Type minCoeff() const
{ return _expression(); }
/** \returns a row (or column) vector expression of the largest coefficient
* of each column (or row) of the referenced expression.
*
* Example: \include PartialRedux_maxCoeff.cpp
* Output: \verbinclude PartialRedux_maxCoeff.out
*
* \sa DenseBase::maxCoeff() */
const typename ReturnType<internal::member_maxCoeff>::Type maxCoeff() const
{ return _expression(); }
/** \returns a row (or column) vector expression of the squared norm
* of each column (or row) of the referenced expression.
*
* Example: \include PartialRedux_squaredNorm.cpp
* Output: \verbinclude PartialRedux_squaredNorm.out
*
* \sa DenseBase::squaredNorm() */
const typename ReturnType<internal::member_squaredNorm,RealScalar>::Type squaredNorm() const
{ return _expression(); }
/** \returns a row (or column) vector expression of the norm
* of each column (or row) of the referenced expression.
*
* Example: \include PartialRedux_norm.cpp
* Output: \verbinclude PartialRedux_norm.out
*
* \sa DenseBase::norm() */
const typename ReturnType<internal::member_norm,RealScalar>::Type norm() const
{ return _expression(); }
/** \returns a row (or column) vector expression of the norm
* of each column (or row) of the referenced expression, using
* blue's algorithm.
*
* \sa DenseBase::blueNorm() */
const typename ReturnType<internal::member_blueNorm,RealScalar>::Type blueNorm() const
{ return _expression(); }
/** \returns a row (or column) vector expression of the norm
* of each column (or row) of the referenced expression, avoiding
* underflow and overflow.
*
* \sa DenseBase::stableNorm() */
const typename ReturnType<internal::member_stableNorm,RealScalar>::Type stableNorm() const
{ return _expression(); }
/** \returns a row (or column) vector expression of the norm
* of each column (or row) of the referenced expression, avoiding
* underflow and overflow using a concatenation of hypot() calls.
*
* \sa DenseBase::hypotNorm() */
const typename ReturnType<internal::member_hypotNorm,RealScalar>::Type hypotNorm() const
{ return _expression(); }
/** \returns a row (or column) vector expression of the sum
* of each column (or row) of the referenced expression.
*
* Example: \include PartialRedux_sum.cpp
* Output: \verbinclude PartialRedux_sum.out
*
* \sa DenseBase::sum() */
const typename ReturnType<internal::member_sum>::Type sum() const
{ return _expression(); }
/** \returns a row (or column) vector expression of the mean
* of each column (or row) of the referenced expression.
*
* \sa DenseBase::mean() */
const typename ReturnType<internal::member_mean>::Type mean() const
{ return _expression(); }
/** \returns a row (or column) vector expression representing
* whether \b all coefficients of each respective column (or row) are \c true.
*
* \sa DenseBase::all() */
const typename ReturnType<internal::member_all>::Type all() const
{ return _expression(); }
/** \returns a row (or column) vector expression representing
* whether \b at \b least one coefficient of each respective column (or row) is \c true.
*
* \sa DenseBase::any() */
const typename ReturnType<internal::member_any>::Type any() const
{ return _expression(); }
/** \returns a row (or column) vector expression representing
* the number of \c true coefficients of each respective column (or row).
*
* Example: \include PartialRedux_count.cpp
* Output: \verbinclude PartialRedux_count.out
*
* \sa DenseBase::count() */
const PartialReduxExpr<ExpressionType, internal::member_count<Index>, Direction> count() const
{ return _expression(); }
/** \returns a row (or column) vector expression of the product
* of each column (or row) of the referenced expression.
*
* Example: \include PartialRedux_prod.cpp
* Output: \verbinclude PartialRedux_prod.out
*
* \sa DenseBase::prod() */
const typename ReturnType<internal::member_prod>::Type prod() const
{ return _expression(); }
/** \returns a matrix expression
* where each column (or row) are reversed.
*
* Example: \include Vectorwise_reverse.cpp
* Output: \verbinclude Vectorwise_reverse.out
*
* \sa DenseBase::reverse() */
const Reverse<ExpressionType, Direction> reverse() const
{ return Reverse<ExpressionType, Direction>( _expression() ); }
typedef Replicate<ExpressionType,Direction==Vertical?Dynamic:1,Direction==Horizontal?Dynamic:1> ReplicateReturnType;
const ReplicateReturnType replicate(Index factor) const;
/**
* \return an expression of the replication of each column (or row) of \c *this
*
* Example: \include DirectionWise_replicate.cpp
* Output: \verbinclude DirectionWise_replicate.out
*
* \sa VectorwiseOp::replicate(Index), DenseBase::replicate(), class Replicate
*/
// NOTE implemented here because of sunstudio's compilation errors
template<int Factor> const Replicate<ExpressionType,(IsVertical?Factor:1),(IsHorizontal?Factor:1)>
replicate(Index factor = Factor) const
{
return Replicate<ExpressionType,Direction==Vertical?Factor:1,Direction==Horizontal?Factor:1>
(_expression(),Direction==Vertical?factor:1,Direction==Horizontal?factor:1);
}
/////////// Artithmetic operators ///////////
/** Copies the vector \a other to each subvector of \c *this */
template<typename OtherDerived>
ExpressionType& operator=(const DenseBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
//eigen_assert((m_matrix.isNull()) == (other.isNull())); FIXME
for(Index j=0; j<subVectors(); ++j)
subVector(j) = other;
return const_cast<ExpressionType&>(m_matrix);
}
/** Adds the vector \a other to each subvector of \c *this */
template<typename OtherDerived>
ExpressionType& operator+=(const DenseBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
for(Index j=0; j<subVectors(); ++j)
subVector(j) += other.derived();
return const_cast<ExpressionType&>(m_matrix);
}
/** Substracts the vector \a other to each subvector of \c *this */
template<typename OtherDerived>
ExpressionType& operator-=(const DenseBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
for(Index j=0; j<subVectors(); ++j)
subVector(j) -= other.derived();
return const_cast<ExpressionType&>(m_matrix);
}
/** Returns the expression of the sum of the vector \a other to each subvector of \c *this */
template<typename OtherDerived> EIGEN_STRONG_INLINE
CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
const ExpressionTypeNestedCleaned,
const typename ExtendedType<OtherDerived>::Type>
operator+(const DenseBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived);
return m_matrix + extendedTo(other.derived());
}
/** Returns the expression of the difference between each subvector of \c *this and the vector \a other */
template<typename OtherDerived>
CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
const ExpressionTypeNestedCleaned,
const typename ExtendedType<OtherDerived>::Type>
operator-(const DenseBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived);
return m_matrix - extendedTo(other.derived());
}
/////////// Geometry module ///////////
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
Homogeneous<ExpressionType,Direction> homogeneous() const;
#endif
typedef typename ExpressionType::PlainObject CrossReturnType;
template<typename OtherDerived>
const CrossReturnType cross(const MatrixBase<OtherDerived>& other) const;
enum {
HNormalized_Size = Direction==Vertical ? internal::traits<ExpressionType>::RowsAtCompileTime
: internal::traits<ExpressionType>::ColsAtCompileTime,
HNormalized_SizeMinusOne = HNormalized_Size==Dynamic ? Dynamic : HNormalized_Size-1
};
typedef Block<const ExpressionType,
Direction==Vertical ? int(HNormalized_SizeMinusOne)
: int(internal::traits<ExpressionType>::RowsAtCompileTime),
Direction==Horizontal ? int(HNormalized_SizeMinusOne)
: int(internal::traits<ExpressionType>::ColsAtCompileTime)>
HNormalized_Block;
typedef Block<const ExpressionType,
Direction==Vertical ? 1 : int(internal::traits<ExpressionType>::RowsAtCompileTime),
Direction==Horizontal ? 1 : int(internal::traits<ExpressionType>::ColsAtCompileTime)>
HNormalized_Factors;
typedef CwiseBinaryOp<internal::scalar_quotient_op<typename internal::traits<ExpressionType>::Scalar>,
const HNormalized_Block,
const Replicate<HNormalized_Factors,
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
Direction==Horizontal ? HNormalized_SizeMinusOne : 1> >
HNormalizedReturnType;
const HNormalizedReturnType hnormalized() const;
protected:
ExpressionTypeNested m_matrix;
};
/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
*
* Example: \include MatrixBase_colwise.cpp
* Output: \verbinclude MatrixBase_colwise.out
*
* \sa rowwise(), class VectorwiseOp
*/
template<typename Derived>
inline const typename DenseBase<Derived>::ConstColwiseReturnType
DenseBase<Derived>::colwise() const
{
return derived();
}
/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
*
* \sa rowwise(), class VectorwiseOp
*/
template<typename Derived>
inline typename DenseBase<Derived>::ColwiseReturnType
DenseBase<Derived>::colwise()
{
return derived();
}
/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
*
* Example: \include MatrixBase_rowwise.cpp
* Output: \verbinclude MatrixBase_rowwise.out
*
* \sa colwise(), class VectorwiseOp
*/
template<typename Derived>
inline const typename DenseBase<Derived>::ConstRowwiseReturnType
DenseBase<Derived>::rowwise() const
{
return derived();
}
/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
*
* \sa colwise(), class VectorwiseOp
*/
template<typename Derived>
inline typename DenseBase<Derived>::RowwiseReturnType
DenseBase<Derived>::rowwise()
{
return derived();
}
#endif // EIGEN_PARTIAL_REDUX_H

View file

@ -0,0 +1,248 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_VISITOR_H
#define EIGEN_VISITOR_H
namespace internal {
template<typename Visitor, typename Derived, int UnrollCount>
struct visitor_impl
{
enum {
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
inline static void run(const Derived &mat, Visitor& visitor)
{
visitor_impl<Visitor, Derived, UnrollCount-1>::run(mat, visitor);
visitor(mat.coeff(row, col), row, col);
}
};
template<typename Visitor, typename Derived>
struct visitor_impl<Visitor, Derived, 1>
{
inline static void run(const Derived &mat, Visitor& visitor)
{
return visitor.init(mat.coeff(0, 0), 0, 0);
}
};
template<typename Visitor, typename Derived>
struct visitor_impl<Visitor, Derived, Dynamic>
{
typedef typename Derived::Index Index;
inline static void run(const Derived& mat, Visitor& visitor)
{
visitor.init(mat.coeff(0,0), 0, 0);
for(Index i = 1; i < mat.rows(); ++i)
visitor(mat.coeff(i, 0), i, 0);
for(Index j = 1; j < mat.cols(); ++j)
for(Index i = 0; i < mat.rows(); ++i)
visitor(mat.coeff(i, j), i, j);
}
};
} // end namespace internal
/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector.
*
* The template parameter \a Visitor is the type of the visitor and provides the following interface:
* \code
* struct MyVisitor {
* // called for the first coefficient
* void init(const Scalar& value, Index i, Index j);
* // called for all other coefficients
* void operator() (const Scalar& value, Index i, Index j);
* };
* \endcode
*
* \note compared to one or two \em for \em loops, visitors offer automatic
* unrolling for small fixed size matrix.
*
* \sa minCoeff(Index*,Index*), maxCoeff(Index*,Index*), DenseBase::redux()
*/
template<typename Derived>
template<typename Visitor>
void DenseBase<Derived>::visit(Visitor& visitor) const
{
enum { unroll = SizeAtCompileTime != Dynamic
&& CoeffReadCost != Dynamic
&& (SizeAtCompileTime == 1 || internal::functor_traits<Visitor>::Cost != Dynamic)
&& SizeAtCompileTime * CoeffReadCost + (SizeAtCompileTime-1) * internal::functor_traits<Visitor>::Cost
<= EIGEN_UNROLLING_LIMIT };
return internal::visitor_impl<Visitor, Derived,
unroll ? int(SizeAtCompileTime) : Dynamic
>::run(derived(), visitor);
}
namespace internal {
/** \internal
* \brief Base class to implement min and max visitors
*/
template <typename Derived>
struct coeff_visitor
{
typedef typename Derived::Index Index;
typedef typename Derived::Scalar Scalar;
Index row, col;
Scalar res;
inline void init(const Scalar& value, Index i, Index j)
{
res = value;
row = i;
col = j;
}
};
/** \internal
* \brief Visitor computing the min coefficient with its value and coordinates
*
* \sa DenseBase::minCoeff(Index*, Index*)
*/
template <typename Derived>
struct min_coeff_visitor : coeff_visitor<Derived>
{
typedef typename Derived::Index Index;
typedef typename Derived::Scalar Scalar;
void operator() (const Scalar& value, Index i, Index j)
{
if(value < this->res)
{
this->res = value;
this->row = i;
this->col = j;
}
}
};
template<typename Scalar>
struct functor_traits<min_coeff_visitor<Scalar> > {
enum {
Cost = NumTraits<Scalar>::AddCost
};
};
/** \internal
* \brief Visitor computing the max coefficient with its value and coordinates
*
* \sa DenseBase::maxCoeff(Index*, Index*)
*/
template <typename Derived>
struct max_coeff_visitor : coeff_visitor<Derived>
{
typedef typename Derived::Index Index;
typedef typename Derived::Scalar Scalar;
void operator() (const Scalar& value, Index i, Index j)
{
if(value > this->res)
{
this->res = value;
this->row = i;
this->col = j;
}
}
};
template<typename Scalar>
struct functor_traits<max_coeff_visitor<Scalar> > {
enum {
Cost = NumTraits<Scalar>::AddCost
};
};
} // end namespace internal
/** \returns the minimum of all coefficients of *this
* and puts in *row and *col its location.
*
* \sa DenseBase::minCoeff(Index*), DenseBase::maxCoeff(Index*,Index*), DenseBase::visitor(), DenseBase::minCoeff()
*/
template<typename Derived>
template<typename IndexType>
typename internal::traits<Derived>::Scalar
DenseBase<Derived>::minCoeff(IndexType* row, IndexType* col) const
{
internal::min_coeff_visitor<Derived> minVisitor;
this->visit(minVisitor);
*row = minVisitor.row;
if (col) *col = minVisitor.col;
return minVisitor.res;
}
/** \returns the minimum of all coefficients of *this
* and puts in *index its location.
*
* \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::minCoeff()
*/
template<typename Derived>
template<typename IndexType>
typename internal::traits<Derived>::Scalar
DenseBase<Derived>::minCoeff(IndexType* index) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
internal::min_coeff_visitor<Derived> minVisitor;
this->visit(minVisitor);
*index = (RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row;
return minVisitor.res;
}
/** \returns the maximum of all coefficients of *this
* and puts in *row and *col its location.
*
* \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
*/
template<typename Derived>
template<typename IndexType>
typename internal::traits<Derived>::Scalar
DenseBase<Derived>::maxCoeff(IndexType* row, IndexType* col) const
{
internal::max_coeff_visitor<Derived> maxVisitor;
this->visit(maxVisitor);
*row = maxVisitor.row;
if (col) *col = maxVisitor.col;
return maxVisitor.res;
}
/** \returns the maximum of all coefficients of *this
* and puts in *index its location.
*
* \sa DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
*/
template<typename Derived>
template<typename IndexType>
typename internal::traits<Derived>::Scalar
DenseBase<Derived>::maxCoeff(IndexType* index) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
internal::max_coeff_visitor<Derived> maxVisitor;
this->visit(maxVisitor);
*index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row;
return maxVisitor.res;
}
#endif // EIGEN_VISITOR_H

View file

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Core_arch_AltiVec_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_arch_AltiVec_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/AltiVec COMPONENT Devel
)

View file

@ -0,0 +1,228 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_COMPLEX_ALTIVEC_H
#define EIGEN_COMPLEX_ALTIVEC_H
namespace internal {
static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_ZERO_);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
static Packet16uc p16uc_COMPLEX_RE = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
static Packet16uc p16uc_COMPLEX_IM = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
static Packet16uc p16uc_COMPLEX_REV = vec_sld(p16uc_REVERSE, p16uc_REVERSE, 8);//{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
static Packet16uc p16uc_COMPLEX_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8);//{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET_HI = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 1));//{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET_LO = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 2), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 3));//{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
//---------- float ----------
struct Packet2cf
{
EIGEN_STRONG_INLINE Packet2cf() {}
EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
Packet4f v;
};
template<> struct packet_traits<std::complex<float> > : default_packet_traits
{
typedef Packet2cf type;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
{
Packet2cf res;
/* On AltiVec we cannot load 64-bit registers, so wa have to take care of alignment */
if((ptrdiff_t(&from) % 16) == 0)
res.v = pload<Packet4f>((const float *)&from);
else
res.v = ploadu<Packet4f>((const float *)&from);
res.v = vec_perm(res.v, res.v, p16uc_PSET_HI);
return res;
}
template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_add(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_sub(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf((Packet4f)vec_xor((Packet4ui)a.v, p4ui_CONJ_XOR)); }
template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
Packet4f v1, v2;
// Permute and multiply the real parts of a and b
v1 = vec_perm(a.v, a.v, p16uc_COMPLEX_RE);
// Get the imaginary parts of a
v2 = vec_perm(a.v, a.v, p16uc_COMPLEX_IM);
// multiply a_re * b
v1 = vec_madd(v1, b.v, p4f_ZERO);
// multiply a_im * b and get the conjugate result
v2 = vec_madd(v2, b.v, p4f_ZERO);
v2 = (Packet4f) vec_xor((Packet4ui)v2, p4ui_CONJ_XOR);
// permute back to a proper order
v2 = vec_perm(v2, v2, p16uc_COMPLEX_REV);
return Packet2cf(vec_add(v1, v2));
}
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_and(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_or(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_xor(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_and(a.v, vec_nor(b.v,b.v))); }
template<> EIGEN_STRONG_INLINE Packet2cf pload <Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from)
{
return pset1<Packet2cf>(*from);
}
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { vec_dstt((float *)addr, DST_CTRL(2,2,32), DST_CHAN); }
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
{
std::complex<float> EIGEN_ALIGN16 res[2];
pstore((float *)&res, a.v);
return res[0];
}
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
{
Packet4f rev_a;
rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX_REV2);
return Packet2cf(rev_a);
}
template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
{
Packet4f b;
b = (Packet4f) vec_sld(a.v, a.v, 8);
b = padd(a.v, b);
return pfirst(Packet2cf(b));
}
template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
{
Packet4f b1, b2;
b1 = (Packet4f) vec_sld(vecs[0].v, vecs[1].v, 8);
b2 = (Packet4f) vec_sld(vecs[1].v, vecs[0].v, 8);
b2 = (Packet4f) vec_sld(b2, b2, 8);
b2 = padd(b1, b2);
return Packet2cf(b2);
}
template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
{
Packet4f b;
Packet2cf prod;
b = (Packet4f) vec_sld(a.v, a.v, 8);
prod = pmul(a, Packet2cf(b));
return pfirst(prod);
}
template<int Offset>
struct palign_impl<Offset,Packet2cf>
{
EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
{
if (Offset==1)
{
first.v = vec_sld(first.v, second.v, 8);
}
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
return internal::pmul(a, pconj(b));
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
return internal::pmul(pconj(a), b);
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
return pconj(internal::pmul(a, b));
}
};
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
// TODO optimize it for AltiVec
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
Packet4f s = vec_madd(b.v, b.v, p4f_ZERO);
return Packet2cf(pdiv(res.v, vec_add(s,vec_perm(s, s, p16uc_COMPLEX_REV))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& x)
{
return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX_REV));
}
} // end namespace internal
#endif // EIGEN_COMPLEX_ALTIVEC_H

View file

@ -0,0 +1,509 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Konstantinos Margaritis <markos@codex.gr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PACKET_MATH_ALTIVEC_H
#define EIGEN_PACKET_MATH_ALTIVEC_H
namespace internal {
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
#endif
#ifndef EIGEN_HAS_FUSE_CJMADD
#define EIGEN_HAS_FUSE_CJMADD 1
#endif
// NOTE Altivec has 32 registers, but Eigen only accepts a value of 8 or 16
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
#endif
typedef __vector float Packet4f;
typedef __vector int Packet4i;
typedef __vector unsigned int Packet4ui;
typedef __vector __bool int Packet4bi;
typedef __vector short int Packet8i;
typedef __vector unsigned char Packet16uc;
// We don't want to write the same code all the time, but we need to reuse the constants
// and it doesn't really work to declare them global, so we define macros instead
#define _EIGEN_DECLARE_CONST_FAST_Packet4f(NAME,X) \
Packet4f p4f_##NAME = (Packet4f) vec_splat_s32(X)
#define _EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = vec_splat_s32(X)
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
Packet4f p4f_##NAME = pset1<Packet4f>(X)
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = pset1<Packet4i>(X)
#define DST_CHAN 1
#define DST_CTRL(size, count, stride) (((size) << 24) | ((count) << 16) | (stride))
// Define global static constants:
static Packet4f p4f_COUNTDOWN = { 3.0, 2.0, 1.0, 0.0 };
static Packet4i p4i_COUNTDOWN = { 3, 2, 1, 0 };
static Packet16uc p16uc_REVERSE = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0);
static Packet16uc p16uc_DUPLICATE = {0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7};
static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1);
static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0);
static Packet4f p4f_ZERO_ = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1);
template<> struct packet_traits<float> : default_packet_traits
{
typedef Packet4f type;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=4,
// FIXME check the Has*
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 0,
HasSqrt = 0
};
};
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
enum {
// FIXME check the Has*
Vectorizable = 1,
AlignedOnScalar = 1,
size=4
};
};
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
/*
inline std::ostream & operator <<(std::ostream & s, const Packet4f & v)
{
union {
Packet4f v;
float n[4];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet4i & v)
{
union {
Packet4i v;
int n[4];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v)
{
union {
Packet4ui v;
unsigned int n[4];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packetbi & v)
{
union {
Packet4bi v;
unsigned int n[4];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
}
*/
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) {
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
float EIGEN_ALIGN16 af[4];
af[0] = from;
Packet4f vc = vec_ld(0, af);
vc = vec_splat(vc, 0);
return vc;
}
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) {
int EIGEN_ALIGN16 ai[4];
ai[0] = from;
Packet4i vc = vec_ld(0, ai);
vc = vec_splat(vc, 0);
return vc;
}
template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return vec_add(pset1<Packet4f>(a), p4f_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a) { return vec_add(pset1<Packet4i>(a), p4i_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_add(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_add(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_sub(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_sub(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return psub<Packet4f>(p4f_ZERO, a); }
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return psub<Packet4i>(p4i_ZERO, a); }
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_madd(a,b,p4f_ZERO); }
/* Commented out: it's actually slower than processing it scalar
*
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b)
{
// Detailed in: http://freevec.org/content/32bit_signed_integer_multiplication_altivec
//Set up constants, variables
Packet4i a1, b1, bswap, low_prod, high_prod, prod, prod_, v1sel;
// Get the absolute values
a1 = vec_abs(a);
b1 = vec_abs(b);
// Get the signs using xor
Packet4bi sgn = (Packet4bi) vec_cmplt(vec_xor(a, b), p4i_ZERO);
// Do the multiplication for the asbolute values.
bswap = (Packet4i) vec_rl((Packet4ui) b1, (Packet4ui) p4i_MINUS16 );
low_prod = vec_mulo((Packet8i) a1, (Packet8i)b1);
high_prod = vec_msum((Packet8i) a1, (Packet8i) bswap, p4i_ZERO);
high_prod = (Packet4i) vec_sl((Packet4ui) high_prod, (Packet4ui) p4i_MINUS16);
prod = vec_add( low_prod, high_prod );
// NOR the product and select only the negative elements according to the sign mask
prod_ = vec_nor(prod, prod);
prod_ = vec_sel(p4i_ZERO, prod_, sgn);
// Add 1 to the result to get the negative numbers
v1sel = vec_sel(p4i_ZERO, p4i_ONE, sgn);
prod_ = vec_add(prod_, v1sel);
// Merge the results back to the final vector.
prod = vec_sel(prod, prod_, sgn);
return prod;
}
*/
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f t, y_0, y_1, res;
// Altivec does not offer a divide instruction, we have to do a reciprocal approximation
y_0 = vec_re(b);
// Do one Newton-Raphson iteration to get the needed accuracy
t = vec_nmsub(y_0, b, p4f_ONE);
y_1 = vec_madd(y_0, t, y_0);
res = vec_madd(a, y_1, p4f_ZERO);
return res;
}
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by AltiVec");
return pset1<Packet4i>(0);
}
// for some weird raisons, it has to be overloaded for packet of integers
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_madd(a, b, c); }
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_min(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); }
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_max(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); }
// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_or(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_or(a, b); }
template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_xor(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_xor(a, b); }
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
{
EIGEN_DEBUG_ALIGNED_LOAD
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
Packet16uc MSQ, LSQ;
Packet16uc mask;
MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword
mask = vec_lvsl(0, from); // create the permute mask
return (Packet4f) vec_perm(MSQ, LSQ, mask); // align the data
}
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
{
EIGEN_DEBUG_ALIGNED_LOAD
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
Packet16uc MSQ, LSQ;
Packet16uc mask;
MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword
mask = vec_lvsl(0, from); // create the permute mask
return (Packet4i) vec_perm(MSQ, LSQ, mask); // align the data
}
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
{
Packet4f p;
if((ptrdiff_t(&from) % 16) == 0) p = pload<Packet4f>(from);
else p = ploadu<Packet4f>(from);
return vec_perm(p, p, p16uc_DUPLICATE);
}
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
Packet4i p;
if((ptrdiff_t(&from) % 16) == 0) p = pload<Packet4i>(from);
else p = ploadu<Packet4i>(from);
return vec_perm(p, p, p16uc_DUPLICATE);
}
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from)
{
EIGEN_DEBUG_UNALIGNED_STORE
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
// Warning: not thread safe!
Packet16uc MSQ, LSQ, edges;
Packet16uc edgeAlign, align;
MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword
LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword
edgeAlign = vec_lvsl(0, to); // permute map to extract edges
edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges
align = vec_lvsr( 0, to ); // permute map to misalign data
MSQ = vec_perm(edges,(Packet16uc)from,align); // misalign the data (MSQ)
LSQ = vec_perm((Packet16uc)from,edges,align); // misalign the data (LSQ)
vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
}
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from)
{
EIGEN_DEBUG_UNALIGNED_STORE
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
// Warning: not thread safe!
Packet16uc MSQ, LSQ, edges;
Packet16uc edgeAlign, align;
MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword
LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword
edgeAlign = vec_lvsl(0, to); // permute map to extract edges
edges=vec_perm(LSQ, MSQ, edgeAlign); // extract the edges
align = vec_lvsr( 0, to ); // permute map to misalign data
MSQ = vec_perm(edges, (Packet16uc) from, align); // misalign the data (MSQ)
LSQ = vec_perm((Packet16uc) from, edges, align); // misalign the data (LSQ)
vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
}
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { vec_dstt(addr, DST_CTRL(2,2,32), DST_CHAN); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { vec_dstt(addr, DST_CTRL(2,2,32), DST_CHAN); }
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vec_st(a, 0, x); return x[0]; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vec_st(a, 0, x); return x[0]; }
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { return (Packet4f)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE); }
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { return (Packet4i)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE); }
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
Packet4f b, sum;
b = (Packet4f) vec_sld(a, a, 8);
sum = vec_add(a, b);
b = (Packet4f) vec_sld(sum, sum, 4);
sum = vec_add(sum, b);
return pfirst(sum);
}
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
Packet4f v[4], sum[4];
// It's easier and faster to transpose then add as columns
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
// Do the transpose, first set of moves
v[0] = vec_mergeh(vecs[0], vecs[2]);
v[1] = vec_mergel(vecs[0], vecs[2]);
v[2] = vec_mergeh(vecs[1], vecs[3]);
v[3] = vec_mergel(vecs[1], vecs[3]);
// Get the resulting vectors
sum[0] = vec_mergeh(v[0], v[2]);
sum[1] = vec_mergel(v[0], v[2]);
sum[2] = vec_mergeh(v[1], v[3]);
sum[3] = vec_mergel(v[1], v[3]);
// Now do the summation:
// Lines 0+1
sum[0] = vec_add(sum[0], sum[1]);
// Lines 2+3
sum[1] = vec_add(sum[2], sum[3]);
// Add the results
sum[0] = vec_add(sum[0], sum[1]);
return sum[0];
}
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i sum;
sum = vec_sums(a, p4i_ZERO);
sum = vec_sld(sum, p4i_ZERO, 12);
return pfirst(sum);
}
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
Packet4i v[4], sum[4];
// It's easier and faster to transpose then add as columns
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
// Do the transpose, first set of moves
v[0] = vec_mergeh(vecs[0], vecs[2]);
v[1] = vec_mergel(vecs[0], vecs[2]);
v[2] = vec_mergeh(vecs[1], vecs[3]);
v[3] = vec_mergel(vecs[1], vecs[3]);
// Get the resulting vectors
sum[0] = vec_mergeh(v[0], v[2]);
sum[1] = vec_mergel(v[0], v[2]);
sum[2] = vec_mergeh(v[1], v[3]);
sum[3] = vec_mergel(v[1], v[3]);
// Now do the summation:
// Lines 0+1
sum[0] = vec_add(sum[0], sum[1]);
// Lines 2+3
sum[1] = vec_add(sum[2], sum[3]);
// Add the results
sum[0] = vec_add(sum[0], sum[1]);
return sum[0];
}
// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
{
Packet4f prod;
prod = pmul(a, (Packet4f)vec_sld(a, a, 8));
return pfirst(pmul(prod, (Packet4f)vec_sld(prod, prod, 4)));
}
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
EIGEN_ALIGN16 int aux[4];
pstore(aux, a);
return aux[0] * aux[1] * aux[2] * aux[3];
}
// min
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
{
Packet4f b, res;
b = vec_min(a, vec_sld(a, a, 8));
res = vec_min(b, vec_sld(b, b, 4));
return pfirst(res);
}
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
Packet4i b, res;
b = vec_min(a, vec_sld(a, a, 8));
res = vec_min(b, vec_sld(b, b, 4));
return pfirst(res);
}
// max
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
{
Packet4f b, res;
b = vec_max(a, vec_sld(a, a, 8));
res = vec_max(b, vec_sld(b, b, 4));
return pfirst(res);
}
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
Packet4i b, res;
b = vec_max(a, vec_sld(a, a, 8));
res = vec_max(b, vec_sld(b, b, 4));
return pfirst(res);
}
template<int Offset>
struct palign_impl<Offset,Packet4f>
{
EIGEN_STRONG_INLINE static void run(Packet4f& first, const Packet4f& second)
{
if (Offset!=0)
first = vec_sld(first, second, Offset*4);
}
};
template<int Offset>
struct palign_impl<Offset,Packet4i>
{
EIGEN_STRONG_INLINE static void run(Packet4i& first, const Packet4i& second)
{
if (Offset!=0)
first = vec_sld(first, second, Offset*4);
}
};
} // end namespace internal
#endif // EIGEN_PACKET_MATH_ALTIVEC_H

View file

@ -0,0 +1,4 @@
ADD_SUBDIRECTORY(SSE)
ADD_SUBDIRECTORY(AltiVec)
ADD_SUBDIRECTORY(NEON)
ADD_SUBDIRECTORY(Default)

View file

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Core_arch_Default_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_arch_Default_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/Default COMPONENT Devel
)

View file

@ -0,0 +1,64 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
/* All the parameters defined in this file can be specialized in the
* architecture specific files, and/or by the user.
* More to come... */
#ifndef EIGEN_DEFAULT_SETTINGS_H
#define EIGEN_DEFAULT_SETTINGS_H
/** Defines the maximal loop size to enable meta unrolling of loops.
* Note that the value here is expressed in Eigen's own notion of "number of FLOPS",
* it does not correspond to the number of iterations or the number of instructions
*/
#ifndef EIGEN_UNROLLING_LIMIT
#define EIGEN_UNROLLING_LIMIT 100
#endif
/** Defines the threshold between a "small" and a "large" matrix.
* This threshold is mainly used to select the proper product implementation.
*/
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif
/** Defines the maximal width of the blocks used in the triangular product and solver
* for vectors (level 2 blas xTRMV and xTRSV). The default is 8.
*/
#ifndef EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH
#define EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH 8
#endif
/** Defines the default number of registers available for that architecture.
* Currently it must be 8 or 16. Other values will fail.
*/
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
#endif
#endif // EIGEN_DEFAULT_SETTINGS_H

View file

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Core_arch_NEON_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_arch_NEON_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/NEON COMPONENT Devel
)

View file

@ -0,0 +1,269 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_COMPLEX_NEON_H
#define EIGEN_COMPLEX_NEON_H
namespace internal {
static uint32x4_t p4ui_CONJ_XOR = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
static uint32x2_t p2ui_CONJ_XOR = { 0x00000000, 0x80000000 };
//---------- float ----------
struct Packet2cf
{
EIGEN_STRONG_INLINE Packet2cf() {}
EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
Packet4f v;
};
template<> struct packet_traits<std::complex<float> > : default_packet_traits
{
typedef Packet2cf type;
enum {
Vectorizable = 1,
size = 2,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
{
float32x2_t r64;
r64 = vld1_f32((float *)&from);
return Packet2cf(vcombine_f32(r64, r64));
}
template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
{
Packet4ui b = vreinterpretq_u32_f32(a.v);
return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR)));
}
template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
Packet4f v1, v2;
float32x2_t a_lo, a_hi;
// Get the real values of a | a1_re | a1_re | a2_re | a2_re |
v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
// Get the real values of a | a1_im | a1_im | a2_im | a2_im |
v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
// Multiply the real a with b
v1 = vmulq_f32(v1, b.v);
// Multiply the imag a with b
v2 = vmulq_f32(v2, b.v);
// Conjugate v2
v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR));
// Swap real/imag elements in v2.
a_lo = vrev64_f32(vget_low_f32(v2));
a_hi = vrev64_f32(vget_high_f32(v2));
v2 = vcombine_f32(a_lo, a_hi);
// Add and return the result
return Packet2cf(vaddq_f32(v1, v2));
}
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { __pld((float *)addr); }
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
{
std::complex<float> EIGEN_ALIGN16 x[2];
vst1q_f32((float *)x, a.v);
return x[0];
}
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
{
float32x2_t a_lo, a_hi;
Packet4f a_r128;
a_lo = vget_low_f32(a.v);
a_hi = vget_high_f32(a.v);
a_r128 = vcombine_f32(a_hi, a_lo);
return Packet2cf(a_r128);
}
template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a)
{
return Packet2cf(vrev64q_f32(a.v));
}
template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
{
float32x2_t a1, a2;
std::complex<float> s;
a1 = vget_low_f32(a.v);
a2 = vget_high_f32(a.v);
a2 = vadd_f32(a1, a2);
vst1_f32((float *)&s, a2);
return s;
}
template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
{
Packet4f sum1, sum2, sum;
// Add the first two 64-bit float32x2_t of vecs[0]
sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v));
sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v));
sum = vaddq_f32(sum1, sum2);
return Packet2cf(sum);
}
template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
{
float32x2_t a1, a2, v1, v2, prod;
std::complex<float> s;
a1 = vget_low_f32(a.v);
a2 = vget_high_f32(a.v);
// Get the real values of a | a1_re | a1_re | a2_re | a2_re |
v1 = vdup_lane_f32(a1, 0);
// Get the real values of a | a1_im | a1_im | a2_im | a2_im |
v2 = vdup_lane_f32(a1, 1);
// Multiply the real a with b
v1 = vmul_f32(v1, a2);
// Multiply the imag a with b
v2 = vmul_f32(v2, a2);
// Conjugate v2
v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR));
// Swap real/imag elements in v2.
v2 = vrev64_f32(v2);
// Add v1, v2
prod = vadd_f32(v1, v2);
vst1_f32((float *)&s, prod);
return s;
}
template<int Offset>
struct palign_impl<Offset,Packet2cf>
{
EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
{
if (Offset==1)
{
first.v = vextq_f32(first.v, second.v, 2);
}
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
return internal::pmul(a, pconj(b));
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
return internal::pmul(pconj(a), b);
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
return pconj(internal::pmul(a, b));
}
};
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
// TODO optimize it for AltiVec
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
Packet4f s, rev_s;
float32x2_t a_lo, a_hi;
// this computes the norm
s = vmulq_f32(b.v, b.v);
a_lo = vrev64_f32(vget_low_f32(s));
a_hi = vrev64_f32(vget_high_f32(s));
rev_s = vcombine_f32(a_lo, a_hi);
return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
}
} // end namespace internal
#endif // EIGEN_COMPLEX_NEON_H

View file

@ -0,0 +1,420 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Konstantinos Margaritis <markos@codex.gr>
// Heavily based on Gael's SSE version.
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PACKET_MATH_NEON_H
#define EIGEN_PACKET_MATH_NEON_H
namespace internal {
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif
// FIXME NEON has 16 quad registers, but since the current register allocator
// is so bad, it is much better to reduce it to 8
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
#endif
typedef float32x4_t Packet4f;
typedef int32x4_t Packet4i;
typedef uint32x4_t Packet4ui;
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
const Packet4f p4f_##NAME = pset1<Packet4f>(X)
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
#ifndef __pld
#define __pld(x) asm volatile ( " pld [%[addr]]\n" :: [addr] "r" (x) : "cc" );
#endif
template<> struct packet_traits<float> : default_packet_traits
{
typedef Packet4f type;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
HasDiv = 1,
// FIXME check the Has*
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 0,
HasSqrt = 0
};
};
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=4
// FIXME check the Has*
};
};
#if EIGEN_GNUC_AT_MOST(4,4)
// workaround gcc 4.2, 4.3 and 4.4 compilatin issue
EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
EIGEN_STRONG_INLINE void vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
EIGEN_STRONG_INLINE void vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
#endif
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return vdupq_n_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return vdupq_n_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a)
{
Packet4f countdown = { 3, 2, 1, 0 };
return vaddq_f32(pset1<Packet4f>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a)
{
Packet4i countdown = { 3, 2, 1, 0 };
return vaddq_s32(pset1<Packet4i>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); }
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); }
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f inv, restep, div;
// NEON does not offer a divide instruction, we have to do a reciprocal approximation
// However NEON in contrast to other SIMD engines (AltiVec/SSE), offers
// a reciprocal estimate AND a reciprocal step -which saves a few instructions
// vrecpeq_f32() returns an estimate to 1/b, which we will finetune with
// Newton-Raphson and vrecpsq_f32()
inv = vrecpeq_f32(b);
// This returns a differential, by which we will have to multiply inv to get a better
// approximation of 1/b.
restep = vrecpsq_f32(b, inv);
inv = vmulq_f32(restep, inv);
// Finally, multiply a by 1/b and get the wanted result of the division.
div = vmulq_f32(a, inv);
return div;
}
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by NEON");
return pset1<Packet4i>(0);
}
// for some weird raisons, it has to be overloaded for packet of integers
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); }
// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
{
return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
{
return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
{
return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
{
return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
{
float32x2_t lo, hi;
lo = vdup_n_f32(*from);
hi = vdup_n_f32(*from);
return vcombine_f32(lo, hi);
}
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
int32x2_t lo, hi;
lo = vdup_n_s32(*from);
hi = vdup_n_s32(*from);
return vcombine_s32(lo, hi);
}
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { __pld(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { __pld(addr); }
// FIXME only store the 2 first elements ?
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
float32x2_t a_lo, a_hi;
Packet4f a_r64;
a_r64 = vrev64q_f32(a);
a_lo = vget_low_f32(a_r64);
a_hi = vget_high_f32(a_r64);
return vcombine_f32(a_hi, a_lo);
}
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
int32x2_t a_lo, a_hi;
Packet4i a_r64;
a_r64 = vrev64q_s32(a);
a_lo = vget_low_s32(a_r64);
a_hi = vget_high_s32(a_r64);
return vcombine_s32(a_hi, a_lo);
}
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
float32x2_t a_lo, a_hi, sum;
float s[2];
a_lo = vget_low_f32(a);
a_hi = vget_high_f32(a);
sum = vpadd_f32(a_lo, a_hi);
sum = vpadd_f32(sum, sum);
vst1_f32(s, sum);
return s[0];
}
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
float32x4x2_t vtrn1, vtrn2, res1, res2;
Packet4f sum1, sum2, sum;
// NEON zip performs interleaving of the supplied vectors.
// We perform two interleaves in a row to acquire the transposed vector
vtrn1 = vzipq_f32(vecs[0], vecs[2]);
vtrn2 = vzipq_f32(vecs[1], vecs[3]);
res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]);
res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]);
// Do the addition of the resulting vectors
sum1 = vaddq_f32(res1.val[0], res1.val[1]);
sum2 = vaddq_f32(res2.val[0], res2.val[1]);
sum = vaddq_f32(sum1, sum2);
return sum;
}
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, sum;
int32_t s[2];
a_lo = vget_low_s32(a);
a_hi = vget_high_s32(a);
sum = vpadd_s32(a_lo, a_hi);
sum = vpadd_s32(sum, sum);
vst1_s32(s, sum);
return s[0];
}
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
int32x4x2_t vtrn1, vtrn2, res1, res2;
Packet4i sum1, sum2, sum;
// NEON zip performs interleaving of the supplied vectors.
// We perform two interleaves in a row to acquire the transposed vector
vtrn1 = vzipq_s32(vecs[0], vecs[2]);
vtrn2 = vzipq_s32(vecs[1], vecs[3]);
res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]);
res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]);
// Do the addition of the resulting vectors
sum1 = vaddq_s32(res1.val[0], res1.val[1]);
sum2 = vaddq_s32(res2.val[0], res2.val[1]);
sum = vaddq_s32(sum1, sum2);
return sum;
}
// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
{
float32x2_t a_lo, a_hi, prod;
float s[2];
// Get a_lo = |a1|a2| and a_hi = |a3|a4|
a_lo = vget_low_f32(a);
a_hi = vget_high_f32(a);
// Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
prod = vmul_f32(a_lo, a_hi);
// Multiply prod with its swapped value |a2*a4|a1*a3|
prod = vmul_f32(prod, vrev64_f32(prod));
vst1_f32(s, prod);
return s[0];
}
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, prod;
int32_t s[2];
// Get a_lo = |a1|a2| and a_hi = |a3|a4|
a_lo = vget_low_s32(a);
a_hi = vget_high_s32(a);
// Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
prod = vmul_s32(a_lo, a_hi);
// Multiply prod with its swapped value |a2*a4|a1*a3|
prod = vmul_s32(prod, vrev64_s32(prod));
vst1_s32(s, prod);
return s[0];
}
// min
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
{
float32x2_t a_lo, a_hi, min;
float s[2];
a_lo = vget_low_f32(a);
a_hi = vget_high_f32(a);
min = vpmin_f32(a_lo, a_hi);
min = vpmin_f32(min, min);
vst1_f32(s, min);
return s[0];
}
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, min;
int32_t s[2];
a_lo = vget_low_s32(a);
a_hi = vget_high_s32(a);
min = vpmin_s32(a_lo, a_hi);
min = vpmin_s32(min, min);
vst1_s32(s, min);
return s[0];
}
// max
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
{
float32x2_t a_lo, a_hi, max;
float s[2];
a_lo = vget_low_f32(a);
a_hi = vget_high_f32(a);
max = vpmax_f32(a_lo, a_hi);
max = vpmax_f32(max, max);
vst1_f32(s, max);
return s[0];
}
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, max;
int32_t s[2];
a_lo = vget_low_s32(a);
a_hi = vget_high_s32(a);
max = vpmax_s32(a_lo, a_hi);
max = vpmax_s32(max, max);
vst1_s32(s, max);
return s[0];
}
template<int Offset>
struct palign_impl<Offset,Packet4f>
{
EIGEN_STRONG_INLINE static void run(Packet4f& first, const Packet4f& second)
{
if (Offset!=0)
first = vextq_f32(first, second, Offset);
}
};
template<int Offset>
struct palign_impl<Offset,Packet4i>
{
EIGEN_STRONG_INLINE static void run(Packet4i& first, const Packet4i& second)
{
if (Offset!=0)
first = vextq_s32(first, second, Offset);
}
};
} // end namespace internal
#endif // EIGEN_PACKET_MATH_NEON_H

View file

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Core_arch_SSE_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_arch_SSE_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/SSE COMPONENT Devel
)

View file

@ -0,0 +1,447 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_COMPLEX_SSE_H
#define EIGEN_COMPLEX_SSE_H
namespace internal {
//---------- float ----------
struct Packet2cf
{
EIGEN_STRONG_INLINE Packet2cf() {}
EIGEN_STRONG_INLINE explicit Packet2cf(const __m128& a) : v(a) {}
__m128 v;
};
template<> struct packet_traits<std::complex<float> > : default_packet_traits
{
typedef Packet2cf type;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_add_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_sub_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a)
{
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000));
return Packet2cf(_mm_xor_ps(a.v,mask));
}
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
{
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
return Packet2cf(_mm_xor_ps(a.v,mask));
}
template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
// TODO optimize it for SSE3 and 4
#ifdef EIGEN_VECTORIZE_SSE3
return Packet2cf(_mm_addsub_ps(_mm_mul_ps(_mm_moveldup_ps(a.v), b.v),
_mm_mul_ps(_mm_movehdup_ps(a.v),
vec4f_swizzle1(b.v, 1, 0, 3, 2))));
// return Packet2cf(_mm_addsub_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
// _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
// vec4f_swizzle1(b.v, 1, 0, 3, 2))));
#else
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x00000000,0x80000000,0x00000000));
return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask)));
#endif
}
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_and_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_or_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_xor_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_andnot_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pload <Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>(&real_ref(*from))); }
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>(&real_ref(*from))); }
template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
{
Packet2cf res;
#if EIGEN_GNUC_AT_MOST(4,2)
// workaround annoying "may be used uninitialized in this function" warning with gcc 4.2
res.v = _mm_loadl_pi(_mm_set1_ps(0.0f), (const __m64*)&from);
#else
res.v = _mm_loadl_pi(res.v, (const __m64*)&from);
#endif
return Packet2cf(_mm_movelh_ps(res.v,res.v));
}
template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&real_ref(*to), from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&real_ref(*to), from.v); }
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
{
#if EIGEN_GNUC_AT_MOST(4,3)
// Workaround gcc 4.2 ICE - this is not performance wise ideal, but who cares...
// This workaround also fix invalid code generation with gcc 4.3
EIGEN_ALIGN16 std::complex<float> res[2];
_mm_store_ps((float*)res, a.v);
return res[0];
#else
std::complex<float> res;
_mm_storel_pi((__m64*)&res, a.v);
return res;
#endif
}
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) { return Packet2cf(_mm_castpd_ps(preverse(_mm_castps_pd(a.v)))); }
template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
{
return pfirst(Packet2cf(_mm_add_ps(a.v, _mm_movehl_ps(a.v,a.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
{
return Packet2cf(_mm_add_ps(_mm_movelh_ps(vecs[0].v,vecs[1].v), _mm_movehl_ps(vecs[1].v,vecs[0].v)));
}
template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
{
return pfirst(pmul(a, Packet2cf(_mm_movehl_ps(a.v,a.v))));
}
template<int Offset>
struct palign_impl<Offset,Packet2cf>
{
EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
{
if (Offset==1)
{
first.v = _mm_movehl_ps(first.v, first.v);
first.v = _mm_movelh_ps(first.v, second.v);
}
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
#ifdef EIGEN_VECTORIZE_SSE3
return internal::pmul(a, pconj(b));
#else
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
return Packet2cf(_mm_add_ps(_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), mask),
_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
vec4f_swizzle1(b.v, 1, 0, 3, 2))));
#endif
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
#ifdef EIGEN_VECTORIZE_SSE3
return internal::pmul(pconj(a), b);
#else
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask)));
#endif
}
};
template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
{
#ifdef EIGEN_VECTORIZE_SSE3
return pconj(internal::pmul(a, b));
#else
const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
return Packet2cf(_mm_sub_ps(_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), mask),
_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
vec4f_swizzle1(b.v, 1, 0, 3, 2))));
#endif
}
};
template<> struct conj_helper<Packet4f, Packet2cf, false,false>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet4f& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet4f& x, const Packet2cf& y) const
{ return Packet2cf(Eigen::internal::pmul(x, y.v)); }
};
template<> struct conj_helper<Packet2cf, Packet4f, false,false>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet4f& y, const Packet2cf& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& x, const Packet4f& y) const
{ return Packet2cf(Eigen::internal::pmul(x.v, y)); }
};
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
// TODO optimize it for SSE3 and 4
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
__m128 s = _mm_mul_ps(b.v,b.v);
return Packet2cf(_mm_div_ps(res.v,_mm_add_ps(s,_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(s), 0xb1)))));
}
EIGEN_STRONG_INLINE Packet2cf pcplxflip/*<Packet2cf>*/(const Packet2cf& x)
{
return Packet2cf(vec4f_swizzle1(x.v, 1, 0, 3, 2));
}
//---------- double ----------
struct Packet1cd
{
EIGEN_STRONG_INLINE Packet1cd() {}
EIGEN_STRONG_INLINE explicit Packet1cd(const __m128d& a) : v(a) {}
__m128d v;
};
template<> struct packet_traits<std::complex<double> > : default_packet_traits
{
typedef Packet1cd type;
enum {
Vectorizable = 1,
AlignedOnScalar = 0,
size = 1,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1}; };
template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_add_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_sub_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(a.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a)
{
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
return Packet1cd(_mm_xor_pd(a.v,mask));
}
template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
// TODO optimize it for SSE3 and 4
#ifdef EIGEN_VECTORIZE_SSE3
return Packet1cd(_mm_addsub_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
vec2d_swizzle1(b.v, 1, 0))));
#else
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
vec2d_swizzle1(b.v, 1, 0)), mask)));
#endif
}
template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_and_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_or_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_xor_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_andnot_pd(a.v,b.v)); }
// FIXME force unaligned load, this is a temporary fix
template<> EIGEN_STRONG_INLINE Packet1cd pload <Packet1cd>(const std::complex<double>* from)
{ EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from)
{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); }
// FIXME force unaligned store, this is a temporary fix
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
{
EIGEN_ALIGN16 double res[2];
_mm_store_pd(res, a.v);
return std::complex<double>(res[0],res[1]);
}
template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a)
{
return pfirst(a);
}
template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs)
{
return vecs[0];
}
template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a)
{
return pfirst(a);
}
template<int Offset>
struct palign_impl<Offset,Packet1cd>
{
EIGEN_STRONG_INLINE static void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
{
// FIXME is it sure we never have to align a Packet1cd?
// Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
#ifdef EIGEN_VECTORIZE_SSE3
return internal::pmul(a, pconj(b));
#else
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
return Packet1cd(_mm_add_pd(_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), mask),
_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
vec2d_swizzle1(b.v, 1, 0))));
#endif
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
#ifdef EIGEN_VECTORIZE_SSE3
return internal::pmul(pconj(a), b);
#else
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
vec2d_swizzle1(b.v, 1, 0)), mask)));
#endif
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
#ifdef EIGEN_VECTORIZE_SSE3
return pconj(internal::pmul(a, b));
#else
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
return Packet1cd(_mm_sub_pd(_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), mask),
_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
vec2d_swizzle1(b.v, 1, 0))));
#endif
}
};
template<> struct conj_helper<Packet2d, Packet1cd, false,false>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet2d& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet2d& x, const Packet1cd& y) const
{ return Packet1cd(Eigen::internal::pmul(x, y.v)); }
};
template<> struct conj_helper<Packet1cd, Packet2d, false,false>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet2d& y, const Packet1cd& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& x, const Packet2d& y) const
{ return Packet1cd(Eigen::internal::pmul(x.v, y)); }
};
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
// TODO optimize it for SSE3 and 4
Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
__m128d s = _mm_mul_pd(b.v,b.v);
return Packet1cd(_mm_div_pd(res.v, _mm_add_pd(s,_mm_shuffle_pd(s, s, 0x1))));
}
EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
{
return Packet1cd(preverse(x.v));
}
} // end namespace internal
#endif // EIGEN_COMPLEX_SSE_H

View file

@ -0,0 +1,395 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
/* The sin, cos, exp, and log functions of this file come from
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
*/
#ifndef EIGEN_MATH_FUNCTIONS_SSE_H
#define EIGEN_MATH_FUNCTIONS_SSE_H
namespace internal {
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f plog<Packet4f>(const Packet4f& _x)
{
Packet4f x = _x;
_EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
_EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
_EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
/* the smallest non denormalized float number */
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000);
/* natural logarithm computed for 4 simultaneous float
return NaN for x <= 0
*/
_EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
Packet4i emm0;
Packet4f invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */
emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
/* keep only the fractional part */
x = _mm_and_ps(x, p4f_inv_mant_mask);
x = _mm_or_ps(x, p4f_half);
emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);
/* part2:
if( x < SQRTHF ) {
e -= 1;
x = x + x - 1.0;
} else { x = x - 1.0; }
*/
Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
Packet4f tmp = _mm_and_ps(x, mask);
x = psub(x, p4f_1);
e = psub(e, _mm_and_ps(p4f_1, mask));
x = padd(x, tmp);
Packet4f x2 = pmul(x,x);
Packet4f x3 = pmul(x2,x);
Packet4f y, y1, y2;
y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
y = pmadd(y , x, p4f_cephes_log_p2);
y1 = pmadd(y1, x, p4f_cephes_log_p5);
y2 = pmadd(y2, x, p4f_cephes_log_p8);
y = pmadd(y, x3, y1);
y = pmadd(y, x3, y2);
y = pmul(y, x3);
y1 = pmul(e, p4f_cephes_log_q1);
tmp = pmul(x2, p4f_half);
y = padd(y, y1);
x = psub(x, tmp);
y2 = pmul(e, p4f_cephes_log_q2);
x = padd(x, y);
x = padd(x, y2);
return _mm_or_ps(x, invalid_mask); // negative arg will be NAN
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f pexp<Packet4f>(const Packet4f& _x)
{
Packet4f x = _x;
_EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
_EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
_EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
_EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647949f);
_EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
Packet4f tmp = _mm_setzero_ps(), fx;
Packet4i emm0;
// clamp x
x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
/* express exp(x) as exp(g + n*log(2)) */
fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
/* how to perform a floorf with SSE: just below */
emm0 = _mm_cvttps_epi32(fx);
tmp = _mm_cvtepi32_ps(emm0);
/* if greater, substract 1 */
Packet4f mask = _mm_cmpgt_ps(tmp, fx);
mask = _mm_and_ps(mask, p4f_1);
fx = psub(tmp, mask);
tmp = pmul(fx, p4f_cephes_exp_C1);
Packet4f z = pmul(fx, p4f_cephes_exp_C2);
x = psub(x, tmp);
x = psub(x, z);
z = pmul(x,x);
Packet4f y = p4f_cephes_exp_p0;
y = pmadd(y, x, p4f_cephes_exp_p1);
y = pmadd(y, x, p4f_cephes_exp_p2);
y = pmadd(y, x, p4f_cephes_exp_p3);
y = pmadd(y, x, p4f_cephes_exp_p4);
y = pmadd(y, x, p4f_cephes_exp_p5);
y = pmadd(y, z, x);
y = padd(y, p4f_1);
/* build 2^n */
emm0 = _mm_cvttps_epi32(fx);
emm0 = _mm_add_epi32(emm0, p4i_0x7f);
emm0 = _mm_slli_epi32(emm0, 23);
return pmul(y, _mm_castsi128_ps(emm0));
}
/* evaluation of 4 sines at onces, using SSE2 intrinsics.
The code is the exact rewriting of the cephes sinf function.
Precision is excellent as long as x < 8192 (I did not bother to
take into account the special handling they have for greater values
-- it does not return garbage for arguments over 8192, though, but
the extra precision is missing).
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
surprising but correct result.
*/
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f psin<Packet4f>(const Packet4f& _x)
{
Packet4f x = _x;
_EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
_EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
_EIGEN_DECLARE_CONST_Packet4i(1, 1);
_EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
_EIGEN_DECLARE_CONST_Packet4i(2, 2);
_EIGEN_DECLARE_CONST_Packet4i(4, 4);
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
_EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
_EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f);
_EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
_EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f);
_EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
_EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
Packet4i emm0, emm2;
sign_bit = x;
/* take the absolute value */
x = pabs(x);
/* take the modulo */
/* extract the sign bit (upper one) */
sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);
/* scale by 4/Pi */
y = pmul(x, p4f_cephes_FOPI);
/* store the integer part of y in mm0 */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, p4i_1);
emm2 = _mm_and_si128(emm2, p4i_not1);
y = _mm_cvtepi32_ps(emm2);
/* get the swap sign flag */
emm0 = _mm_and_si128(emm2, p4i_4);
emm0 = _mm_slli_epi32(emm0, 29);
/* get the polynom selection mask
there is one polynom for 0 <= x <= Pi/4
and another one for Pi/4<x<=Pi/2
Both branches will be computed.
*/
emm2 = _mm_and_si128(emm2, p4i_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
Packet4f poly_mask = _mm_castsi128_ps(emm2);
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = pmul(y, p4f_minus_cephes_DP1);
xmm2 = pmul(y, p4f_minus_cephes_DP2);
xmm3 = pmul(y, p4f_minus_cephes_DP3);
x = padd(x, xmm1);
x = padd(x, xmm2);
x = padd(x, xmm3);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = p4f_coscof_p0;
Packet4f z = _mm_mul_ps(x,x);
y = pmadd(y, z, p4f_coscof_p1);
y = pmadd(y, z, p4f_coscof_p2);
y = pmul(y, z);
y = pmul(y, z);
Packet4f tmp = pmul(z, p4f_half);
y = psub(y, tmp);
y = padd(y, p4f_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
Packet4f y2 = p4f_sincof_p0;
y2 = pmadd(y2, z, p4f_sincof_p1);
y2 = pmadd(y2, z, p4f_sincof_p2);
y2 = pmul(y2, z);
y2 = pmul(y2, x);
y2 = padd(y2, x);
/* select the correct result from the two polynoms */
y2 = _mm_and_ps(poly_mask, y2);
y = _mm_andnot_ps(poly_mask, y);
y = _mm_or_ps(y,y2);
/* update the sign */
return _mm_xor_ps(y, sign_bit);
}
/* almost the same as psin */
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f pcos<Packet4f>(const Packet4f& _x)
{
Packet4f x = _x;
_EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
_EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
_EIGEN_DECLARE_CONST_Packet4i(1, 1);
_EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
_EIGEN_DECLARE_CONST_Packet4i(2, 2);
_EIGEN_DECLARE_CONST_Packet4i(4, 4);
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
_EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
_EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
_EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f);
_EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
_EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f);
_EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
_EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
Packet4i emm0, emm2;
x = pabs(x);
/* scale by 4/Pi */
y = pmul(x, p4f_cephes_FOPI);
/* get the integer part of y */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, p4i_1);
emm2 = _mm_and_si128(emm2, p4i_not1);
y = _mm_cvtepi32_ps(emm2);
emm2 = _mm_sub_epi32(emm2, p4i_2);
/* get the swap sign flag */
emm0 = _mm_andnot_si128(emm2, p4i_4);
emm0 = _mm_slli_epi32(emm0, 29);
/* get the polynom selection mask */
emm2 = _mm_and_si128(emm2, p4i_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
Packet4f sign_bit = _mm_castsi128_ps(emm0);
Packet4f poly_mask = _mm_castsi128_ps(emm2);
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = pmul(y, p4f_minus_cephes_DP1);
xmm2 = pmul(y, p4f_minus_cephes_DP2);
xmm3 = pmul(y, p4f_minus_cephes_DP3);
x = padd(x, xmm1);
x = padd(x, xmm2);
x = padd(x, xmm3);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = p4f_coscof_p0;
Packet4f z = pmul(x,x);
y = pmadd(y,z,p4f_coscof_p1);
y = pmadd(y,z,p4f_coscof_p2);
y = pmul(y, z);
y = pmul(y, z);
Packet4f tmp = _mm_mul_ps(z, p4f_half);
y = psub(y, tmp);
y = padd(y, p4f_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
Packet4f y2 = p4f_sincof_p0;
y2 = pmadd(y2, z, p4f_sincof_p1);
y2 = pmadd(y2, z, p4f_sincof_p2);
y2 = pmul(y2, z);
y2 = pmadd(y2, x, x);
/* select the correct result from the two polynoms */
y2 = _mm_and_ps(poly_mask, y2);
y = _mm_andnot_ps(poly_mask, y);
y = _mm_or_ps(y,y2);
/* update the sign */
return _mm_xor_ps(y, sign_bit);
}
// This is based on Quake3's fast inverse square root.
// For detail see here: http://www.beyond3d.com/content/articles/8/
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f psqrt<Packet4f>(const Packet4f& _x)
{
Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
/* select only the inverse sqrt of non-zero inputs */
Packet4f non_zero_mask = _mm_cmpgt_ps(_x, pset1<Packet4f>(std::numeric_limits<float>::epsilon()));
Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
return pmul(_x,x);
}
} // end namespace internal
#endif // EIGEN_MATH_FUNCTIONS_SSE_H

View file

@ -0,0 +1,634 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PACKET_MATH_SSE_H
#define EIGEN_PACKET_MATH_SSE_H
namespace internal {
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
#endif
typedef __m128 Packet4f;
typedef __m128i Packet4i;
typedef __m128d Packet2d;
template<> struct is_arithmetic<__m128> { enum { value = true }; };
template<> struct is_arithmetic<__m128i> { enum { value = true }; };
template<> struct is_arithmetic<__m128d> { enum { value = true }; };
#define vec4f_swizzle1(v,p,q,r,s) \
(_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), ((s)<<6|(r)<<4|(q)<<2|(p)))))
#define vec4i_swizzle1(v,p,q,r,s) \
(_mm_shuffle_epi32( v, ((s)<<6|(r)<<4|(q)<<2|(p))))
#define vec2d_swizzle1(v,p,q) \
(_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), ((q*2+1)<<6|(q*2)<<4|(p*2+1)<<2|(p*2)))))
#define vec4f_swizzle2(a,b,p,q,r,s) \
(_mm_shuffle_ps( (a), (b), ((s)<<6|(r)<<4|(q)<<2|(p))))
#define vec4i_swizzle2(a,b,p,q,r,s) \
(_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), ((s)<<6|(r)<<4|(q)<<2|(p))))))
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
const Packet4f p4f_##NAME = pset1<Packet4f>(X)
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
const Packet4f p4f_##NAME = _mm_castsi128_ps(pset1<Packet4i>(X))
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
template<> struct packet_traits<float> : default_packet_traits
{
typedef Packet4f type;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=4,
HasDiv = 1,
HasSin = EIGEN_FAST_MATH,
HasCos = EIGEN_FAST_MATH,
HasLog = 1,
HasExp = 1,
HasSqrt = 1
};
};
template<> struct packet_traits<double> : default_packet_traits
{
typedef Packet2d type;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=2,
HasDiv = 1
};
};
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
enum {
// FIXME check the Has*
Vectorizable = 1,
AlignedOnScalar = 1,
size=4
};
};
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2}; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set1_ps(from); }
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set1_pd(from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set1_epi32(from); }
template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); }
template<> EIGEN_STRONG_INLINE Packet2d plset<double>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); }
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a) { return _mm_add_epi32(pset1<Packet4i>(a),_mm_set_epi32(3,2,1,0)); }
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_add_epi32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_sub_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_sub_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_sub_epi32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a)
{
const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000));
return _mm_xor_ps(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a)
{
const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x80000000));
return _mm_xor_pd(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a)
{
return psub(_mm_setr_epi32(0,0,0,0), a);
}
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_mul_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_mul_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_mullo_epi32(a,b);
#else
// this version is slightly faster than 4 scalar products
return vec4i_swizzle1(
vec4i_swizzle2(
_mm_mul_epu32(a,b),
_mm_mul_epu32(vec4i_swizzle1(a,1,0,3,2),
vec4i_swizzle1(b,1,0,3,2)),
0,2,0,2),
0,2,1,3);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by SSE");
return pset1<Packet4i>(0);
}
// for some weird raisons, it has to be overloaded for packet of integers
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_min_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_min_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b)
{
// after some bench, this version *is* faster than a scalar implementation
Packet4i mask = _mm_cmplt_epi32(a,b);
return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
}
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_max_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_max_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b)
{
// after some bench, this version *is* faster than a scalar implementation
Packet4i mask = _mm_cmpgt_epi32(a,b);
return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
}
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_or_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_or_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_or_si128(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_xor_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_xor_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_xor_si128(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_andnot_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_andnot_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_andnot_si128(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); }
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const Packet4i*>(from)); }
#if defined(_MSC_VER)
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) {
EIGEN_DEBUG_UNALIGNED_LOAD
#if (_MSC_VER==1600)
// NOTE Some version of MSVC10 generates bad code when using _mm_loadu_ps
// (i.e., it does not generate an unaligned load!!
// TODO On most architectures this version should also be faster than a single _mm_loadu_ps
// so we could also enable it for MSVC08 but first we have to make this later does not generate crap when doing so...
__m128 res = _mm_loadl_pi(_mm_set1_ps(0.0f), (const __m64*)(from));
res = _mm_loadh_pi(res, (const __m64*)(from+2));
return res;
#else
return _mm_loadu_ps(from);
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_pd(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_si128(reinterpret_cast<const Packet4i*>(from)); }
#else
// Fast unaligned loads. Note that here we cannot directly use intrinsics: this would
// require pointer casting to incompatible pointer types and leads to invalid code
// because of the strict aliasing rule. The "dummy" stuff are required to enforce
// a correct instruction dependency.
// TODO: do the same for MSVC (ICC is compatible)
// NOTE: with the code below, MSVC's compiler crashes!
#if defined(__GNUC__) && defined(__i386__)
// bug 195: gcc/i386 emits weird x87 fldl/fstpl instructions for _mm_load_sd
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
#elif defined(__clang__)
// bug 201: Segfaults in __mm_loadh_pd with clang 2.8
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
#else
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 0
#endif
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
return _mm_loadu_ps(from);
#else
__m128d res;
res = _mm_load_sd((const double*)(from)) ;
res = _mm_loadh_pd(res, (const double*)(from+2)) ;
return _mm_castpd_ps(res);
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
return _mm_loadu_pd(from);
#else
__m128d res;
res = _mm_load_sd(from) ;
res = _mm_loadh_pd(res,from+1);
return res;
#endif
}
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
return _mm_loadu_si128(reinterpret_cast<const Packet4i*>(from));
#else
__m128d res;
res = _mm_load_sd((const double*)(from)) ;
res = _mm_loadh_pd(res, (const double*)(from+2)) ;
return _mm_castpd_si128(res);
#endif
}
#endif
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
{
return vec4f_swizzle1(_mm_castpd_ps(_mm_load_sd((const double*)from)), 0, 0, 1, 1);
}
template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
{ return pset1<Packet2d>(from[0]); }
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
Packet4i tmp;
tmp = _mm_loadl_epi64(reinterpret_cast<const Packet4i*>(from));
return vec4i_swizzle1(tmp, 0, 0, 1, 1);
}
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<Packet4i*>(to), from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) {
EIGEN_DEBUG_UNALIGNED_STORE
_mm_storel_pd((to), from);
_mm_storeh_pd((to+1), from);
}
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, _mm_castps_pd(from)); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, _mm_castsi128_pd(from)); }
// some compilers might be tempted to perform multiple moves instead of using a vector path.
template<> EIGEN_STRONG_INLINE void pstore1<Packet4f>(float* to, const float& a)
{
Packet4f pa = _mm_set_ss(a);
pstore(to, vec4f_swizzle1(pa,0,0,0,0));
}
// some compilers might be tempted to perform multiple moves instead of using a vector path.
template<> EIGEN_STRONG_INLINE void pstore1<Packet2d>(double* to, const double& a)
{
Packet2d pa = _mm_set_sd(a);
pstore(to, vec2d_swizzle1(pa,0,0));
}
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
#if defined(_MSC_VER) && defined(_WIN64) && !defined(__INTEL_COMPILER)
// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
// Direct of the struct members fixed bug #62.
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
#elif defined(_MSC_VER) && !defined(__INTEL_COMPILER)
// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
#else
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return _mm_cvtss_f32(a); }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return _mm_cvtsd_f64(a); }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { return _mm_cvtsi128_si32(a); }
#endif
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a)
{ return _mm_shuffle_ps(a,a,0x1B); }
template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a)
{ return _mm_shuffle_pd(a,a,0x1); }
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a)
{ return _mm_shuffle_epi32(a,0x1B); }
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a)
{
const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
return _mm_and_ps(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a)
{
const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
return _mm_and_pd(a,mask);
}
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a)
{
#ifdef EIGEN_VECTORIZE_SSSE3
return _mm_abs_epi32(a);
#else
Packet4i aux = _mm_srai_epi32(a,31);
return _mm_sub_epi32(_mm_xor_si128(a,aux),aux);
#endif
}
EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs)
{
vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55));
vecs[2] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xAA));
vecs[3] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xFF));
vecs[0] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x00));
}
#ifdef EIGEN_VECTORIZE_SSE3
// TODO implement SSE2 versions as well as integer versions
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3]));
}
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
return _mm_hadd_pd(vecs[0], vecs[1]);
}
// SSSE3 version:
// EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs)
// {
// return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3]));
// }
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
Packet4f tmp0 = _mm_hadd_ps(a,a);
return pfirst(_mm_hadd_ps(tmp0, tmp0));
}
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return pfirst(_mm_hadd_pd(a, a)); }
// SSSE3 version:
// EIGEN_STRONG_INLINE float predux(const Packet4i& a)
// {
// Packet4i tmp0 = _mm_hadd_epi32(a,a);
// return pfirst(_mm_hadd_epi32(tmp0, tmp0));
// }
#else
// SSE2 versions
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
return pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
{
return pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
Packet4f tmp0, tmp1, tmp2;
tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]);
tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]);
tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]);
tmp0 = _mm_add_ps(tmp0, tmp1);
tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]);
tmp1 = _mm_add_ps(tmp1, tmp2);
tmp2 = _mm_movehl_ps(tmp1, tmp0);
tmp0 = _mm_movelh_ps(tmp0, tmp1);
return _mm_add_ps(tmp0, tmp2);
}
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1]));
}
#endif // SSE3
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a));
return pfirst(tmp) + pfirst(_mm_shuffle_epi32(tmp, 1));
}
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
Packet4i tmp0, tmp1, tmp2;
tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
tmp0 = _mm_add_epi32(tmp0, tmp1);
tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
tmp1 = _mm_add_epi32(tmp1, tmp2);
tmp2 = _mm_unpacklo_epi64(tmp0, tmp1);
tmp0 = _mm_unpackhi_epi64(tmp0, tmp1);
return _mm_add_epi32(tmp0, tmp2);
}
// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a));
return pfirst(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
{
return pfirst(_mm_mul_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., reusing pmul is very slow !)
// TODO try to call _mm_mul_epu32 directly
EIGEN_ALIGN16 int aux[4];
pstore(aux, a);
return (aux[0] * aux[1]) * (aux[2] * aux[3]);;
}
// min
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a));
return pfirst(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
{
return pfirst(_mm_min_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., it does not like using std::min after the pstore !!)
EIGEN_ALIGN16 int aux[4];
pstore(aux, a);
register int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
register int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
return aux0<aux2 ? aux0 : aux2;
}
// max
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a));
return pfirst(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
{
return pfirst(_mm_max_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., it does not like using std::min after the pstore !!)
EIGEN_ALIGN16 int aux[4];
pstore(aux, a);
register int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
register int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
return aux0>aux2 ? aux0 : aux2;
}
#if (defined __GNUC__)
// template <> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c)
// {
// Packet4f res = b;
// asm("mulps %[a], %[b] \n\taddps %[c], %[b]" : [b] "+x" (res) : [a] "x" (a), [c] "x" (c));
// return res;
// }
// EIGEN_STRONG_INLINE Packet4i _mm_alignr_epi8(const Packet4i& a, const Packet4i& b, const int i)
// {
// Packet4i res = a;
// asm("palignr %[i], %[a], %[b] " : [b] "+x" (res) : [a] "x" (a), [i] "i" (i));
// return res;
// }
#endif
#ifdef EIGEN_VECTORIZE_SSSE3
// SSSE3 versions
template<int Offset>
struct palign_impl<Offset,Packet4f>
{
EIGEN_STRONG_INLINE static void run(Packet4f& first, const Packet4f& second)
{
if (Offset!=0)
first = _mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(second), _mm_castps_si128(first), Offset*4));
}
};
template<int Offset>
struct palign_impl<Offset,Packet4i>
{
EIGEN_STRONG_INLINE static void run(Packet4i& first, const Packet4i& second)
{
if (Offset!=0)
first = _mm_alignr_epi8(second,first, Offset*4);
}
};
template<int Offset>
struct palign_impl<Offset,Packet2d>
{
EIGEN_STRONG_INLINE static void run(Packet2d& first, const Packet2d& second)
{
if (Offset==1)
first = _mm_castsi128_pd(_mm_alignr_epi8(_mm_castpd_si128(second), _mm_castpd_si128(first), 8));
}
};
#else
// SSE2 versions
template<int Offset>
struct palign_impl<Offset,Packet4f>
{
EIGEN_STRONG_INLINE static void run(Packet4f& first, const Packet4f& second)
{
if (Offset==1)
{
first = _mm_move_ss(first,second);
first = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(first),0x39));
}
else if (Offset==2)
{
first = _mm_movehl_ps(first,first);
first = _mm_movelh_ps(first,second);
}
else if (Offset==3)
{
first = _mm_move_ss(first,second);
first = _mm_shuffle_ps(first,second,0x93);
}
}
};
template<int Offset>
struct palign_impl<Offset,Packet4i>
{
EIGEN_STRONG_INLINE static void run(Packet4i& first, const Packet4i& second)
{
if (Offset==1)
{
first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
first = _mm_shuffle_epi32(first,0x39);
}
else if (Offset==2)
{
first = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(first)));
first = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
}
else if (Offset==3)
{
first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
first = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second),0x93));
}
}
};
template<int Offset>
struct palign_impl<Offset,Packet2d>
{
EIGEN_STRONG_INLINE static void run(Packet2d& first, const Packet2d& second)
{
if (Offset==1)
{
first = _mm_castps_pd(_mm_movehl_ps(_mm_castpd_ps(first),_mm_castpd_ps(first)));
first = _mm_castps_pd(_mm_movelh_ps(_mm_castpd_ps(first),_mm_castpd_ps(second)));
}
}
};
#endif
} // end namespace internal
#endif // EIGEN_PACKET_MATH_SSE_H

View file

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Core_Product_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_Product_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/products COMPONENT Devel
)

View file

@ -0,0 +1,452 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_COEFFBASED_PRODUCT_H
#define EIGEN_COEFFBASED_PRODUCT_H
namespace internal {
/*********************************************************************************
* Coefficient based product implementation.
* It is designed for the following use cases:
* - small fixed sizes
* - lazy products
*********************************************************************************/
/* Since the all the dimensions of the product are small, here we can rely
* on the generic Assign mechanism to evaluate the product per coeff (or packet).
*
* Note that here the inner-loops should always be unrolled.
*/
template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl;
template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl;
template<typename LhsNested, typename RhsNested, int NestingFlags>
struct traits<CoeffBasedProduct<LhsNested,RhsNested,NestingFlags> >
{
typedef MatrixXpr XprKind;
typedef typename remove_all<LhsNested>::type _LhsNested;
typedef typename remove_all<RhsNested>::type _RhsNested;
typedef typename scalar_product_traits<typename _LhsNested::Scalar, typename _RhsNested::Scalar>::ReturnType Scalar;
typedef typename promote_storage_type<typename traits<_LhsNested>::StorageKind,
typename traits<_RhsNested>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<_LhsNested>::Index,
typename traits<_RhsNested>::Index>::type Index;
enum {
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
LhsRowMajor = LhsFlags & RowMajorBit,
RhsRowMajor = RhsFlags & RowMajorBit,
SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
&& (ColsAtCompileTime == Dynamic
|| ( (ColsAtCompileTime % packet_traits<Scalar>::size) == 0
&& (RhsFlags&AlignedBit)
)
),
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
&& (RowsAtCompileTime == Dynamic
|| ( (RowsAtCompileTime % packet_traits<Scalar>::size) == 0
&& (LhsFlags&AlignedBit)
)
),
EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
: (RhsRowMajor && !CanVectorizeLhs),
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
| (EvalToRowMajor ? RowMajorBit : 0)
| NestingFlags
| (LhsFlags & RhsFlags & AlignedBit)
// TODO enable vectorization for mixed types
| (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),
CoeffReadCost = InnerSize == Dynamic ? Dynamic
: InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost,
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
* of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
*/
CanVectorizeInner = SameType
&& LhsRowMajor
&& (!RhsRowMajor)
&& (LhsFlags & RhsFlags & ActualPacketAccessBit)
&& (LhsFlags & RhsFlags & AlignedBit)
&& (InnerSize % packet_traits<Scalar>::size == 0)
};
};
} // end namespace internal
template<typename LhsNested, typename RhsNested, int NestingFlags>
class CoeffBasedProduct
: internal::no_assignment_operator,
public MatrixBase<CoeffBasedProduct<LhsNested, RhsNested, NestingFlags> >
{
public:
typedef MatrixBase<CoeffBasedProduct> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(CoeffBasedProduct)
typedef typename Base::PlainObject PlainObject;
private:
typedef typename internal::traits<CoeffBasedProduct>::_LhsNested _LhsNested;
typedef typename internal::traits<CoeffBasedProduct>::_RhsNested _RhsNested;
enum {
PacketSize = internal::packet_traits<Scalar>::size,
InnerSize = internal::traits<CoeffBasedProduct>::InnerSize,
Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
CanVectorizeInner = internal::traits<CoeffBasedProduct>::CanVectorizeInner
};
typedef internal::product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
Unroll ? InnerSize-1 : Dynamic,
_LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;
typedef CoeffBasedProduct<LhsNested,RhsNested,NestByRefBit> LazyCoeffBasedProductType;
public:
inline CoeffBasedProduct(const CoeffBasedProduct& other)
: Base(), m_lhs(other.m_lhs), m_rhs(other.m_rhs)
{}
template<typename Lhs, typename Rhs>
inline CoeffBasedProduct(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
// we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
// We still allow to mix T and complex<T>.
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(lhs.cols() == rhs.rows()
&& "invalid matrix product"
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
}
EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
{
Scalar res;
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
return res;
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
*/
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
Scalar res;
const Index row = RowsAtCompileTime == 1 ? 0 : index;
const Index col = RowsAtCompileTime == 1 ? index : 0;
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
return res;
}
template<int LoadMode>
EIGEN_STRONG_INLINE const PacketScalar packet(Index row, Index col) const
{
PacketScalar res;
internal::product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
Unroll ? InnerSize-1 : Dynamic,
_LhsNested, _RhsNested, PacketScalar, LoadMode>
::run(row, col, m_lhs, m_rhs, res);
return res;
}
// Implicit conversion to the nested type (trigger the evaluation of the product)
EIGEN_STRONG_INLINE operator const PlainObject& () const
{
m_result.lazyAssign(*this);
return m_result;
}
const _LhsNested& lhs() const { return m_lhs; }
const _RhsNested& rhs() const { return m_rhs; }
const Diagonal<const LazyCoeffBasedProductType,0> diagonal() const
{ return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }
template<int DiagonalIndex>
const Diagonal<const LazyCoeffBasedProductType,DiagonalIndex> diagonal() const
{ return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }
const Diagonal<const LazyCoeffBasedProductType,Dynamic> diagonal(Index index) const
{ return reinterpret_cast<const LazyCoeffBasedProductType&>(*this).diagonal(index); }
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
mutable PlainObject m_result;
};
namespace internal {
// here we need to overload the nested rule for products
// such that the nested type is a const reference to a plain matrix
template<typename Lhs, typename Rhs, int N, typename PlainObject>
struct nested<CoeffBasedProduct<Lhs,Rhs,EvalBeforeNestingBit|EvalBeforeAssigningBit>, N, PlainObject>
{
typedef PlainObject const& type;
};
/***************************************************************************
* Normal product .coeff() implementation (with meta-unrolling)
***************************************************************************/
/**************************************
*** Scalar path - no vectorization ***
**************************************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
{
product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
{
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar& res)
{
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
for(Index i = 1; i < lhs.cols(); ++i)
res += lhs.coeff(row, i) * rhs.coeff(i, col);
}
};
/*******************************************
*** Scalar path with inner vectorization ***
*******************************************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
struct product_coeff_vectorized_unroller
{
typedef typename Lhs::Index Index;
enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
{
product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
pres = padd(pres, pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
}
};
template<typename Lhs, typename Rhs, typename Packet>
struct product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
{
pres = pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
}
};
template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::PacketScalar Packet;
typedef typename Lhs::Index Index;
enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
{
Packet pres;
product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, res);
res = predux(pres);
}
};
template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
struct product_coeff_vectorized_dyn_selector
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
}
};
// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
template<typename Lhs, typename Rhs, int RhsCols>
struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
}
};
template<typename Lhs, typename Rhs, int LhsRows>
struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
}
};
template<typename Lhs, typename Rhs>
struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = lhs.transpose().cwiseProduct(rhs).sum();
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, res);
}
};
/*******************
*** Packet path ***
*******************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
{
product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
}
};
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
{
product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
{
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
{
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
{
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
for(Index i = 1; i < lhs.cols(); ++i)
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
{
eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
for(Index i = 1; i < lhs.cols(); ++i)
res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
}
};
} // end namespace internal
#endif // EIGEN_COEFFBASED_PRODUCT_H

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,444 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
#define EIGEN_GENERAL_MATRIX_MATRIX_H
namespace internal {
template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;
/* Specialization for a row-major destination matrix => simple transposition of the product */
template<
typename Index,
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static EIGEN_STRONG_INLINE void run(
Index rows, Index cols, Index depth,
const LhsScalar* lhs, Index lhsStride,
const RhsScalar* rhs, Index rhsStride,
ResScalar* res, Index resStride,
ResScalar alpha,
level3_blocking<RhsScalar,LhsScalar>& blocking,
GemmParallelInfo<Index>* info = 0)
{
// transpose the product such that the result is column major
general_matrix_matrix_product<Index,
RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
ColMajor>
::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
}
};
/* Specialization for a col-major destination matrix
* => Blocking algorithm following Goto's paper */
template<
typename Index,
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static void run(Index rows, Index cols, Index depth,
const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsStride,
ResScalar* res, Index resStride,
ResScalar alpha,
level3_blocking<LhsScalar,RhsScalar>& blocking,
GemmParallelInfo<Index>* info = 0)
{
const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
Index kc = blocking.kc(); // cache block size along the K direction
Index mc = std::min(rows,blocking.mc()); // cache block size along the M direction
//Index nc = blocking.nc(); // cache block size along the N direction
gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
gebp_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
#ifdef EIGEN_HAS_OPENMP
if(info)
{
// this is the parallel version!
Index tid = omp_get_thread_num();
Index threads = omp_get_num_threads();
std::size_t sizeA = kc*mc;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
LhsScalar* blockA = ei_aligned_stack_new(LhsScalar, sizeA);
RhsScalar* w = ei_aligned_stack_new(RhsScalar, sizeW);
RhsScalar* blockB = blocking.blockB();
eigen_internal_assert(blockB!=0);
// For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
for(Index k=0; k<depth; k+=kc)
{
const Index actual_kc = std::min(k+kc,depth)-k; // => rows of B', and cols of the A'
// In order to reduce the chance that a thread has to wait for the other,
// let's start by packing A'.
pack_lhs(blockA, &lhs(0,k), lhsStride, actual_kc, mc);
// Pack B_k to B' in a parallel fashion:
// each thread packs the sub block B_k,j to B'_j where j is the thread id.
// However, before copying to B'_j, we have to make sure that no other thread is still using it,
// i.e., we test that info[tid].users equals 0.
// Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
while(info[tid].users!=0) {}
info[tid].users += threads;
pack_rhs(blockB+info[tid].rhs_start*actual_kc, &rhs(k,info[tid].rhs_start), rhsStride, actual_kc, info[tid].rhs_length);
// Notify the other threads that the part B'_j is ready to go.
info[tid].sync = k;
// Computes C_i += A' * B' per B'_j
for(Index shift=0; shift<threads; ++shift)
{
Index j = (tid+shift)%threads;
// At this point we have to make sure that B'_j has been updated by the thread j,
// we use testAndSetOrdered to mimic a volatile access.
// However, no need to wait for the B' part which has been updated by the current thread!
if(shift>0)
while(info[j].sync!=k) {}
gebp(res+info[j].rhs_start*resStride, resStride, blockA, blockB+info[j].rhs_start*actual_kc, mc, actual_kc, info[j].rhs_length, alpha, -1,-1,0,0, w);
}
// Then keep going as usual with the remaining A'
for(Index i=mc; i<rows; i+=mc)
{
const Index actual_mc = std::min(i+mc,rows)-i;
// pack A_i,k to A'
pack_lhs(blockA, &lhs(i,k), lhsStride, actual_kc, actual_mc);
// C_i += A' * B'
gebp(res+i, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1,-1,0,0, w);
}
// Release all the sub blocks B'_j of B' for the current thread,
// i.e., we simply decrement the number of users by 1
for(Index j=0; j<threads; ++j)
#pragma omp atomic
--(info[j].users);
}
ei_aligned_stack_delete(LhsScalar, blockA, kc*mc);
ei_aligned_stack_delete(RhsScalar, w, sizeW);
}
else
#endif // EIGEN_HAS_OPENMP
{
EIGEN_UNUSED_VARIABLE(info);
// this is the sequential version!
std::size_t sizeA = kc*mc;
std::size_t sizeB = kc*cols;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
LhsScalar *blockA = blocking.blockA()==0 ? ei_aligned_stack_new(LhsScalar, sizeA) : blocking.blockA();
RhsScalar *blockB = blocking.blockB()==0 ? ei_aligned_stack_new(RhsScalar, sizeB) : blocking.blockB();
RhsScalar *blockW = blocking.blockW()==0 ? ei_aligned_stack_new(RhsScalar, sizeW) : blocking.blockW();
// For each horizontal panel of the rhs, and corresponding panel of the lhs...
// (==GEMM_VAR1)
for(Index k2=0; k2<depth; k2+=kc)
{
const Index actual_kc = std::min(k2+kc,depth)-k2;
// OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
// => Pack rhs's panel into a sequential chunk of memory (L2 caching)
// Note that this panel will be read as many times as the number of blocks in the lhs's
// vertical panel which is, in practice, a very low number.
pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);
// For each mc x kc block of the lhs's vertical panel...
// (==GEPP_VAR1)
for(Index i2=0; i2<rows; i2+=mc)
{
const Index actual_mc = std::min(i2+mc,rows)-i2;
// We pack the lhs's block into a sequential chunk of memory (L1 caching)
// Note that this block will be read a very high number of times, which is equal to the number of
// micro vertical panel of the large rhs's panel (e.g., cols/4 times).
pack_lhs(blockA, &lhs(i2,k2), lhsStride, actual_kc, actual_mc);
// Everything is packed, we can now call the block * panel kernel:
gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);
}
}
if(blocking.blockA()==0) ei_aligned_stack_delete(LhsScalar, blockA, sizeA);
if(blocking.blockB()==0) ei_aligned_stack_delete(RhsScalar, blockB, sizeB);
if(blocking.blockW()==0) ei_aligned_stack_delete(RhsScalar, blockW, sizeW);
}
}
};
/*********************************************************************************
* Specialization of GeneralProduct<> for "large" GEMM, i.e.,
* implementation of the high level wrapper to general_matrix_matrix_product
**********************************************************************************/
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,GemmProduct> >
: traits<ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs> >
{};
template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
struct gemm_functor
{
gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, Scalar actualAlpha,
BlockingType& blocking)
: m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
{}
void initParallelSession() const
{
m_blocking.allocateB();
}
void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
{
if(cols==-1)
cols = m_rhs.cols();
Gemm::run(rows, cols, m_lhs.cols(),
/*(const Scalar*)*/&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
/*(const Scalar*)*/&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
(Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
m_actualAlpha, m_blocking, info);
}
protected:
const Lhs& m_lhs;
const Rhs& m_rhs;
Dest& m_dest;
Scalar m_actualAlpha;
BlockingType& m_blocking;
};
template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth,
bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;
template<typename _LhsScalar, typename _RhsScalar>
class level3_blocking
{
typedef _LhsScalar LhsScalar;
typedef _RhsScalar RhsScalar;
protected:
LhsScalar* m_blockA;
RhsScalar* m_blockB;
RhsScalar* m_blockW;
DenseIndex m_mc;
DenseIndex m_nc;
DenseIndex m_kc;
public:
level3_blocking()
: m_blockA(0), m_blockB(0), m_blockW(0), m_mc(0), m_nc(0), m_kc(0)
{}
inline DenseIndex mc() const { return m_mc; }
inline DenseIndex nc() const { return m_nc; }
inline DenseIndex kc() const { return m_kc; }
inline LhsScalar* blockA() { return m_blockA; }
inline RhsScalar* blockB() { return m_blockB; }
inline RhsScalar* blockW() { return m_blockW; }
};
template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, true>
: public level3_blocking<
typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
enum {
Transpose = StorageOrder==RowMajor,
ActualRows = Transpose ? MaxCols : MaxRows,
ActualCols = Transpose ? MaxRows : MaxCols
};
typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
enum {
SizeA = ActualRows * MaxDepth,
SizeB = ActualCols * MaxDepth,
SizeW = MaxDepth * Traits::WorkSpaceFactor
};
EIGEN_ALIGN16 LhsScalar m_staticA[SizeA];
EIGEN_ALIGN16 RhsScalar m_staticB[SizeB];
EIGEN_ALIGN16 RhsScalar m_staticW[SizeW];
public:
gemm_blocking_space(DenseIndex /*rows*/, DenseIndex /*cols*/, DenseIndex /*depth*/)
{
this->m_mc = ActualRows;
this->m_nc = ActualCols;
this->m_kc = MaxDepth;
this->m_blockA = m_staticA;
this->m_blockB = m_staticB;
this->m_blockW = m_staticW;
}
inline void allocateA() {}
inline void allocateB() {}
inline void allocateW() {}
inline void allocateAll() {}
};
template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, false>
: public level3_blocking<
typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
enum {
Transpose = StorageOrder==RowMajor
};
typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
DenseIndex m_sizeA;
DenseIndex m_sizeB;
DenseIndex m_sizeW;
public:
gemm_blocking_space(DenseIndex rows, DenseIndex cols, DenseIndex depth)
{
this->m_mc = Transpose ? cols : rows;
this->m_nc = Transpose ? rows : cols;
this->m_kc = depth;
computeProductBlockingSizes<LhsScalar,RhsScalar>(this->m_kc, this->m_mc, this->m_nc);
m_sizeA = this->m_mc * this->m_kc;
m_sizeB = this->m_kc * this->m_nc;
m_sizeW = this->m_kc*Traits::WorkSpaceFactor;
}
void allocateA()
{
if(this->m_blockA==0)
this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
}
void allocateB()
{
if(this->m_blockB==0)
this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
}
void allocateW()
{
if(this->m_blockW==0)
this->m_blockW = aligned_new<RhsScalar>(m_sizeW);
}
void allocateAll()
{
allocateA();
allocateB();
allocateW();
}
~gemm_blocking_space()
{
aligned_delete(this->m_blockA, m_sizeA);
aligned_delete(this->m_blockB, m_sizeB);
aligned_delete(this->m_blockW, m_sizeW);
}
};
} // end namespace internal
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, GemmProduct>
: public ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs>
{
enum {
MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
};
public:
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef Scalar ResScalar;
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
{
typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
}
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
{
eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);
Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
* RhsBlasTraits::extractScalarFactor(m_rhs);
typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
typedef internal::gemm_functor<
Scalar, Index,
internal::general_matrix_matrix_product<
Index,
LhsScalar, (_ActualLhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
RhsScalar, (_ActualRhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
_ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;
BlockingType blocking(dst.rows(), dst.cols(), lhs.cols());
internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
}
};
#endif // EIGEN_GENERAL_MATRIX_MATRIX_H

View file

@ -0,0 +1,227 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
namespace internal {
/**********************************************************************
* This file implements a general A * B product while
* evaluating only one triangular part of the product.
* This is more general version of self adjoint product (C += A A^T)
* as the level 3 SYRK Blas routine.
**********************************************************************/
// forward declarations (defined at the end of this file)
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
struct tribb_kernel;
/* Optimized matrix-matrix product evaluating only one triangular half */
template <typename Index,
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
int ResStorageOrder, int UpLo>
struct general_matrix_matrix_triangular_product;
// as usual if the result is row major => we transpose the product
template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo>
struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,UpLo>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride, ResScalar alpha)
{
general_matrix_matrix_triangular_product<Index,
RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
ColMajor, UpLo==Lower?Upper:Lower>
::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha);
}
};
template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo>
struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsStride, ResScalar* res, Index resStride, ResScalar alpha)
{
const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
Index kc = depth; // cache block size along the K direction
Index mc = size; // cache block size along the M direction
Index nc = size; // cache block size along the N direction
computeProductBlockingSizes<LhsScalar,RhsScalar>(kc, mc, nc);
// !!! mc must be a multiple of nr:
if(mc > Traits::nr)
mc = (mc/Traits::nr)*Traits::nr;
LhsScalar* blockA = ei_aligned_stack_new(LhsScalar, kc*mc);
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
std::size_t sizeB = sizeW + kc*size;
RhsScalar* allocatedBlockB = ei_aligned_stack_new(RhsScalar, sizeB);
RhsScalar* blockB = allocatedBlockB + sizeW;
gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
gebp_kernel <LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, UpLo> sybb;
for(Index k2=0; k2<depth; k2+=kc)
{
const Index actual_kc = std::min(k2+kc,depth)-k2;
// note that the actual rhs is the transpose/adjoint of mat
pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, size);
for(Index i2=0; i2<size; i2+=mc)
{
const Index actual_mc = std::min(i2+mc,size)-i2;
pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
// the selected actual_mc * size panel of res is split into three different part:
// 1 - before the diagonal => processed with gebp or skipped
// 2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
// 3 - after the diagonal => processed with gebp or skipped
if (UpLo==Lower)
gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, std::min(size,i2), alpha,
-1, -1, 0, 0, allocatedBlockB);
sybb(res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha, allocatedBlockB);
if (UpLo==Upper)
{
Index j2 = i2+actual_mc;
gebp(res+resStride*j2+i2, resStride, blockA, blockB+actual_kc*j2, actual_mc, actual_kc, std::max(Index(0), size-j2), alpha,
-1, -1, 0, 0, allocatedBlockB);
}
}
}
ei_aligned_stack_delete(LhsScalar, blockA, kc*mc);
ei_aligned_stack_delete(RhsScalar, allocatedBlockB, sizeB);
}
};
// Optimized packed Block * packed Block product kernel evaluating only one given triangular part
// This kernel is built on top of the gebp kernel:
// - the current destination block is processed per panel of actual_mc x BlockSize
// where BlockSize is set to the minimal value allowing gebp to be as fast as possible
// - then, as usual, each panel is split into three parts along the diagonal,
// the sub blocks above and below the diagonal are processed as usual,
// while the triangular block overlapping the diagonal is evaluated into a
// small temporary buffer which is then accumulated into the result using a
// triangular traversal.
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
struct tribb_kernel
{
typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits;
typedef typename Traits::ResScalar ResScalar;
enum {
BlockSize = EIGEN_PLAIN_ENUM_MAX(mr,nr)
};
void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, ResScalar alpha, RhsScalar* workspace)
{
gebp_kernel<LhsScalar, RhsScalar, Index, mr, nr, ConjLhs, ConjRhs> gebp_kernel;
Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer;
// let's process the block per panel of actual_mc x BlockSize,
// again, each is split into three parts, etc.
for (Index j=0; j<size; j+=BlockSize)
{
Index actualBlockSize = std::min<Index>(BlockSize,size - j);
const RhsScalar* actual_b = blockB+j*depth;
if(UpLo==Upper)
gebp_kernel(res+j*resStride, resStride, blockA, actual_b, j, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
// selfadjoint micro block
{
Index i = j;
buffer.setZero();
// 1 - apply the kernel on the temporary buffer
gebp_kernel(buffer.data(), BlockSize, blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
// 2 - triangular accumulation
for(Index j1=0; j1<actualBlockSize; ++j1)
{
ResScalar* r = res + (j+j1)*resStride + i;
for(Index i1=UpLo==Lower ? j1 : 0;
UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
r[i1] += buffer(i1,j1);
}
}
if(UpLo==Lower)
{
Index i = j+actualBlockSize;
gebp_kernel(res+j*resStride+i, resStride, blockA+depth*i, actual_b, size-i, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
}
}
}
};
} // end namespace internal
// high level API
template<typename MatrixType, unsigned int UpLo>
template<typename ProductDerived, typename _Lhs, typename _Rhs>
TriangularView<MatrixType,UpLo>& TriangularView<MatrixType,UpLo>::assignProduct(const ProductBase<ProductDerived, _Lhs,_Rhs>& prod, const Scalar& alpha)
{
typedef typename internal::remove_all<typename ProductDerived::LhsNested>::type Lhs;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
const ActualLhs actualLhs = LhsBlasTraits::extract(prod.lhs());
typedef typename internal::remove_all<typename ProductDerived::RhsNested>::type Rhs;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
const ActualRhs actualRhs = RhsBlasTraits::extract(prod.rhs());
typename ProductDerived::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
internal::general_matrix_matrix_triangular_product<Index,
typename Lhs::Scalar, _ActualLhs::Flags&RowMajorBit ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
typename Rhs::Scalar, _ActualRhs::Flags&RowMajorBit ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor, UpLo>
::run(m_matrix.cols(), actualLhs.cols(),
&actualLhs.coeffRef(0,0), actualLhs.outerStride(), &actualRhs.coeffRef(0,0), actualRhs.outerStride(),
const_cast<Scalar*>(m_matrix.data()), m_matrix.outerStride(), actualAlpha);
return *this;
}
#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H

View file

@ -0,0 +1,559 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_GENERAL_MATRIX_VECTOR_H
#define EIGEN_GENERAL_MATRIX_VECTOR_H
namespace internal {
/* Optimized col-major matrix * vector product:
* This algorithm processes 4 columns at onces that allows to both reduce
* the number of load/stores of the result by a factor 4 and to reduce
* the instruction dependency. Moreover, we know that all bands have the
* same alignment pattern.
*
* Mixing type logic: C += alpha * A * B
* | A | B |alpha| comments
* |real |cplx |cplx | no vectorization
* |real |cplx |real | alpha is converted to a cplx when calling the run function, no vectorization
* |cplx |real |cplx | invalid, the caller has to do tmp: = A * B; C += alpha*tmp
* |cplx |real |real | optimal case, vectorization possible via real-cplx mul
*/
template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs>
struct general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
&& int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
};
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
typedef typename packet_traits<RhsScalar>::type _RhsPacket;
typedef typename packet_traits<ResScalar>::type _ResPacket;
typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
EIGEN_DONT_INLINE static void run(
Index rows, Index cols,
const LhsScalar* lhs, Index lhsStride,
const RhsScalar* rhs, Index rhsIncr,
ResScalar* res, Index
#ifdef EIGEN_INTERNAL_DEBUGGING
resIncr
#endif
, RhsScalar alpha)
{
eigen_internal_assert(resIncr==1);
#ifdef _EIGEN_ACCUMULATE_PACKETS
#error _EIGEN_ACCUMULATE_PACKETS has already been defined
#endif
#define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) \
pstore(&res[j], \
padd(pload<ResPacket>(&res[j]), \
padd( \
padd(pcj.pmul(EIGEN_CAT(ploa , A0)<LhsPacket>(&lhs0[j]), ptmp0), \
pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs1[j]), ptmp1)), \
padd(pcj.pmul(EIGEN_CAT(ploa , A2)<LhsPacket>(&lhs2[j]), ptmp2), \
pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs3[j]), ptmp3)) )))
conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
if(ConjugateRhs)
alpha = conj(alpha);
enum { AllAligned = 0, EvenAligned, FirstAligned, NoneAligned };
const Index columnsAtOnce = 4;
const Index peels = 2;
const Index LhsPacketAlignedMask = LhsPacketSize-1;
const Index ResPacketAlignedMask = ResPacketSize-1;
const Index PeelAlignedMask = ResPacketSize*peels-1;
const Index size = rows;
// How many coeffs of the result do we have to skip to be aligned.
// Here we assume data are at least aligned on the base scalar type.
Index alignedStart = first_aligned(res,size);
Index alignedSize = ResPacketSize>1 ? alignedStart + ((size-alignedStart) & ~ResPacketAlignedMask) : 0;
const Index peeledSize = peels>1 ? alignedStart + ((alignedSize-alignedStart) & ~PeelAlignedMask) : alignedStart;
const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
Index alignmentPattern = alignmentStep==0 ? AllAligned
: alignmentStep==(LhsPacketSize/2) ? EvenAligned
: FirstAligned;
// we cannot assume the first element is aligned because of sub-matrices
const Index lhsAlignmentOffset = first_aligned(lhs,size);
// find how many columns do we have to skip to be aligned with the result (if possible)
Index skipColumns = 0;
// if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
if( (size_t(lhs)%sizeof(LhsScalar)) || (size_t(res)%sizeof(ResScalar)) )
{
alignedSize = 0;
alignedStart = 0;
}
else if (LhsPacketSize>1)
{
eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || size<LhsPacketSize);
while (skipColumns<LhsPacketSize &&
alignedStart != ((lhsAlignmentOffset + alignmentStep*skipColumns)%LhsPacketSize))
++skipColumns;
if (skipColumns==LhsPacketSize)
{
// nothing can be aligned, no need to skip any column
alignmentPattern = NoneAligned;
skipColumns = 0;
}
else
{
skipColumns = std::min(skipColumns,cols);
// note that the skiped columns are processed later.
}
eigen_internal_assert( (alignmentPattern==NoneAligned)
|| (skipColumns + columnsAtOnce >= cols)
|| LhsPacketSize > size
|| (size_t(lhs+alignedStart+lhsStride*skipColumns)%sizeof(LhsPacket))==0);
}
else if(Vectorizable)
{
alignedStart = 0;
alignedSize = size;
alignmentPattern = AllAligned;
}
Index offset1 = (FirstAligned && alignmentStep==1?3:1);
Index offset3 = (FirstAligned && alignmentStep==1?1:3);
Index columnBound = ((cols-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns;
for (Index i=skipColumns; i<columnBound; i+=columnsAtOnce)
{
RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[i*rhsIncr]),
ptmp1 = pset1<RhsPacket>(alpha*rhs[(i+offset1)*rhsIncr]),
ptmp2 = pset1<RhsPacket>(alpha*rhs[(i+2)*rhsIncr]),
ptmp3 = pset1<RhsPacket>(alpha*rhs[(i+offset3)*rhsIncr]);
// this helps a lot generating better binary code
const LhsScalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
*lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
if (Vectorizable)
{
/* explicit vectorization */
// process initial unaligned coeffs
for (Index j=0; j<alignedStart; ++j)
{
res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
}
if (alignedSize>alignedStart)
{
switch(alignmentPattern)
{
case AllAligned:
for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
_EIGEN_ACCUMULATE_PACKETS(d,d,d);
break;
case EvenAligned:
for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
_EIGEN_ACCUMULATE_PACKETS(d,du,d);
break;
case FirstAligned:
if(peels>1)
{
LhsPacket A00, A01, A02, A03, A10, A11, A12, A13;
ResPacket T0, T1;
A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
for (Index j = alignedStart; j<peeledSize; j+=peels*ResPacketSize)
{
A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]); palign<1>(A01,A11);
A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]); palign<2>(A02,A12);
A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]); palign<3>(A03,A13);
A00 = pload<LhsPacket>(&lhs0[j]);
A10 = pload<LhsPacket>(&lhs0[j+LhsPacketSize]);
T0 = pcj.pmadd(A00, ptmp0, pload<ResPacket>(&res[j]));
T1 = pcj.pmadd(A10, ptmp0, pload<ResPacket>(&res[j+ResPacketSize]));
T0 = pcj.pmadd(A01, ptmp1, T0);
A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]); palign<1>(A11,A01);
T0 = pcj.pmadd(A02, ptmp2, T0);
A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]); palign<2>(A12,A02);
T0 = pcj.pmadd(A03, ptmp3, T0);
pstore(&res[j],T0);
A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]); palign<3>(A13,A03);
T1 = pcj.pmadd(A11, ptmp1, T1);
T1 = pcj.pmadd(A12, ptmp2, T1);
T1 = pcj.pmadd(A13, ptmp3, T1);
pstore(&res[j+ResPacketSize],T1);
}
}
for (Index j = peeledSize; j<alignedSize; j+=ResPacketSize)
_EIGEN_ACCUMULATE_PACKETS(d,du,du);
break;
default:
for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
_EIGEN_ACCUMULATE_PACKETS(du,du,du);
break;
}
}
} // end explicit vectorization
/* process remaining coeffs (or all if there is no explicit vectorization) */
for (Index j=alignedSize; j<size; ++j)
{
res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
}
}
// process remaining first and last columns (at most columnsAtOnce-1)
Index end = cols;
Index start = columnBound;
do
{
for (Index k=start; k<end; ++k)
{
RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[k*rhsIncr]);
const LhsScalar* lhs0 = lhs + k*lhsStride;
if (Vectorizable)
{
/* explicit vectorization */
// process first unaligned result's coeffs
for (Index j=0; j<alignedStart; ++j)
res[j] += cj.pmul(lhs0[j], pfirst(ptmp0));
// process aligned result's coeffs
if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
else
for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
}
// process remaining scalars (or all if no explicit vectorization)
for (Index i=alignedSize; i<size; ++i)
res[i] += cj.pmul(lhs0[i], pfirst(ptmp0));
}
if (skipColumns)
{
start = 0;
end = skipColumns;
skipColumns = 0;
}
else
break;
} while(Vectorizable);
#undef _EIGEN_ACCUMULATE_PACKETS
}
};
/* Optimized row-major matrix * vector product:
* This algorithm processes 4 rows at onces that allows to both reduce
* the number of load/stores of the result by a factor 4 and to reduce
* the instruction dependency. Moreover, we know that all bands have the
* same alignment pattern.
*
* Mixing type logic:
* - alpha is always a complex (or converted to a complex)
* - no vectorization
*/
template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs>
struct general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
&& int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
};
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
typedef typename packet_traits<RhsScalar>::type _RhsPacket;
typedef typename packet_traits<ResScalar>::type _ResPacket;
typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
EIGEN_DONT_INLINE static void run(
Index rows, Index cols,
const LhsScalar* lhs, Index lhsStride,
const RhsScalar* rhs, Index rhsIncr,
ResScalar* res, Index resIncr,
ResScalar alpha)
{
EIGEN_UNUSED_VARIABLE(rhsIncr);
eigen_internal_assert(rhsIncr==1);
#ifdef _EIGEN_ACCUMULATE_PACKETS
#error _EIGEN_ACCUMULATE_PACKETS has already been defined
#endif
#define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) {\
RhsPacket b = pload<RhsPacket>(&rhs[j]); \
ptmp0 = pcj.pmadd(EIGEN_CAT(ploa,A0) <LhsPacket>(&lhs0[j]), b, ptmp0); \
ptmp1 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs1[j]), b, ptmp1); \
ptmp2 = pcj.pmadd(EIGEN_CAT(ploa,A2) <LhsPacket>(&lhs2[j]), b, ptmp2); \
ptmp3 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs3[j]), b, ptmp3); }
conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
enum { AllAligned=0, EvenAligned=1, FirstAligned=2, NoneAligned=3 };
const Index rowsAtOnce = 4;
const Index peels = 2;
const Index RhsPacketAlignedMask = RhsPacketSize-1;
const Index LhsPacketAlignedMask = LhsPacketSize-1;
const Index PeelAlignedMask = RhsPacketSize*peels-1;
const Index depth = cols;
// How many coeffs of the result do we have to skip to be aligned.
// Here we assume data are at least aligned on the base scalar type
// if that's not the case then vectorization is discarded, see below.
Index alignedStart = first_aligned(rhs, depth);
Index alignedSize = RhsPacketSize>1 ? alignedStart + ((depth-alignedStart) & ~RhsPacketAlignedMask) : 0;
const Index peeledSize = peels>1 ? alignedStart + ((alignedSize-alignedStart) & ~PeelAlignedMask) : alignedStart;
const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
Index alignmentPattern = alignmentStep==0 ? AllAligned
: alignmentStep==(LhsPacketSize/2) ? EvenAligned
: FirstAligned;
// we cannot assume the first element is aligned because of sub-matrices
const Index lhsAlignmentOffset = first_aligned(lhs,depth);
// find how many rows do we have to skip to be aligned with rhs (if possible)
Index skipRows = 0;
// if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
if( (sizeof(LhsScalar)!=sizeof(RhsScalar)) || (size_t(lhs)%sizeof(LhsScalar)) || (size_t(rhs)%sizeof(RhsScalar)) )
{
alignedSize = 0;
alignedStart = 0;
}
else if (LhsPacketSize>1)
{
eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || depth<LhsPacketSize);
while (skipRows<LhsPacketSize &&
alignedStart != ((lhsAlignmentOffset + alignmentStep*skipRows)%LhsPacketSize))
++skipRows;
if (skipRows==LhsPacketSize)
{
// nothing can be aligned, no need to skip any column
alignmentPattern = NoneAligned;
skipRows = 0;
}
else
{
skipRows = std::min(skipRows,Index(rows));
// note that the skiped columns are processed later.
}
eigen_internal_assert( alignmentPattern==NoneAligned
|| LhsPacketSize==1
|| (skipRows + rowsAtOnce >= rows)
|| LhsPacketSize > depth
|| (size_t(lhs+alignedStart+lhsStride*skipRows)%sizeof(LhsPacket))==0);
}
else if(Vectorizable)
{
alignedStart = 0;
alignedSize = depth;
alignmentPattern = AllAligned;
}
Index offset1 = (FirstAligned && alignmentStep==1?3:1);
Index offset3 = (FirstAligned && alignmentStep==1?1:3);
Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
for (Index i=skipRows; i<rowBound; i+=rowsAtOnce)
{
EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
ResScalar tmp1 = ResScalar(0), tmp2 = ResScalar(0), tmp3 = ResScalar(0);
// this helps the compiler generating good binary code
const LhsScalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
*lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
if (Vectorizable)
{
/* explicit vectorization */
ResPacket ptmp0 = pset1<ResPacket>(ResScalar(0)), ptmp1 = pset1<ResPacket>(ResScalar(0)),
ptmp2 = pset1<ResPacket>(ResScalar(0)), ptmp3 = pset1<ResPacket>(ResScalar(0));
// process initial unaligned coeffs
// FIXME this loop get vectorized by the compiler !
for (Index j=0; j<alignedStart; ++j)
{
RhsScalar b = rhs[j];
tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
}
if (alignedSize>alignedStart)
{
switch(alignmentPattern)
{
case AllAligned:
for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
_EIGEN_ACCUMULATE_PACKETS(d,d,d);
break;
case EvenAligned:
for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
_EIGEN_ACCUMULATE_PACKETS(d,du,d);
break;
case FirstAligned:
if (peels>1)
{
/* Here we proccess 4 rows with with two peeled iterations to hide
* tghe overhead of unaligned loads. Moreover unaligned loads are handled
* using special shift/move operations between the two aligned packets
* overlaping the desired unaligned packet. This is *much* more efficient
* than basic unaligned loads.
*/
LhsPacket A01, A02, A03, A11, A12, A13;
A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
for (Index j = alignedStart; j<peeledSize; j+=peels*RhsPacketSize)
{
RhsPacket b = pload<RhsPacket>(&rhs[j]);
A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]); palign<1>(A01,A11);
A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]); palign<2>(A02,A12);
A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]); palign<3>(A03,A13);
ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), b, ptmp0);
ptmp1 = pcj.pmadd(A01, b, ptmp1);
A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]); palign<1>(A11,A01);
ptmp2 = pcj.pmadd(A02, b, ptmp2);
A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]); palign<2>(A12,A02);
ptmp3 = pcj.pmadd(A03, b, ptmp3);
A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]); palign<3>(A13,A03);
b = pload<RhsPacket>(&rhs[j+RhsPacketSize]);
ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j+LhsPacketSize]), b, ptmp0);
ptmp1 = pcj.pmadd(A11, b, ptmp1);
ptmp2 = pcj.pmadd(A12, b, ptmp2);
ptmp3 = pcj.pmadd(A13, b, ptmp3);
}
}
for (Index j = peeledSize; j<alignedSize; j+=RhsPacketSize)
_EIGEN_ACCUMULATE_PACKETS(d,du,du);
break;
default:
for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
_EIGEN_ACCUMULATE_PACKETS(du,du,du);
break;
}
tmp0 += predux(ptmp0);
tmp1 += predux(ptmp1);
tmp2 += predux(ptmp2);
tmp3 += predux(ptmp3);
}
} // end explicit vectorization
// process remaining coeffs (or all if no explicit vectorization)
// FIXME this loop get vectorized by the compiler !
for (Index j=alignedSize; j<depth; ++j)
{
RhsScalar b = rhs[j];
tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
}
res[i*resIncr] += alpha*tmp0;
res[(i+offset1)*resIncr] += alpha*tmp1;
res[(i+2)*resIncr] += alpha*tmp2;
res[(i+offset3)*resIncr] += alpha*tmp3;
}
// process remaining first and last rows (at most columnsAtOnce-1)
Index end = rows;
Index start = rowBound;
do
{
for (Index i=start; i<end; ++i)
{
EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
ResPacket ptmp0 = pset1<ResPacket>(tmp0);
const LhsScalar* lhs0 = lhs + i*lhsStride;
// process first unaligned result's coeffs
// FIXME this loop get vectorized by the compiler !
for (Index j=0; j<alignedStart; ++j)
tmp0 += cj.pmul(lhs0[j], rhs[j]);
if (alignedSize>alignedStart)
{
// process aligned rhs coeffs
if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
else
for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
ptmp0 = pcj.pmadd(ploadu<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
tmp0 += predux(ptmp0);
}
// process remaining scalars
// FIXME this loop get vectorized by the compiler !
for (Index j=alignedSize; j<depth; ++j)
tmp0 += cj.pmul(lhs0[j], rhs[j]);
res[i*resIncr] += alpha*tmp0;
}
if (skipRows)
{
start = 0;
end = skipRows;
skipRows = 0;
}
else
break;
} while(Vectorizable);
#undef _EIGEN_ACCUMULATE_PACKETS
}
};
} // end namespace internal
#endif // EIGEN_GENERAL_MATRIX_VECTOR_H

View file

@ -0,0 +1,154 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PARALLELIZER_H
#define EIGEN_PARALLELIZER_H
namespace internal {
/** \internal */
inline void manage_multi_threading(Action action, int* v)
{
static EIGEN_UNUSED int m_maxThreads = -1;
if(action==SetAction)
{
eigen_internal_assert(v!=0);
m_maxThreads = *v;
}
else if(action==GetAction)
{
eigen_internal_assert(v!=0);
#ifdef EIGEN_HAS_OPENMP
if(m_maxThreads>0)
*v = m_maxThreads;
else
*v = omp_get_max_threads();
#else
*v = 1;
#endif
}
else
{
eigen_internal_assert(false);
}
}
/** \returns the max number of threads reserved for Eigen
* \sa setNbThreads */
inline int nbThreads()
{
int ret;
manage_multi_threading(GetAction, &ret);
return ret;
}
/** Sets the max number of threads reserved for Eigen
* \sa nbThreads */
inline void setNbThreads(int v)
{
manage_multi_threading(SetAction, &v);
}
template<typename Index> struct GemmParallelInfo
{
GemmParallelInfo() : sync(-1), users(0), rhs_start(0), rhs_length(0) {}
int volatile sync;
int volatile users;
Index rhs_start;
Index rhs_length;
};
template<bool Condition, typename Functor, typename Index>
void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpose)
{
#ifndef EIGEN_HAS_OPENMP
// FIXME the transpose variable is only needed to properly split
// the matrix product when multithreading is enabled. This is a temporary
// fix to support row-major destination matrices. This whole
// parallelizer mechanism has to be redisigned anyway.
EIGEN_UNUSED_VARIABLE(transpose);
func(0,rows, 0,cols);
#else
// Dynamically check whether we should enable or disable OpenMP.
// The conditions are:
// - the max number of threads we can create is greater than 1
// - we are not already in a parallel code
// - the sizes are large enough
// 1- are we already in a parallel session?
// FIXME omp_get_num_threads()>1 only works for openmp, what if the user does not use openmp?
if((!Condition) || (omp_get_num_threads()>1))
return func(0,rows, 0,cols);
Index size = transpose ? cols : rows;
// 2- compute the maximal number of threads from the size of the product:
// FIXME this has to be fine tuned
Index max_threads = std::max<Index>(1,size / 32);
// 3 - compute the number of threads we are going to use
Index threads = std::min<Index>(nbThreads(), max_threads);
if(threads==1)
return func(0,rows, 0,cols);
func.initParallelSession();
if(transpose)
std::swap(rows,cols);
Index blockCols = (cols / threads) & ~Index(0x3);
Index blockRows = (rows / threads) & ~Index(0x7);
GemmParallelInfo<Index>* info = new GemmParallelInfo<Index>[threads];
#pragma omp parallel for schedule(static,1) num_threads(threads)
for(Index i=0; i<threads; ++i)
{
Index r0 = i*blockRows;
Index actualBlockRows = (i+1==threads) ? rows-r0 : blockRows;
Index c0 = i*blockCols;
Index actualBlockCols = (i+1==threads) ? cols-c0 : blockCols;
info[i].rhs_start = c0;
info[i].rhs_length = actualBlockCols;
if(transpose)
func(0, cols, r0, actualBlockRows, info);
else
func(r0, actualBlockRows, 0,cols, info);
}
delete[] info;
#endif
}
} // end namespace internal
#endif // EIGEN_PARALLELIZER_H

View file

@ -0,0 +1,434 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H
#define EIGEN_SELFADJOINT_MATRIX_MATRIX_H
namespace internal {
// pack a selfadjoint block diagonal for use with the gebp_kernel
template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder>
struct symm_pack_lhs
{
template<int BlockRows> inline
void pack(Scalar* blockA, const const_blas_data_mapper<Scalar,Index,StorageOrder>& lhs, Index cols, Index i, Index& count)
{
// normal copy
for(Index k=0; k<i; k++)
for(Index w=0; w<BlockRows; w++)
blockA[count++] = lhs(i+w,k); // normal
// symmetric copy
Index h = 0;
for(Index k=i; k<i+BlockRows; k++)
{
for(Index w=0; w<h; w++)
blockA[count++] = conj(lhs(k, i+w)); // transposed
blockA[count++] = real(lhs(k,k)); // real (diagonal)
for(Index w=h+1; w<BlockRows; w++)
blockA[count++] = lhs(i+w, k); // normal
++h;
}
// transposed copy
for(Index k=i+BlockRows; k<cols; k++)
for(Index w=0; w<BlockRows; w++)
blockA[count++] = conj(lhs(k, i+w)); // transposed
}
void operator()(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows)
{
const_blas_data_mapper<Scalar,Index,StorageOrder> lhs(_lhs,lhsStride);
Index count = 0;
Index peeled_mc = (rows/Pack1)*Pack1;
for(Index i=0; i<peeled_mc; i+=Pack1)
{
pack<Pack1>(blockA, lhs, cols, i, count);
}
if(rows-peeled_mc>=Pack2)
{
pack<Pack2>(blockA, lhs, cols, peeled_mc, count);
peeled_mc += Pack2;
}
// do the same with mr==1
for(Index i=peeled_mc; i<rows; i++)
{
for(Index k=0; k<i; k++)
blockA[count++] = lhs(i, k); // normal
blockA[count++] = real(lhs(i, i)); // real (diagonal)
for(Index k=i+1; k<cols; k++)
blockA[count++] = conj(lhs(k, i)); // transposed
}
}
};
template<typename Scalar, typename Index, int nr, int StorageOrder>
struct symm_pack_rhs
{
enum { PacketSize = packet_traits<Scalar>::size };
void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
{
Index end_k = k2 + rows;
Index count = 0;
const_blas_data_mapper<Scalar,Index,StorageOrder> rhs(_rhs,rhsStride);
Index packet_cols = (cols/nr)*nr;
// first part: normal case
for(Index j2=0; j2<k2; j2+=nr)
{
for(Index k=k2; k<end_k; k++)
{
blockB[count+0] = rhs(k,j2+0);
blockB[count+1] = rhs(k,j2+1);
if (nr==4)
{
blockB[count+2] = rhs(k,j2+2);
blockB[count+3] = rhs(k,j2+3);
}
count += nr;
}
}
// second part: diagonal block
for(Index j2=k2; j2<std::min(k2+rows,packet_cols); j2+=nr)
{
// again we can split vertically in three different parts (transpose, symmetric, normal)
// transpose
for(Index k=k2; k<j2; k++)
{
blockB[count+0] = conj(rhs(j2+0,k));
blockB[count+1] = conj(rhs(j2+1,k));
if (nr==4)
{
blockB[count+2] = conj(rhs(j2+2,k));
blockB[count+3] = conj(rhs(j2+3,k));
}
count += nr;
}
// symmetric
Index h = 0;
for(Index k=j2; k<j2+nr; k++)
{
// normal
for (Index w=0 ; w<h; ++w)
blockB[count+w] = rhs(k,j2+w);
blockB[count+h] = real(rhs(k,k));
// transpose
for (Index w=h+1 ; w<nr; ++w)
blockB[count+w] = conj(rhs(j2+w,k));
count += nr;
++h;
}
// normal
for(Index k=j2+nr; k<end_k; k++)
{
blockB[count+0] = rhs(k,j2+0);
blockB[count+1] = rhs(k,j2+1);
if (nr==4)
{
blockB[count+2] = rhs(k,j2+2);
blockB[count+3] = rhs(k,j2+3);
}
count += nr;
}
}
// third part: transposed
for(Index j2=k2+rows; j2<packet_cols; j2+=nr)
{
for(Index k=k2; k<end_k; k++)
{
blockB[count+0] = conj(rhs(j2+0,k));
blockB[count+1] = conj(rhs(j2+1,k));
if (nr==4)
{
blockB[count+2] = conj(rhs(j2+2,k));
blockB[count+3] = conj(rhs(j2+3,k));
}
count += nr;
}
}
// copy the remaining columns one at a time (=> the same with nr==1)
for(Index j2=packet_cols; j2<cols; ++j2)
{
// transpose
Index half = std::min(end_k,j2);
for(Index k=k2; k<half; k++)
{
blockB[count] = conj(rhs(j2,k));
count += 1;
}
if(half==j2 && half<k2+rows)
{
blockB[count] = real(rhs(j2,j2));
count += 1;
}
else
half--;
// normal
for(Index k=half+1; k<k2+rows; k++)
{
blockB[count] = rhs(k,j2);
count += 1;
}
}
}
};
/* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of
* the general matrix matrix product.
*/
template <typename Scalar, typename Index,
int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs,
int ResStorageOrder>
struct product_selfadjoint_matrix;
template <typename Scalar, typename Index,
int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs>
struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,LhsSelfAdjoint,ConjugateLhs, RhsStorageOrder,RhsSelfAdjoint,ConjugateRhs,RowMajor>
{
static EIGEN_STRONG_INLINE void run(
Index rows, Index cols,
const Scalar* lhs, Index lhsStride,
const Scalar* rhs, Index rhsStride,
Scalar* res, Index resStride,
Scalar alpha)
{
product_selfadjoint_matrix<Scalar, Index,
EIGEN_LOGICAL_XOR(RhsSelfAdjoint,RhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
RhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs),
EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
LhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs),
ColMajor>
::run(cols, rows, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha);
}
};
template <typename Scalar, typename Index,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs>
struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>
{
static EIGEN_DONT_INLINE void run(
Index rows, Index cols,
const Scalar* _lhs, Index lhsStride,
const Scalar* _rhs, Index rhsStride,
Scalar* res, Index resStride,
Scalar alpha)
{
Index size = rows;
const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
typedef gebp_traits<Scalar,Scalar> Traits;
Index kc = size; // cache block size along the K direction
Index mc = rows; // cache block size along the M direction
Index nc = cols; // cache block size along the N direction
computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
// kc must smaller than mc
kc = std::min(kc,mc);
Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
std::size_t sizeB = sizeW + kc*cols;
Scalar* allocatedBlockB = ei_aligned_stack_new(Scalar, sizeB);
Scalar* blockB = allocatedBlockB + sizeW;
gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
symm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder==RowMajor?ColMajor:RowMajor, true> pack_lhs_transposed;
for(Index k2=0; k2<size; k2+=kc)
{
const Index actual_kc = std::min(k2+kc,size)-k2;
// we have selected one row panel of rhs and one column panel of lhs
// pack rhs's panel into a sequential chunk of memory
// and expand each coeff to a constant packet for further reuse
pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);
// the select lhs's panel has to be split in three different parts:
// 1 - the transposed panel above the diagonal block => transposed packed copy
// 2 - the diagonal block => special packed copy
// 3 - the panel below the diagonal block => generic packed copy
for(Index i2=0; i2<k2; i2+=mc)
{
const Index actual_mc = std::min(i2+mc,k2)-i2;
// transposed packed copy
pack_lhs_transposed(blockA, &lhs(k2, i2), lhsStride, actual_kc, actual_mc);
gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
}
// the block diagonal
{
const Index actual_mc = std::min(k2+kc,size)-k2;
// symmetric packed copy
pack_lhs(blockA, &lhs(k2,k2), lhsStride, actual_kc, actual_mc);
gebp_kernel(res+k2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
}
for(Index i2=k2+kc; i2<size; i2+=mc)
{
const Index actual_mc = std::min(i2+mc,size)-i2;
gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder,false>()
(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
}
}
ei_aligned_stack_delete(Scalar, blockA, kc*mc);
ei_aligned_stack_delete(Scalar, allocatedBlockB, sizeB);
}
};
// matrix * selfadjoint product
template <typename Scalar, typename Index,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs>
struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>
{
static EIGEN_DONT_INLINE void run(
Index rows, Index cols,
const Scalar* _lhs, Index lhsStride,
const Scalar* _rhs, Index rhsStride,
Scalar* res, Index resStride,
Scalar alpha)
{
Index size = cols;
const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
typedef gebp_traits<Scalar,Scalar> Traits;
Index kc = size; // cache block size along the K direction
Index mc = rows; // cache block size along the M direction
Index nc = cols; // cache block size along the N direction
computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
std::size_t sizeB = sizeW + kc*cols;
Scalar* allocatedBlockB = ei_aligned_stack_new(Scalar, sizeB);
Scalar* blockB = allocatedBlockB + sizeW;
gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
symm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
for(Index k2=0; k2<size; k2+=kc)
{
const Index actual_kc = std::min(k2+kc,size)-k2;
pack_rhs(blockB, _rhs, rhsStride, actual_kc, cols, k2);
// => GEPP
for(Index i2=0; i2<rows; i2+=mc)
{
const Index actual_mc = std::min(i2+mc,rows)-i2;
pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
}
}
ei_aligned_stack_delete(Scalar, blockA, kc*mc);
ei_aligned_stack_delete(Scalar, allocatedBlockB, sizeB);
}
};
} // end namespace internal
/***************************************************************************
* Wrapper to product_selfadjoint_matrix
***************************************************************************/
namespace internal {
template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> >
: traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs> >
{};
}
template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>
: public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs >
{
EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
enum {
LhsIsUpper = (LhsMode&(Upper|Lower))==Upper,
LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
RhsIsUpper = (RhsMode&(Upper|Lower))==Upper,
RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
};
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
{
eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);
Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
* RhsBlasTraits::extractScalarFactor(m_rhs);
internal::product_selfadjoint_matrix<Scalar, Index,
EIGEN_LOGICAL_XOR(LhsIsUpper,
internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)),
EIGEN_LOGICAL_XOR(RhsIsUpper,
internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
internal::traits<Dest>::Flags&RowMajorBit ? RowMajor : ColMajor>
::run(
lhs.rows(), rhs.cols(), // sizes
&lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
&rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
&dst.coeffRef(0,0), dst.outerStride(), // result info
actualAlpha // alpha
);
}
};
#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H

View file

@ -0,0 +1,299 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
namespace internal {
/* Optimized selfadjoint matrix * vector product:
* This algorithm processes 2 columns at onces that allows to both reduce
* the number of load/stores of the result by a factor 2 and to reduce
* the instruction dependency.
*/
template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs>
static EIGEN_DONT_INLINE void product_selfadjoint_vector(
Index size,
const Scalar* lhs, Index lhsStride,
const Scalar* _rhs, Index rhsIncr,
Scalar* res,
Scalar alpha)
{
typedef typename packet_traits<Scalar>::type Packet;
typedef typename NumTraits<Scalar>::Real RealScalar;
const Index PacketSize = sizeof(Packet)/sizeof(Scalar);
enum {
IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
IsLower = UpLo == Lower ? 1 : 0,
FirstTriangular = IsRowMajor == IsLower
};
conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> cj0;
conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex, ConjugateRhs> cjd;
conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> pcj0;
conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;
Scalar cjAlpha = ConjugateRhs ? conj(alpha) : alpha;
// FIXME this copy is now handled outside product_selfadjoint_vector, so it could probably be removed.
// if the rhs is not sequentially stored in memory we copy it to a temporary buffer,
// this is because we need to extract packets
const Scalar* EIGEN_RESTRICT rhs = _rhs;
if (rhsIncr!=1)
{
Scalar* r = ei_aligned_stack_new(Scalar, size);
const Scalar* it = _rhs;
for (Index i=0; i<size; ++i, it+=rhsIncr)
r[i] = *it;
rhs = r;
}
Index bound = std::max(Index(0),size-8) & 0xfffffffe;
if (FirstTriangular)
bound = size - bound;
for (Index j=FirstTriangular ? bound : 0;
j<(FirstTriangular ? size : bound);j+=2)
{
register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
register const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
Scalar t0 = cjAlpha * rhs[j];
Packet ptmp0 = pset1<Packet>(t0);
Scalar t1 = cjAlpha * rhs[j+1];
Packet ptmp1 = pset1<Packet>(t1);
Scalar t2 = 0;
Packet ptmp2 = pset1<Packet>(t2);
Scalar t3 = 0;
Packet ptmp3 = pset1<Packet>(t3);
size_t starti = FirstTriangular ? 0 : j+2;
size_t endi = FirstTriangular ? j : size;
size_t alignedStart = (starti) + first_aligned(&res[starti], endi-starti);
size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
// TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
res[j] += cjd.pmul(internal::real(A0[j]), t0);
res[j+1] += cjd.pmul(internal::real(A1[j+1]), t1);
if(FirstTriangular)
{
res[j] += cj0.pmul(A1[j], t1);
t3 += cj1.pmul(A1[j], rhs[j]);
}
else
{
res[j+1] += cj0.pmul(A0[j+1],t0);
t2 += cj1.pmul(A0[j+1], rhs[j+1]);
}
for (size_t i=starti; i<alignedStart; ++i)
{
res[i] += t0 * A0[i] + t1 * A1[i];
t2 += conj(A0[i]) * rhs[i];
t3 += conj(A1[i]) * rhs[i];
}
// Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
// gcc 4.2 does this optimization automatically.
const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart;
const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart;
const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
{
Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
Packet Xi = pload <Packet>(resIt);
Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2);
ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3);
pstore(resIt,Xi); resIt += PacketSize;
}
for (size_t i=alignedEnd; i<endi; i++)
{
res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
t2 += cj1.pmul(A0[i], rhs[i]);
t3 += cj1.pmul(A1[i], rhs[i]);
}
res[j] += alpha * (t2 + predux(ptmp2));
res[j+1] += alpha * (t3 + predux(ptmp3));
}
for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
{
register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
Scalar t1 = cjAlpha * rhs[j];
Scalar t2 = 0;
// TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
res[j] += cjd.pmul(internal::real(A0[j]), t1);
for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
{
res[i] += cj0.pmul(A0[i], t1);
t2 += cj1.pmul(A0[i], rhs[i]);
}
res[j] += alpha * t2;
}
if(rhsIncr!=1)
ei_aligned_stack_delete(Scalar, const_cast<Scalar*>(rhs), size);
}
} // end namespace internal
/***************************************************************************
* Wrapper to product_selfadjoint_vector
***************************************************************************/
namespace internal {
template<typename Lhs, int LhsMode, typename Rhs>
struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
: traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
{};
}
template<typename Lhs, int LhsMode, typename Rhs>
struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
: public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
{
EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
enum {
LhsUpLo = LhsMode&(Upper|Lower)
};
SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
{
typedef typename Dest::Scalar ResScalar;
typedef typename Base::RhsScalar RhsScalar;
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());
const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);
Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
* RhsBlasTraits::extractScalarFactor(m_rhs);
enum {
EvalToDest = (Dest::InnerStrideAtCompileTime==1),
UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
};
internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;
bool freeDestPtr = false;
ResScalar* actualDestPtr;
if(EvalToDest)
actualDestPtr = dest.data();
else
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if((actualDestPtr=static_dest.data())==0)
{
freeDestPtr = true;
actualDestPtr = ei_aligned_stack_new(ResScalar,dest.size());
}
MappedDest(actualDestPtr, dest.size()) = dest;
}
bool freeRhsPtr = false;
RhsScalar* actualRhsPtr;
if(UseRhs)
actualRhsPtr = const_cast<RhsScalar*>(rhs.data());
else
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = rhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if((actualRhsPtr=static_rhs.data())==0)
{
freeRhsPtr = true;
actualRhsPtr = ei_aligned_stack_new(RhsScalar,rhs.size());
}
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
}
internal::product_selfadjoint_vector<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>
(
lhs.rows(), // size
&lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
actualRhsPtr, 1, // rhs info
actualDestPtr, // result info
actualAlpha // scale factor
);
if(!EvalToDest)
{
dest = MappedDest(actualDestPtr, dest.size());
if(freeDestPtr) ei_aligned_stack_delete(ResScalar, actualDestPtr, dest.size());
}
if(freeRhsPtr) ei_aligned_stack_delete(RhsScalar, actualRhsPtr, rhs.size());
}
};
namespace internal {
template<typename Lhs, typename Rhs, int RhsMode>
struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
: traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
{};
}
template<typename Lhs, typename Rhs, int RhsMode>
struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
: public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
{
EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
enum {
RhsUpLo = RhsMode&(Upper|Lower)
};
SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
{
// let's simply transpose the product
Transpose<Dest> destT(dest);
SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
}
};
#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H

View file

@ -0,0 +1,146 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SELFADJOINT_PRODUCT_H
#define EIGEN_SELFADJOINT_PRODUCT_H
/**********************************************************************
* This file implements a self adjoint product: C += A A^T updating only
* half of the selfadjoint matrix C.
* It corresponds to the level 3 SYRK and level 2 SYR Blas routines.
**********************************************************************/
template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_rank1_update;
template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_rank1_update<Scalar,Index,ColMajor,UpLo,ConjLhs,ConjRhs>
{
static void run(Index size, Scalar* mat, Index stride, const Scalar* vec, Scalar alpha)
{
internal::conj_if<ConjRhs> cj;
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
typedef typename internal::conditional<ConjLhs,typename OtherMap::ConjugateReturnType,const OtherMap&>::type ConjRhsType;
for (Index i=0; i<size; ++i)
{
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i+(UpLo==Lower ? i : 0), (UpLo==Lower ? size-i : (i+1)))
+= (alpha * cj(vec[i])) * ConjRhsType(OtherMap(vec+(UpLo==Lower ? i : 0),UpLo==Lower ? size-i : (i+1)));
}
}
};
template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_rank1_update<Scalar,Index,RowMajor,UpLo,ConjLhs,ConjRhs>
{
static void run(Index size, Scalar* mat, Index stride, const Scalar* vec, Scalar alpha)
{
selfadjoint_rank1_update<Scalar,Index,ColMajor,UpLo==Lower?Upper:Lower,ConjRhs,ConjLhs>::run(size,mat,stride,vec,alpha);
}
};
template<typename MatrixType, typename OtherType, int UpLo, bool OtherIsVector = OtherType::IsVectorAtCompileTime>
struct selfadjoint_product_selector;
template<typename MatrixType, typename OtherType, int UpLo>
struct selfadjoint_product_selector<MatrixType,OtherType,UpLo,true>
{
static void run(MatrixType& mat, const OtherType& other, typename MatrixType::Scalar alpha)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef internal::blas_traits<OtherType> OtherBlasTraits;
typedef typename OtherBlasTraits::DirectLinearAccessType ActualOtherType;
typedef typename internal::remove_all<ActualOtherType>::type _ActualOtherType;
const ActualOtherType actualOther = OtherBlasTraits::extract(other.derived());
Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived());
enum {
StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor,
UseOtherDirectly = _ActualOtherType::InnerStrideAtCompileTime==1
};
internal::gemv_static_vector_if<Scalar,OtherType::SizeAtCompileTime,OtherType::MaxSizeAtCompileTime,!UseOtherDirectly> static_other;
bool freeOtherPtr = false;
Scalar* actualOtherPtr;
if(UseOtherDirectly)
actualOtherPtr = const_cast<Scalar*>(actualOther.data());
else
{
if((actualOtherPtr=static_other.data())==0)
{
freeOtherPtr = true;
actualOtherPtr = ei_aligned_stack_new(Scalar,other.size());
}
Map<typename _ActualOtherType::PlainObject>(actualOtherPtr, actualOther.size()) = actualOther;
}
selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
OtherBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
(!OtherBlasTraits::NeedToConjugate) && NumTraits<Scalar>::IsComplex>
::run(other.size(), mat.data(), mat.outerStride(), actualOtherPtr, actualAlpha);
if((!UseOtherDirectly) && freeOtherPtr) ei_aligned_stack_delete(Scalar, actualOtherPtr, other.size());
}
};
template<typename MatrixType, typename OtherType, int UpLo>
struct selfadjoint_product_selector<MatrixType,OtherType,UpLo,false>
{
static void run(MatrixType& mat, const OtherType& other, typename MatrixType::Scalar alpha)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef internal::blas_traits<OtherType> OtherBlasTraits;
typedef typename OtherBlasTraits::DirectLinearAccessType ActualOtherType;
typedef typename internal::remove_all<ActualOtherType>::type _ActualOtherType;
const ActualOtherType actualOther = OtherBlasTraits::extract(other.derived());
Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived());
enum { IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0 };
internal::general_matrix_matrix_triangular_product<Index,
Scalar, _ActualOtherType::Flags&RowMajorBit ? RowMajor : ColMajor, OtherBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
Scalar, _ActualOtherType::Flags&RowMajorBit ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits<Scalar>::IsComplex,
MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor, UpLo>
::run(mat.cols(), actualOther.cols(),
&actualOther.coeffRef(0,0), actualOther.outerStride(), &actualOther.coeffRef(0,0), actualOther.outerStride(),
mat.data(), mat.outerStride(), actualAlpha);
}
};
// high level API
template<typename MatrixType, unsigned int UpLo>
template<typename DerivedU>
SelfAdjointView<MatrixType,UpLo>& SelfAdjointView<MatrixType,UpLo>
::rankUpdate(const MatrixBase<DerivedU>& u, Scalar alpha)
{
selfadjoint_product_selector<MatrixType,DerivedU,UpLo>::run(_expression().const_cast_derived(), u.derived(), alpha);
return *this;
}
#endif // EIGEN_SELFADJOINT_PRODUCT_H

View file

@ -0,0 +1,104 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SELFADJOINTRANK2UPTADE_H
#define EIGEN_SELFADJOINTRANK2UPTADE_H
namespace internal {
/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu'
* It corresponds to the Level2 syr2 BLAS routine
*/
template<typename Scalar, typename Index, typename UType, typename VType, int UpLo>
struct selfadjoint_rank2_update_selector;
template<typename Scalar, typename Index, typename UType, typename VType>
struct selfadjoint_rank2_update_selector<Scalar,Index,UType,VType,Lower>
{
static void run(Scalar* mat, Index stride, const UType& u, const VType& v, Scalar alpha)
{
const Index size = u.size();
for (Index i=0; i<size; ++i)
{
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i+i, size-i) +=
(conj(alpha) * conj(u.coeff(i))) * v.tail(size-i)
+ (alpha * conj(v.coeff(i))) * u.tail(size-i);
}
}
};
template<typename Scalar, typename Index, typename UType, typename VType>
struct selfadjoint_rank2_update_selector<Scalar,Index,UType,VType,Upper>
{
static void run(Scalar* mat, Index stride, const UType& u, const VType& v, Scalar alpha)
{
const Index size = u.size();
for (Index i=0; i<size; ++i)
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i, i+1) +=
(conj(alpha) * conj(u.coeff(i))) * v.head(i+1)
+ (alpha * conj(v.coeff(i))) * u.head(i+1);
}
};
template<bool Cond, typename T> struct conj_expr_if
: conditional<!Cond, const T&,
CwiseUnaryOp<scalar_conjugate_op<typename traits<T>::Scalar>,T> > {};
} // end namespace internal
template<typename MatrixType, unsigned int UpLo>
template<typename DerivedU, typename DerivedV>
SelfAdjointView<MatrixType,UpLo>& SelfAdjointView<MatrixType,UpLo>
::rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha)
{
typedef internal::blas_traits<DerivedU> UBlasTraits;
typedef typename UBlasTraits::DirectLinearAccessType ActualUType;
typedef typename internal::remove_all<ActualUType>::type _ActualUType;
const ActualUType actualU = UBlasTraits::extract(u.derived());
typedef internal::blas_traits<DerivedV> VBlasTraits;
typedef typename VBlasTraits::DirectLinearAccessType ActualVType;
typedef typename internal::remove_all<ActualVType>::type _ActualVType;
const ActualVType actualV = VBlasTraits::extract(v.derived());
// If MatrixType is row major, then we use the routine for lower triangular in the upper triangular case and
// vice versa, and take the complex conjugate of all coefficients and vector entries.
enum { IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0 };
Scalar actualAlpha = alpha * UBlasTraits::extractScalarFactor(u.derived())
* internal::conj(VBlasTraits::extractScalarFactor(v.derived()));
if (IsRowMajor)
actualAlpha = internal::conj(actualAlpha);
internal::selfadjoint_rank2_update_selector<Scalar, Index,
typename internal::remove_all<typename internal::conj_expr_if<IsRowMajor ^ UBlasTraits::NeedToConjugate,_ActualUType>::type>::type,
typename internal::remove_all<typename internal::conj_expr_if<IsRowMajor ^ VBlasTraits::NeedToConjugate,_ActualVType>::type>::type,
(IsRowMajor ? int(UpLo==Upper ? Lower : Upper) : UpLo)>
::run(_expression().const_cast_derived().data(),_expression().outerStride(),actualU,actualV,actualAlpha);
return *this;
}
#endif // EIGEN_SELFADJOINTRANK2UPTADE_H

View file

@ -0,0 +1,399 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_H
#define EIGEN_TRIANGULAR_MATRIX_MATRIX_H
namespace internal {
// template<typename Scalar, int mr, int StorageOrder, bool Conjugate, int Mode>
// struct gemm_pack_lhs_triangular
// {
// Matrix<Scalar,mr,mr,
// void operator()(Scalar* blockA, const EIGEN_RESTRICT Scalar* _lhs, int lhsStride, int depth, int rows)
// {
// conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
// const_blas_data_mapper<Scalar, StorageOrder> lhs(_lhs,lhsStride);
// int count = 0;
// const int peeled_mc = (rows/mr)*mr;
// for(int i=0; i<peeled_mc; i+=mr)
// {
// for(int k=0; k<depth; k++)
// for(int w=0; w<mr; w++)
// blockA[count++] = cj(lhs(i+w, k));
// }
// for(int i=peeled_mc; i<rows; i++)
// {
// for(int k=0; k<depth; k++)
// blockA[count++] = cj(lhs(i, k));
// }
// }
// };
/* Optimized triangular matrix * matrix (_TRMM++) product built on top of
* the general matrix matrix product.
*/
template <typename Scalar, typename Index,
int Mode, bool LhsIsTriangular,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs,
int ResStorageOrder>
struct product_triangular_matrix_matrix;
template <typename Scalar, typename Index,
int Mode, bool LhsIsTriangular,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs>
struct product_triangular_matrix_matrix<Scalar,Index,Mode,LhsIsTriangular,
LhsStorageOrder,ConjugateLhs,
RhsStorageOrder,ConjugateRhs,RowMajor>
{
static EIGEN_STRONG_INLINE void run(
Index rows, Index cols, Index depth,
const Scalar* lhs, Index lhsStride,
const Scalar* rhs, Index rhsStride,
Scalar* res, Index resStride,
Scalar alpha)
{
product_triangular_matrix_matrix<Scalar, Index,
(Mode&(UnitDiag|ZeroDiag)) | ((Mode&Upper) ? Lower : Upper),
(!LhsIsTriangular),
RhsStorageOrder==RowMajor ? ColMajor : RowMajor,
ConjugateRhs,
LhsStorageOrder==RowMajor ? ColMajor : RowMajor,
ConjugateLhs,
ColMajor>
::run(cols, rows, depth, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha);
}
};
// implements col-major += alpha * op(triangular) * op(general)
template <typename Scalar, typename Index, int Mode,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs>
struct product_triangular_matrix_matrix<Scalar,Index,Mode,true,
LhsStorageOrder,ConjugateLhs,
RhsStorageOrder,ConjugateRhs,ColMajor>
{
static EIGEN_DONT_INLINE void run(
Index rows, Index cols, Index depth,
const Scalar* _lhs, Index lhsStride,
const Scalar* _rhs, Index rhsStride,
Scalar* res, Index resStride,
Scalar alpha)
{
const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
typedef gebp_traits<Scalar,Scalar> Traits;
enum {
SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
IsLower = (Mode&Lower) == Lower,
SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1
};
Index kc = depth; // cache block size along the K direction
Index mc = rows; // cache block size along the M direction
Index nc = cols; // cache block size along the N direction
computeProductBlockingSizes<Scalar,Scalar,4>(kc, mc, nc);
Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
std::size_t sizeB = sizeW + kc*cols;
Scalar* allocatedBlockB = ei_aligned_stack_new(Scalar, sizeB);
Scalar* blockB = allocatedBlockB + sizeW;
Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,LhsStorageOrder> triangularBuffer;
triangularBuffer.setZero();
if((Mode&ZeroDiag)==ZeroDiag)
triangularBuffer.diagonal().setZero();
else
triangularBuffer.diagonal().setOnes();
gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
for(Index k2=IsLower ? depth : 0;
IsLower ? k2>0 : k2<depth;
IsLower ? k2-=kc : k2+=kc)
{
Index actual_kc = std::min(IsLower ? k2 : depth-k2, kc);
Index actual_k2 = IsLower ? k2-actual_kc : k2;
// align blocks with the end of the triangular part for trapezoidal lhs
if((!IsLower)&&(k2<rows)&&(k2+actual_kc>rows))
{
actual_kc = rows-k2;
k2 = k2+actual_kc-kc;
}
pack_rhs(blockB, &rhs(actual_k2,0), rhsStride, actual_kc, cols);
// the selected lhs's panel has to be split in three different parts:
// 1 - the part which is above the diagonal block => skip it
// 2 - the diagonal block => special kernel
// 3 - the panel below the diagonal block => GEPP
// the block diagonal, if any
if(IsLower || actual_k2<rows)
{
// for each small vertical panels of lhs
for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
{
Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
Index lengthTarget = IsLower ? actual_kc-k1-actualPanelWidth : k1;
Index startBlock = actual_k2+k1;
Index blockBOffset = k1;
// => GEBP with the micro triangular block
// The trick is to pack this micro block while filling the opposite triangular part with zeros.
// To this end we do an extra triangular copy to a small temporary buffer
for (Index k=0;k<actualPanelWidth;++k)
{
if (SetDiag)
triangularBuffer.coeffRef(k,k) = lhs(startBlock+k,startBlock+k);
for (Index i=IsLower ? k+1 : 0; IsLower ? i<actualPanelWidth : i<k; ++i)
triangularBuffer.coeffRef(i,k) = lhs(startBlock+i,startBlock+k);
}
pack_lhs(blockA, triangularBuffer.data(), triangularBuffer.outerStride(), actualPanelWidth, actualPanelWidth);
gebp_kernel(res+startBlock, resStride, blockA, blockB, actualPanelWidth, actualPanelWidth, cols, alpha,
actualPanelWidth, actual_kc, 0, blockBOffset);
// GEBP with remaining micro panel
if (lengthTarget>0)
{
Index startTarget = IsLower ? actual_k2+k1+actualPanelWidth : actual_k2;
pack_lhs(blockA, &lhs(startTarget,startBlock), lhsStride, actualPanelWidth, lengthTarget);
gebp_kernel(res+startTarget, resStride, blockA, blockB, lengthTarget, actualPanelWidth, cols, alpha,
actualPanelWidth, actual_kc, 0, blockBOffset);
}
}
}
// the part below the diagonal => GEPP
{
Index start = IsLower ? k2 : 0;
Index end = IsLower ? rows : std::min(actual_k2,rows);
for(Index i2=start; i2<end; i2+=mc)
{
const Index actual_mc = std::min(i2+mc,end)-i2;
gemm_pack_lhs<Scalar, Index, Traits::mr,Traits::LhsProgress, LhsStorageOrder,false>()
(blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);
gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha);
}
}
}
ei_aligned_stack_delete(Scalar, blockA, kc*mc);
ei_aligned_stack_delete(Scalar, allocatedBlockB, sizeB);
// delete[] allocatedBlockB;
}
};
// implements col-major += alpha * op(general) * op(triangular)
template <typename Scalar, typename Index, int Mode,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs>
struct product_triangular_matrix_matrix<Scalar,Index,Mode,false,
LhsStorageOrder,ConjugateLhs,
RhsStorageOrder,ConjugateRhs,ColMajor>
{
static EIGEN_DONT_INLINE void run(
Index rows, Index cols, Index depth,
const Scalar* _lhs, Index lhsStride,
const Scalar* _rhs, Index rhsStride,
Scalar* res, Index resStride,
Scalar alpha)
{
const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
typedef gebp_traits<Scalar,Scalar> Traits;
enum {
SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
IsLower = (Mode&Lower) == Lower,
SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1
};
Index kc = depth; // cache block size along the K direction
Index mc = rows; // cache block size along the M direction
Index nc = cols; // cache block size along the N direction
computeProductBlockingSizes<Scalar,Scalar,4>(kc, mc, nc);
Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
std::size_t sizeB = sizeW + kc*cols;
Scalar* allocatedBlockB = ei_aligned_stack_new(Scalar,sizeB);
Scalar* blockB = allocatedBlockB + sizeW;
Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,RhsStorageOrder> triangularBuffer;
triangularBuffer.setZero();
if((Mode&ZeroDiag)==ZeroDiag)
triangularBuffer.diagonal().setZero();
else
triangularBuffer.diagonal().setOnes();
gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel;
gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;
for(Index k2=IsLower ? 0 : depth;
IsLower ? k2<depth : k2>0;
IsLower ? k2+=kc : k2-=kc)
{
Index actual_kc = std::min(IsLower ? depth-k2 : k2, kc);
Index actual_k2 = IsLower ? k2 : k2-actual_kc;
// align blocks with the end of the triangular part for trapezoidal rhs
if(IsLower && (k2<cols) && (actual_k2+actual_kc>cols))
{
actual_kc = cols-k2;
k2 = actual_k2 + actual_kc - kc;
}
// remaining size
Index rs = IsLower ? std::min(cols,actual_k2) : cols - k2;
// size of the triangular part
Index ts = (IsLower && actual_k2>=cols) ? 0 : actual_kc;
Scalar* geb = blockB+ts*ts;
pack_rhs(geb, &rhs(actual_k2,IsLower ? 0 : k2), rhsStride, actual_kc, rs);
// pack the triangular part of the rhs padding the unrolled blocks with zeros
if(ts>0)
{
for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
{
Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
Index actual_j2 = actual_k2 + j2;
Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
// general part
pack_rhs_panel(blockB+j2*actual_kc,
&rhs(actual_k2+panelOffset, actual_j2), rhsStride,
panelLength, actualPanelWidth,
actual_kc, panelOffset);
// append the triangular part via a temporary buffer
for (Index j=0;j<actualPanelWidth;++j)
{
if (SetDiag)
triangularBuffer.coeffRef(j,j) = rhs(actual_j2+j,actual_j2+j);
for (Index k=IsLower ? j+1 : 0; IsLower ? k<actualPanelWidth : k<j; ++k)
triangularBuffer.coeffRef(k,j) = rhs(actual_j2+k,actual_j2+j);
}
pack_rhs_panel(blockB+j2*actual_kc,
triangularBuffer.data(), triangularBuffer.outerStride(),
actualPanelWidth, actualPanelWidth,
actual_kc, j2);
}
}
for (Index i2=0; i2<rows; i2+=mc)
{
const Index actual_mc = std::min(mc,rows-i2);
pack_lhs(blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);
// triangular kernel
if(ts>0)
{
for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
{
Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
Index panelLength = IsLower ? actual_kc-j2 : j2+actualPanelWidth;
Index blockOffset = IsLower ? j2 : 0;
gebp_kernel(res+i2+(actual_k2+j2)*resStride, resStride,
blockA, blockB+j2*actual_kc,
actual_mc, panelLength, actualPanelWidth,
alpha,
actual_kc, actual_kc, // strides
blockOffset, blockOffset,// offsets
allocatedBlockB); // workspace
}
}
gebp_kernel(res+i2+(IsLower ? 0 : k2)*resStride, resStride,
blockA, geb, actual_mc, actual_kc, rs,
alpha,
-1, -1, 0, 0, allocatedBlockB);
}
}
ei_aligned_stack_delete(Scalar, blockA, kc*mc);
ei_aligned_stack_delete(Scalar, allocatedBlockB, sizeB);
}
};
/***************************************************************************
* Wrapper to product_triangular_matrix_matrix
***************************************************************************/
template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false> >
: traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs> >
{};
} // end namespace internal
template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
: public ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs >
{
EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
{
const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);
Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
* RhsBlasTraits::extractScalarFactor(m_rhs);
internal::product_triangular_matrix_matrix<Scalar, Index,
Mode, LhsIsTriangular,
(internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
(internal::traits<_ActualRhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
(internal::traits<Dest >::Flags&RowMajorBit) ? RowMajor : ColMajor>
::run(
lhs.rows(), rhs.cols(), lhs.cols(),// LhsIsTriangular ? rhs.cols() : lhs.rows(), // sizes
&lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
&rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
&dst.coeffRef(0,0), dst.outerStride(), // result info
actualAlpha // alpha
);
}
};
#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_H

View file

@ -0,0 +1,350 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRIANGULARMATRIXVECTOR_H
#define EIGEN_TRIANGULARMATRIXVECTOR_H
namespace internal {
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder>
struct product_triangular_matrix_vector;
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
struct product_triangular_matrix_vector<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
IsLower = ((Mode&Lower)==Lower),
HasUnitDiag = (Mode & UnitDiag)==UnitDiag
};
static EIGEN_DONT_INLINE void run(Index rows, Index cols, const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, ResScalar alpha)
{
EIGEN_UNUSED_VARIABLE(resIncr);
eigen_assert(resIncr==1);
static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > LhsMap;
const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride));
typename conj_expr_if<ConjLhs,LhsMap>::type cjLhs(lhs);
typedef Map<const Matrix<RhsScalar,Dynamic,1>, 0, InnerStride<> > RhsMap;
const RhsMap rhs(_rhs,cols,InnerStride<>(rhsIncr));
typename conj_expr_if<ConjRhs,RhsMap>::type cjRhs(rhs);
typedef Map<Matrix<ResScalar,Dynamic,1> > ResMap;
ResMap res(_res,rows);
for (Index pi=0; pi<cols; pi+=PanelWidth)
{
Index actualPanelWidth = std::min(PanelWidth, cols-pi);
for (Index k=0; k<actualPanelWidth; ++k)
{
Index i = pi + k;
Index s = IsLower ? (HasUnitDiag ? i+1 : i ) : pi;
Index r = IsLower ? actualPanelWidth-k : k+1;
if ((!HasUnitDiag) || (--r)>0)
res.segment(s,r) += (alpha * cjRhs.coeff(i)) * cjLhs.col(i).segment(s,r);
if (HasUnitDiag)
res.coeffRef(i) += alpha * cjRhs.coeff(i);
}
Index r = IsLower ? cols - pi - actualPanelWidth : pi;
if (r>0)
{
Index s = IsLower ? pi+actualPanelWidth : 0;
general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjLhs,RhsScalar,ConjRhs>::run(
r, actualPanelWidth,
&lhs.coeffRef(s,pi), lhsStride,
&rhs.coeffRef(pi), rhsIncr,
&res.coeffRef(s), resIncr, alpha);
}
}
}
};
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
struct product_triangular_matrix_vector<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,RowMajor>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
IsLower = ((Mode&Lower)==Lower),
HasUnitDiag = (Mode & UnitDiag)==UnitDiag
};
static void run(Index rows, Index cols, const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, ResScalar alpha)
{
eigen_assert(rhsIncr==1);
EIGEN_UNUSED_VARIABLE(rhsIncr);
static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,RowMajor>, 0, OuterStride<> > LhsMap;
const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride));
typename conj_expr_if<ConjLhs,LhsMap>::type cjLhs(lhs);
typedef Map<const Matrix<RhsScalar,Dynamic,1> > RhsMap;
const RhsMap rhs(_rhs,cols);
typename conj_expr_if<ConjRhs,RhsMap>::type cjRhs(rhs);
typedef Map<Matrix<ResScalar,Dynamic,1>, 0, InnerStride<> > ResMap;
ResMap res(_res,rows,InnerStride<>(resIncr));
for (Index pi=0; pi<cols; pi+=PanelWidth)
{
Index actualPanelWidth = std::min(PanelWidth, cols-pi);
for (Index k=0; k<actualPanelWidth; ++k)
{
Index i = pi + k;
Index s = IsLower ? pi : (HasUnitDiag ? i+1 : i);
Index r = IsLower ? k+1 : actualPanelWidth-k;
if ((!HasUnitDiag) || (--r)>0)
res.coeffRef(i) += alpha * (cjLhs.row(i).segment(s,r).cwiseProduct(cjRhs.segment(s,r).transpose())).sum();
if (HasUnitDiag)
res.coeffRef(i) += alpha * cjRhs.coeff(i);
}
Index r = IsLower ? pi : cols - pi - actualPanelWidth;
if (r>0)
{
Index s = IsLower ? 0 : pi + actualPanelWidth;
general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjLhs,RhsScalar,ConjRhs>::run(
actualPanelWidth, r,
&lhs.coeffRef(pi,s), lhsStride,
&rhs.coeffRef(s), rhsIncr,
&res.coeffRef(pi), resIncr, alpha);
}
}
}
};
/***************************************************************************
* Wrapper to product_triangular_vector
***************************************************************************/
template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,true> >
: traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,true>, Lhs, Rhs> >
{};
template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,true,Rhs,false> >
: traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,true,Rhs,false>, Lhs, Rhs> >
{};
template<int StorageOrder>
struct trmv_selector;
} // end namespace internal
template<int Mode, typename Lhs, typename Rhs>
struct TriangularProduct<Mode,true,Lhs,false,Rhs,true>
: public ProductBase<TriangularProduct<Mode,true,Lhs,false,Rhs,true>, Lhs, Rhs >
{
EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
{
eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
internal::trmv_selector<(int(internal::traits<Lhs>::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dst, alpha);
}
};
template<int Mode, typename Lhs, typename Rhs>
struct TriangularProduct<Mode,false,Lhs,true,Rhs,false>
: public ProductBase<TriangularProduct<Mode,false,Lhs,true,Rhs,false>, Lhs, Rhs >
{
EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
{
eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
typedef TriangularProduct<(Mode & UnitDiag) | ((Mode & Lower) ? Upper : Lower),true,Transpose<const Rhs>,false,Transpose<const Lhs>,true> TriangularProductTranspose;
Transpose<Dest> dstT(dst);
internal::trmv_selector<(int(internal::traits<Rhs>::Flags)&RowMajorBit) ? ColMajor : RowMajor>::run(
TriangularProductTranspose(m_rhs.transpose(),m_lhs.transpose()), dstT, alpha);
}
};
namespace internal {
// TODO: find a way to factorize this piece of code with gemv_selector since the logic is exactly the same.
template<> struct trmv_selector<ColMajor>
{
template<int Mode, typename Lhs, typename Rhs, typename Dest>
static void run(const TriangularProduct<Mode,true,Lhs,false,Rhs,true>& prod, Dest& dest, typename TriangularProduct<Mode,true,Lhs,false,Rhs,true>::Scalar alpha)
{
typedef TriangularProduct<Mode,true,Lhs,false,Rhs,true> ProductType;
typedef typename ProductType::Index Index;
typedef typename ProductType::LhsScalar LhsScalar;
typedef typename ProductType::RhsScalar RhsScalar;
typedef typename ProductType::Scalar ResScalar;
typedef typename ProductType::RealScalar RealScalar;
typedef typename ProductType::ActualLhsType ActualLhsType;
typedef typename ProductType::ActualRhsType ActualRhsType;
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
const ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
const ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
* RhsBlasTraits::extractScalarFactor(prod.rhs());
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
};
gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0));
bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
ResScalar* actualDestPtr;
bool freeDestPtr = false;
if (evalToDest)
{
actualDestPtr = dest.data();
}
else
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if((actualDestPtr = static_dest.data())==0)
{
freeDestPtr = true;
actualDestPtr = ei_aligned_stack_new(ResScalar,dest.size());
}
if(!alphaIsCompatible)
{
MappedDest(actualDestPtr, dest.size()).setZero();
compatibleAlpha = RhsScalar(1);
}
else
MappedDest(actualDestPtr, dest.size()) = dest;
}
internal::product_triangular_matrix_vector
<Index,Mode,
LhsScalar, LhsBlasTraits::NeedToConjugate,
RhsScalar, RhsBlasTraits::NeedToConjugate,
ColMajor>
::run(actualLhs.rows(),actualLhs.cols(),
actualLhs.data(),actualLhs.outerStride(),
actualRhs.data(),actualRhs.innerStride(),
actualDestPtr,1,compatibleAlpha);
if (!evalToDest)
{
if(!alphaIsCompatible)
dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
else
dest = MappedDest(actualDestPtr, dest.size());
if(freeDestPtr) ei_aligned_stack_delete(ResScalar, actualDestPtr, dest.size());
}
}
};
template<> struct trmv_selector<RowMajor>
{
template<int Mode, typename Lhs, typename Rhs, typename Dest>
static void run(const TriangularProduct<Mode,true,Lhs,false,Rhs,true>& prod, Dest& dest, typename TriangularProduct<Mode,true,Lhs,false,Rhs,true>::Scalar alpha)
{
typedef TriangularProduct<Mode,true,Lhs,false,Rhs,true> ProductType;
typedef typename ProductType::LhsScalar LhsScalar;
typedef typename ProductType::RhsScalar RhsScalar;
typedef typename ProductType::Scalar ResScalar;
typedef typename ProductType::Index Index;
typedef typename ProductType::ActualLhsType ActualLhsType;
typedef typename ProductType::ActualRhsType ActualRhsType;
typedef typename ProductType::_ActualRhsType _ActualRhsType;
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
* RhsBlasTraits::extractScalarFactor(prod.rhs());
enum {
DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
};
gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
RhsScalar* actualRhsPtr;
bool freeRhsPtr = false;
if (DirectlyUseRhs)
{
actualRhsPtr = const_cast<RhsScalar*>(actualRhs.data());
}
else
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if((actualRhsPtr = static_rhs.data())==0)
{
freeRhsPtr = true;
actualRhsPtr = ei_aligned_stack_new(RhsScalar, actualRhs.size());
}
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
internal::product_triangular_matrix_vector
<Index,Mode,
LhsScalar, LhsBlasTraits::NeedToConjugate,
RhsScalar, RhsBlasTraits::NeedToConjugate,
RowMajor>
::run(actualLhs.rows(),actualLhs.cols(),
actualLhs.data(),actualLhs.outerStride(),
actualRhsPtr,1,
dest.data(),dest.innerStride(),
actualAlpha);
if((!DirectlyUseRhs) && freeRhsPtr) ei_aligned_stack_delete(RhsScalar, actualRhsPtr, prod.rhs().size());
}
};
} // end namespace internal
#endif // EIGEN_TRIANGULARMATRIXVECTOR_H

View file

@ -0,0 +1,325 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H
namespace internal {
// if the rhs is row major, let's transpose the product
template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder>
struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor>
{
static EIGEN_DONT_INLINE void run(
Index size, Index cols,
const Scalar* tri, Index triStride,
Scalar* _other, Index otherStride)
{
triangular_solve_matrix<
Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
(Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
NumTraits<Scalar>::IsComplex && Conjugate,
TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor>
::run(size, cols, tri, triStride, _other, otherStride);
}
};
/* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
*/
template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>
{
static EIGEN_DONT_INLINE void run(
Index size, Index otherSize,
const Scalar* _tri, Index triStride,
Scalar* _other, Index otherStride)
{
Index cols = otherSize;
const_blas_data_mapper<Scalar, Index, TriStorageOrder> tri(_tri,triStride);
blas_data_mapper<Scalar, Index, ColMajor> other(_other,otherStride);
typedef gebp_traits<Scalar,Scalar> Traits;
enum {
SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
IsLower = (Mode&Lower) == Lower
};
Index kc = size; // cache block size along the K direction
Index mc = size; // cache block size along the M direction
Index nc = cols; // cache block size along the N direction
computeProductBlockingSizes<Scalar,Scalar,4>(kc, mc, nc);
Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
std::size_t sizeB = sizeW + kc*cols;
Scalar* allocatedBlockB = ei_aligned_stack_new(Scalar, sizeB);
Scalar* blockB = allocatedBlockB + sizeW;
conj_if<Conjugate> conj;
gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, TriStorageOrder> pack_lhs;
gemm_pack_rhs<Scalar, Index, Traits::nr, ColMajor, false, true> pack_rhs;
for(Index k2=IsLower ? 0 : size;
IsLower ? k2<size : k2>0;
IsLower ? k2+=kc : k2-=kc)
{
const Index actual_kc = std::min(IsLower ? size-k2 : k2, kc);
// We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
// and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
// A11 (the triangular part) and A21 the remaining rectangular part.
// Then the high level algorithm is:
// - B = R1 => general block copy (done during the next step)
// - R1 = L1^-1 B => tricky part
// - update B from the new R1 => actually this has to be performed continuously during the above step
// - R2 = L2 * B => GEPP
// The tricky part: compute R1 = L1^-1 B while updating B from R1
// The idea is to split L1 into multiple small vertical panels.
// Each panel can be split into a small triangular part A1 which is processed without optimization,
// and the remaining small part A2 which is processed using gebp with appropriate block strides
{
// for each small vertical panels of lhs
for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
{
Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
// tr solve
for (Index k=0; k<actualPanelWidth; ++k)
{
// TODO write a small kernel handling this (can be shared with trsv)
Index i = IsLower ? k2+k1+k : k2-k1-k-1;
Index s = IsLower ? k2+k1 : i+1;
Index rs = actualPanelWidth - k - 1; // remaining size
Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
for (Index j=0; j<cols; ++j)
{
if (TriStorageOrder==RowMajor)
{
Scalar b = 0;
const Scalar* l = &tri(i,s);
Scalar* r = &other(s,j);
for (Index i3=0; i3<k; ++i3)
b += conj(l[i3]) * r[i3];
other(i,j) = (other(i,j) - b)*a;
}
else
{
Index s = IsLower ? i+1 : i-rs;
Scalar b = (other(i,j) *= a);
Scalar* r = &other(s,j);
const Scalar* l = &tri(s,i);
for (Index i3=0;i3<rs;++i3)
r[i3] -= b * conj(l[i3]);
}
}
}
Index lengthTarget = actual_kc-k1-actualPanelWidth;
Index startBlock = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
Index blockBOffset = IsLower ? k1 : lengthTarget;
// update the respective rows of B from other
pack_rhs(blockB, _other+startBlock, otherStride, actualPanelWidth, cols, actual_kc, blockBOffset);
// GEBP
if (lengthTarget>0)
{
Index startTarget = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;
pack_lhs(blockA, &tri(startTarget,startBlock), triStride, actualPanelWidth, lengthTarget);
gebp_kernel(_other+startTarget, otherStride, blockA, blockB, lengthTarget, actualPanelWidth, cols, Scalar(-1),
actualPanelWidth, actual_kc, 0, blockBOffset);
}
}
}
// R2 = A2 * B => GEPP
{
Index start = IsLower ? k2+kc : 0;
Index end = IsLower ? size : k2-kc;
for(Index i2=start; i2<end; i2+=mc)
{
const Index actual_mc = std::min(mc,end-i2);
if (actual_mc>0)
{
pack_lhs(blockA, &tri(i2, IsLower ? k2 : k2-kc), triStride, actual_kc, actual_mc);
gebp_kernel(_other+i2, otherStride, blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1));
}
}
}
}
ei_aligned_stack_delete(Scalar, blockA, kc*mc);
ei_aligned_stack_delete(Scalar, allocatedBlockB, sizeB);
}
};
/* Optimized triangular solver with multiple left hand sides and the trinagular matrix on the right
*/
template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>
{
static EIGEN_DONT_INLINE void run(
Index size, Index otherSize,
const Scalar* _tri, Index triStride,
Scalar* _other, Index otherStride)
{
Index rows = otherSize;
const_blas_data_mapper<Scalar, Index, TriStorageOrder> rhs(_tri,triStride);
blas_data_mapper<Scalar, Index, ColMajor> lhs(_other,otherStride);
typedef gebp_traits<Scalar,Scalar> Traits;
enum {
RhsStorageOrder = TriStorageOrder,
SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
IsLower = (Mode&Lower) == Lower
};
// Index kc = std::min<Index>(Traits::Max_kc/4,size); // cache block size along the K direction
// Index mc = std::min<Index>(Traits::Max_mc,size); // cache block size along the M direction
// check that !!!!
Index kc = size; // cache block size along the K direction
Index mc = size; // cache block size along the M direction
Index nc = rows; // cache block size along the N direction
computeProductBlockingSizes<Scalar,Scalar,4>(kc, mc, nc);
Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
std::size_t sizeB = sizeW + kc*size;
Scalar* allocatedBlockB = ei_aligned_stack_new(Scalar, sizeB);
Scalar* blockB = allocatedBlockB + sizeW;
conj_if<Conjugate> conj;
gebp_kernel<Scalar,Scalar, Index, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;
gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, ColMajor, false, true> pack_lhs_panel;
for(Index k2=IsLower ? size : 0;
IsLower ? k2>0 : k2<size;
IsLower ? k2-=kc : k2+=kc)
{
const Index actual_kc = std::min(IsLower ? k2 : size-k2, kc);
Index actual_k2 = IsLower ? k2-actual_kc : k2 ;
Index startPanel = IsLower ? 0 : k2+actual_kc;
Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
Scalar* geb = blockB+actual_kc*actual_kc;
if (rs>0) pack_rhs(geb, &rhs(actual_k2,startPanel), triStride, actual_kc, rs);
// triangular packing (we only pack the panels off the diagonal,
// neglecting the blocks overlapping the diagonal
{
for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
{
Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
Index actual_j2 = actual_k2 + j2;
Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
if (panelLength>0)
pack_rhs_panel(blockB+j2*actual_kc,
&rhs(actual_k2+panelOffset, actual_j2), triStride,
panelLength, actualPanelWidth,
actual_kc, panelOffset);
}
}
for(Index i2=0; i2<rows; i2+=mc)
{
const Index actual_mc = std::min(mc,rows-i2);
// triangular solver kernel
{
// for each small block of the diagonal (=> vertical panels of rhs)
for (Index j2 = IsLower
? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
: Index(SmallPanelWidth)))
: 0;
IsLower ? j2>=0 : j2<actual_kc;
IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
{
Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
Index absolute_j2 = actual_k2 + j2;
Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;
// GEBP
if(panelLength>0)
{
gebp_kernel(&lhs(i2,absolute_j2), otherStride,
blockA, blockB+j2*actual_kc,
actual_mc, panelLength, actualPanelWidth,
Scalar(-1),
actual_kc, actual_kc, // strides
panelOffset, panelOffset, // offsets
allocatedBlockB); // workspace
}
// unblocked triangular solve
for (Index k=0; k<actualPanelWidth; ++k)
{
Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;
Scalar* r = &lhs(i2,j);
for (Index k3=0; k3<k; ++k3)
{
Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
Scalar* a = &lhs(i2,IsLower ? j+1+k3 : absolute_j2+k3);
for (Index i=0; i<actual_mc; ++i)
r[i] -= a[i] * b;
}
Scalar b = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(rhs(j,j));
for (Index i=0; i<actual_mc; ++i)
r[i] *= b;
}
// pack the just computed part of lhs to A
pack_lhs_panel(blockA, _other+absolute_j2*otherStride+i2, otherStride,
actualPanelWidth, actual_mc,
actual_kc, j2);
}
}
if (rs>0)
gebp_kernel(_other+i2+startPanel*otherStride, otherStride, blockA, geb,
actual_mc, actual_kc, rs, Scalar(-1),
-1, -1, 0, 0, allocatedBlockB);
}
}
ei_aligned_stack_delete(Scalar, blockA, kc*mc);
ei_aligned_stack_delete(Scalar, allocatedBlockB, sizeB);
}
};
} // end namespace internal
#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H

View file

@ -0,0 +1,150 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRIANGULAR_SOLVER_VECTOR_H
#define EIGEN_TRIANGULAR_SOLVER_VECTOR_H
namespace internal {
template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate, int StorageOrder>
struct triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheRight, Mode, Conjugate, StorageOrder>
{
static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs)
{
triangular_solve_vector<LhsScalar,RhsScalar,Index,OnTheLeft,
((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag),
Conjugate,StorageOrder==RowMajor?ColMajor:RowMajor
>::run(size, _lhs, lhsStride, rhs);
}
};
// forward and backward substitution, row-major, rhs is a vector
template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate>
struct triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, RowMajor>
{
enum {
IsLower = ((Mode&Lower)==Lower)
};
static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs)
{
typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,RowMajor>, 0, OuterStride<> > LhsMap;
const LhsMap lhs(_lhs,size,size,OuterStride<>(lhsStride));
typename internal::conditional<
Conjugate,
const CwiseUnaryOp<typename internal::scalar_conjugate_op<LhsScalar>,LhsMap>,
const LhsMap&>
::type cjLhs(lhs);
static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
for(Index pi=IsLower ? 0 : size;
IsLower ? pi<size : pi>0;
IsLower ? pi+=PanelWidth : pi-=PanelWidth)
{
Index actualPanelWidth = std::min(IsLower ? size - pi : pi, PanelWidth);
Index r = IsLower ? pi : size - pi; // remaining size
if (r > 0)
{
// let's directly call the low level product function because:
// 1 - it is faster to compile
// 2 - it is slighlty faster at runtime
Index startRow = IsLower ? pi : pi-actualPanelWidth;
Index startCol = IsLower ? 0 : pi;
general_matrix_vector_product<Index,LhsScalar,RowMajor,Conjugate,RhsScalar,false>::run(
actualPanelWidth, r,
&lhs.coeffRef(startRow,startCol), lhsStride,
rhs + startCol, 1,
rhs + startRow, 1,
RhsScalar(-1));
}
for(Index k=0; k<actualPanelWidth; ++k)
{
Index i = IsLower ? pi+k : pi-k-1;
Index s = IsLower ? pi : i+1;
if (k>0)
rhs[i] -= (cjLhs.row(i).segment(s,k).transpose().cwiseProduct(Map<const Matrix<RhsScalar,Dynamic,1> >(rhs+s,k))).sum();
if(!(Mode & UnitDiag))
rhs[i] /= cjLhs(i,i);
}
}
}
};
// forward and backward substitution, column-major, rhs is a vector
template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate>
struct triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, ColMajor>
{
enum {
IsLower = ((Mode&Lower)==Lower)
};
static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs)
{
typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > LhsMap;
const LhsMap lhs(_lhs,size,size,OuterStride<>(lhsStride));
typename internal::conditional<Conjugate,
const CwiseUnaryOp<typename internal::scalar_conjugate_op<LhsScalar>,LhsMap>,
const LhsMap&
>::type cjLhs(lhs);
static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
for(Index pi=IsLower ? 0 : size;
IsLower ? pi<size : pi>0;
IsLower ? pi+=PanelWidth : pi-=PanelWidth)
{
Index actualPanelWidth = std::min(IsLower ? size - pi : pi, PanelWidth);
Index startBlock = IsLower ? pi : pi-actualPanelWidth;
Index endBlock = IsLower ? pi + actualPanelWidth : 0;
for(Index k=0; k<actualPanelWidth; ++k)
{
Index i = IsLower ? pi+k : pi-k-1;
if(!(Mode & UnitDiag))
rhs[i] /= cjLhs.coeff(i,i);
Index r = actualPanelWidth - k - 1; // remaining size
Index s = IsLower ? i+1 : i-r;
if (r>0)
Map<Matrix<RhsScalar,Dynamic,1> >(rhs+s,r) -= rhs[i] * cjLhs.col(i).segment(s,r);
}
Index r = IsLower ? size - endBlock : startBlock; // remaining size
if (r > 0)
{
// let's directly call the low level product function because:
// 1 - it is faster to compile
// 2 - it is slighlty faster at runtime
general_matrix_vector_product<Index,LhsScalar,ColMajor,Conjugate,RhsScalar,false>::run(
r, actualPanelWidth,
&lhs.coeffRef(endBlock,startBlock), lhsStride,
rhs+startBlock, 1,
rhs+endBlock, 1, RhsScalar(-1));
}
}
}
};
} // end namespace internal
#endif // EIGEN_TRIANGULAR_SOLVER_VECTOR_H

View file

@ -0,0 +1,271 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_BLASUTIL_H
#define EIGEN_BLASUTIL_H
// This file contains many lightweight helper classes used to
// implement and control fast level 2 and level 3 BLAS-like routines.
namespace internal {
// forward declarations
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs=false, bool ConjugateRhs=false>
struct gebp_kernel;
template<typename Scalar, typename Index, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false>
struct gemm_pack_rhs;
template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate = false, bool PanelMode = false>
struct gemm_pack_lhs;
template<
typename Index,
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
int ResStorageOrder>
struct general_matrix_matrix_product;
template<typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs>
struct general_matrix_vector_product;
template<bool Conjugate> struct conj_if;
template<> struct conj_if<true> {
template<typename T>
inline T operator()(const T& x) { return conj(x); }
};
template<> struct conj_if<false> {
template<typename T>
inline const T& operator()(const T& x) { return x; }
};
template<typename Scalar> struct conj_helper<Scalar,Scalar,false,false>
{
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); }
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); }
};
template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, false,true>
{
typedef std::complex<RealScalar> Scalar;
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
{ return c + pmul(x,y); }
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
{ return Scalar(real(x)*real(y) + imag(x)*imag(y), imag(x)*real(y) - real(x)*imag(y)); }
};
template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,false>
{
typedef std::complex<RealScalar> Scalar;
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
{ return c + pmul(x,y); }
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
{ return Scalar(real(x)*real(y) + imag(x)*imag(y), real(x)*imag(y) - imag(x)*real(y)); }
};
template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,true>
{
typedef std::complex<RealScalar> Scalar;
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
{ return c + pmul(x,y); }
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
{ return Scalar(real(x)*real(y) - imag(x)*imag(y), - real(x)*imag(y) - imag(x)*real(y)); }
};
template<typename RealScalar,bool Conj> struct conj_helper<std::complex<RealScalar>, RealScalar, Conj,false>
{
typedef std::complex<RealScalar> Scalar;
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const
{ return conj_if<Conj>()(x)*y; }
};
template<typename RealScalar,bool Conj> struct conj_helper<RealScalar, std::complex<RealScalar>, false,Conj>
{
typedef std::complex<RealScalar> Scalar;
EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const
{ return x*conj_if<Conj>()(y); }
};
template<typename From,typename To> struct get_factor {
EIGEN_STRONG_INLINE static To run(const From& x) { return x; }
};
template<typename Scalar> struct get_factor<Scalar,typename NumTraits<Scalar>::Real> {
EIGEN_STRONG_INLINE static typename NumTraits<Scalar>::Real run(const Scalar& x) { return real(x); }
};
// Lightweight helper class to access matrix coefficients.
// Yes, this is somehow redundant with Map<>, but this version is much much lighter,
// and so I hope better compilation performance (time and code quality).
template<typename Scalar, typename Index, int StorageOrder>
class blas_data_mapper
{
public:
blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
EIGEN_STRONG_INLINE Scalar& operator()(Index i, Index j)
{ return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
protected:
Scalar* EIGEN_RESTRICT m_data;
Index m_stride;
};
// lightweight helper class to access matrix coefficients (const version)
template<typename Scalar, typename Index, int StorageOrder>
class const_blas_data_mapper
{
public:
const_blas_data_mapper(const Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
EIGEN_STRONG_INLINE const Scalar& operator()(Index i, Index j) const
{ return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
protected:
const Scalar* EIGEN_RESTRICT m_data;
Index m_stride;
};
/* Helper class to analyze the factors of a Product expression.
* In particular it allows to pop out operator-, scalar multiples,
* and conjugate */
template<typename XprType> struct blas_traits
{
typedef typename traits<XprType>::Scalar Scalar;
typedef const XprType& ExtractType;
typedef XprType _ExtractType;
enum {
IsComplex = NumTraits<Scalar>::IsComplex,
IsTransposed = false,
NeedToConjugate = false,
HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit)
&& ( bool(XprType::IsVectorAtCompileTime)
|| int(inner_stride_at_compile_time<XprType>::ret) == 1)
) ? 1 : 0
};
typedef typename conditional<bool(HasUsableDirectAccess),
ExtractType,
typename _ExtractType::PlainObject
>::type DirectLinearAccessType;
static inline const ExtractType extract(const XprType& x) { return x; }
static inline const Scalar extractScalarFactor(const XprType&) { return Scalar(1); }
};
// pop conjugate
template<typename Scalar, typename NestedXpr>
struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> >
: blas_traits<NestedXpr>
{
typedef blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
enum {
IsComplex = NumTraits<Scalar>::IsComplex,
NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex
};
static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); }
};
// pop scalar multiple
template<typename Scalar, typename NestedXpr>
struct blas_traits<CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> >
: blas_traits<NestedXpr>
{
typedef blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x)
{ return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); }
};
// pop opposite
template<typename Scalar, typename NestedXpr>
struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> >
: blas_traits<NestedXpr>
{
typedef blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x)
{ return - Base::extractScalarFactor(x.nestedExpression()); }
};
// pop/push transpose
template<typename NestedXpr>
struct blas_traits<Transpose<NestedXpr> >
: blas_traits<NestedXpr>
{
typedef typename NestedXpr::Scalar Scalar;
typedef blas_traits<NestedXpr> Base;
typedef Transpose<NestedXpr> XprType;
typedef Transpose<const typename Base::_ExtractType> ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS
typedef Transpose<const typename Base::_ExtractType> _ExtractType;
typedef typename conditional<bool(Base::HasUsableDirectAccess),
ExtractType,
typename ExtractType::PlainObject
>::type DirectLinearAccessType;
enum {
IsTransposed = Base::IsTransposed ? 0 : 1
};
static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
};
template<typename T>
struct blas_traits<const T>
: blas_traits<T>
{};
template<typename T, bool HasUsableDirectAccess=blas_traits<T>::HasUsableDirectAccess>
struct extract_data_selector {
static const typename T::Scalar* run(const T& m)
{
return const_cast<typename T::Scalar*>(&blas_traits<T>::extract(m).coeffRef(0,0)); // FIXME this should be .data()
}
};
template<typename T>
struct extract_data_selector<T,false> {
static typename T::Scalar* run(const T&) { return 0; }
};
template<typename T> const typename T::Scalar* extract_data(const T& m)
{
return extract_data_selector<T>::run(m);
}
} // end namespace internal
#endif // EIGEN_BLASUTIL_H

View file

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Core_util_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_util_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/util COMPONENT Devel
)

View file

@ -0,0 +1,318 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CONSTANTS_H
#define EIGEN_CONSTANTS_H
/** This value means that a quantity is not known at compile-time, and that instead the value is
* stored in some runtime variable.
*
* Changing the value of Dynamic breaks the ABI, as Dynamic is often used as a template parameter for Matrix.
*/
const int Dynamic = -1;
/** This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm<int>().
* The value Infinity there means the L-infinity norm.
*/
const int Infinity = -1;
/** \defgroup flags Flags
* \ingroup Core_Module
*
* These are the possible bits which can be OR'ed to constitute the flags of a matrix or
* expression.
*
* It is important to note that these flags are a purely compile-time notion. They are a compile-time property of
* an expression type, implemented as enum's. They are not stored in memory at runtime, and they do not incur any
* runtime overhead.
*
* \sa MatrixBase::Flags
*/
/** \ingroup flags
*
* for a matrix, this means that the storage order is row-major.
* If this bit is not set, the storage order is column-major.
* For an expression, this determines the storage order of
* the matrix created by evaluation of that expression.
* \sa \ref TopicStorageOrders */
const unsigned int RowMajorBit = 0x1;
/** \ingroup flags
*
* means the expression should be evaluated by the calling expression */
const unsigned int EvalBeforeNestingBit = 0x2;
/** \ingroup flags
*
* means the expression should be evaluated before any assignment */
const unsigned int EvalBeforeAssigningBit = 0x4;
/** \ingroup flags
*
* Short version: means the expression might be vectorized
*
* Long version: means that the coefficients can be handled by packets
* and start at a memory location whose alignment meets the requirements
* of the present CPU architecture for optimized packet access. In the fixed-size
* case, there is the additional condition that it be possible to access all the
* coefficients by packets (this implies the requirement that the size be a multiple of 16 bytes,
* and that any nontrivial strides don't break the alignment). In the dynamic-size case,
* there is no such condition on the total size and strides, so it might not be possible to access
* all coeffs by packets.
*
* \note This bit can be set regardless of whether vectorization is actually enabled.
* To check for actual vectorizability, see \a ActualPacketAccessBit.
*/
const unsigned int PacketAccessBit = 0x8;
#ifdef EIGEN_VECTORIZE
/** \ingroup flags
*
* If vectorization is enabled (EIGEN_VECTORIZE is defined) this constant
* is set to the value \a PacketAccessBit.
*
* If vectorization is not enabled (EIGEN_VECTORIZE is not defined) this constant
* is set to the value 0.
*/
const unsigned int ActualPacketAccessBit = PacketAccessBit;
#else
const unsigned int ActualPacketAccessBit = 0x0;
#endif
/** \ingroup flags
*
* Short version: means the expression can be seen as 1D vector.
*
* Long version: means that one can access the coefficients
* of this expression by coeff(int), and coeffRef(int) in the case of a lvalue expression. These
* index-based access methods are guaranteed
* to not have to do any runtime computation of a (row, col)-pair from the index, so that it
* is guaranteed that whenever it is available, index-based access is at least as fast as
* (row,col)-based access. Expressions for which that isn't possible don't have the LinearAccessBit.
*
* If both PacketAccessBit and LinearAccessBit are set, then the
* packets of this expression can be accessed by packet(int), and writePacket(int) in the case of a
* lvalue expression.
*
* Typically, all vector expressions have the LinearAccessBit, but there is one exception:
* Product expressions don't have it, because it would be troublesome for vectorization, even when the
* Product is a vector expression. Thus, vector Product expressions allow index-based coefficient access but
* not index-based packet access, so they don't have the LinearAccessBit.
*/
const unsigned int LinearAccessBit = 0x10;
/** \ingroup flags
*
* Means the expression has a coeffRef() method, i.e. is writable as its individual coefficients are directly addressable.
* This rules out read-only expressions.
*
* Note that DirectAccessBit and LvalueBit are mutually orthogonal, as there are examples of expression having one but note
* the other:
* \li writable expressions that don't have a very simple memory layout as a strided array, have LvalueBit but not DirectAccessBit
* \li Map-to-const expressions, for example Map<const Matrix>, have DirectAccessBit but not LvalueBit
*
* Expressions having LvalueBit also have their coeff() method returning a const reference instead of returning a new value.
*/
const unsigned int LvalueBit = 0x20;
/** \ingroup flags
*
* Means that the underlying array of coefficients can be directly accessed as a plain strided array. The memory layout
* of the array of coefficients must be exactly the natural one suggested by rows(), cols(),
* outerStride(), innerStride(), and the RowMajorBit. This rules out expressions such as Diagonal, whose coefficients,
* though referencable, do not have such a regular memory layout.
*
* See the comment on LvalueBit for an explanation of how LvalueBit and DirectAccessBit are mutually orthogonal.
*/
const unsigned int DirectAccessBit = 0x40;
/** \ingroup flags
*
* means the first coefficient packet is guaranteed to be aligned */
const unsigned int AlignedBit = 0x80;
const unsigned int NestByRefBit = 0x100;
// list of flags that are inherited by default
const unsigned int HereditaryBits = RowMajorBit
| EvalBeforeNestingBit
| EvalBeforeAssigningBit;
// Possible values for the Mode parameter of triangularView()
enum {
Lower=0x1, Upper=0x2, UnitDiag=0x4, ZeroDiag=0x8,
UnitLower=UnitDiag|Lower, UnitUpper=UnitDiag|Upper,
StrictlyLower=ZeroDiag|Lower, StrictlyUpper=ZeroDiag|Upper,
SelfAdjoint=0x10};
enum { Unaligned=0, Aligned=1 };
enum { ConditionalJumpCost = 5 };
// FIXME after the corner() API change, this was not needed anymore, except by AlignedBox
// TODO: find out what to do with that. Adapt the AlignedBox API ?
enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight };
enum DirectionType { Vertical, Horizontal, BothDirections };
enum ProductEvaluationMode { NormalProduct, CacheFriendlyProduct };
enum {
/** \internal Default traversal, no vectorization, no index-based access */
DefaultTraversal,
/** \internal No vectorization, use index-based access to have only one for loop instead of 2 nested loops */
LinearTraversal,
/** \internal Equivalent to a slice vectorization for fixed-size matrices having good alignment
* and good size */
InnerVectorizedTraversal,
/** \internal Vectorization path using a single loop plus scalar loops for the
* unaligned boundaries */
LinearVectorizedTraversal,
/** \internal Generic vectorization path using one vectorized loop per row/column with some
* scalar loops to handle the unaligned boundaries */
SliceVectorizedTraversal,
/** \internal Special case to properly handle incompatible scalar types or other defecting cases*/
InvalidTraversal
};
enum {
NoUnrolling,
InnerUnrolling,
CompleteUnrolling
};
enum {
ColMajor = 0,
RowMajor = 0x1, // it is only a coincidence that this is equal to RowMajorBit -- don't rely on that
/** \internal Align the matrix itself if it is vectorizable fixed-size */
AutoAlign = 0,
/** \internal Don't require alignment for the matrix itself (the array of coefficients, if dynamically allocated, may still be requested to be aligned) */ // FIXME --- clarify the situation
DontAlign = 0x2
};
/** \brief Enum for specifying whether to apply or solve on the left or right.
*/
enum {
OnTheLeft = 1, /**< \brief Apply transformation on the left. */
OnTheRight = 2 /**< \brief Apply transformation on the right. */
};
/* the following could as well be written:
* enum NoChange_t { NoChange };
* but it feels dangerous to disambiguate overloaded functions on enum/integer types.
* If on some platform it is really impossible to get rid of "unused variable" warnings, then
* we can always come back to that solution.
*/
struct NoChange_t {};
namespace {
EIGEN_UNUSED NoChange_t NoChange;
}
struct Sequential_t {};
namespace {
EIGEN_UNUSED Sequential_t Sequential;
}
struct Default_t {};
namespace {
EIGEN_UNUSED Default_t Default;
}
enum {
IsDense = 0,
IsSparse
};
enum AccessorLevels {
ReadOnlyAccessors, WriteAccessors, DirectAccessors, DirectWriteAccessors
};
enum DecompositionOptions {
Pivoting = 0x01, // LDLT,
NoPivoting = 0x02, // LDLT,
ComputeFullU = 0x04, // SVD,
ComputeThinU = 0x08, // SVD,
ComputeFullV = 0x10, // SVD,
ComputeThinV = 0x20, // SVD,
EigenvaluesOnly = 0x40, // all eigen solvers
ComputeEigenvectors = 0x80, // all eigen solvers
EigVecMask = EigenvaluesOnly | ComputeEigenvectors,
Ax_lBx = 0x100,
ABx_lx = 0x200,
BAx_lx = 0x400,
GenEigMask = Ax_lBx | ABx_lx | BAx_lx
};
enum QRPreconditioners {
NoQRPreconditioner,
HouseholderQRPreconditioner,
ColPivHouseholderQRPreconditioner,
FullPivHouseholderQRPreconditioner
};
/** \brief Enum for reporting the status of a computation.
*/
enum ComputationInfo {
Success = 0, /**< \brief Computation was successful. */
NumericalIssue = 1, /**< \brief The provided data did not satisfy the prerequisites. */
NoConvergence = 2 /**< \brief Iterative procedure did not converge. */
};
enum TransformTraits {
Isometry = 0x1,
Affine = 0x2,
AffineCompact = 0x10 | Affine,
Projective = 0x20
};
namespace Architecture
{
enum Type {
Generic = 0x0,
SSE = 0x1,
AltiVec = 0x2,
#if defined EIGEN_VECTORIZE_SSE
Target = SSE
#elif defined EIGEN_VECTORIZE_ALTIVEC
Target = AltiVec
#else
Target = Generic
#endif
};
}
enum { CoeffBasedProductMode, LazyCoeffBasedProductMode, OuterProduct, InnerProduct, GemvProduct, GemmProduct };
enum Action {GetAction, SetAction};
/** The type used to identify a dense storage. */
struct Dense {};
/** The type used to identify a matrix expression */
struct MatrixXpr {};
/** The type used to identify an array expression */
struct ArrayXpr {};
#endif // EIGEN_CONSTANTS_H

View file

@ -0,0 +1,42 @@
#ifndef EIGEN_WARNINGS_DISABLED
#define EIGEN_WARNINGS_DISABLED
#ifdef _MSC_VER
// 4100 - unreferenced formal parameter (occurred e.g. in aligned_allocator::destroy(pointer p))
// 4101 - unreferenced local variable
// 4127 - conditional expression is constant
// 4181 - qualifier applied to reference type ignored
// 4211 - nonstandard extension used : redefined extern to static
// 4244 - 'argument' : conversion from 'type1' to 'type2', possible loss of data
// 4273 - QtAlignedMalloc, inconsistent DLL linkage
// 4324 - structure was padded due to declspec(align())
// 4512 - assignment operator could not be generated
// 4522 - 'class' : multiple assignment operators specified
// 4700 - uninitialized local variable 'xyz' used
// 4717 - 'function' : recursive on all control paths, function will cause runtime stack overflow
#ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS
#pragma warning( push )
#endif
#pragma warning( disable : 4100 4101 4127 4181 4211 4244 4273 4324 4512 4522 4700 4717 )
#elif defined __INTEL_COMPILER
// 2196 - routine is both "inline" and "noinline" ("noinline" assumed)
// ICC 12 generates this warning even without any inline keyword, when defining class methods 'inline' i.e. inside of class body
// 2536 - type qualifiers are meaningless here
// ICC 12 generates this warning when a function return type is const qualified, even if that type is a template-parameter-dependent
// typedef that may be a reference type.
// 279 - controlling expression is constant
// ICC 12 generates this warning on assert(constant_expression_depending_on_template_params) and frankly this is a legitimate use case.
#ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS
#pragma warning push
#endif
#pragma warning disable 2196 2536 279
#elif defined __clang__
// -Wconstant-logical-operand - warning: use of logical && with constant operand; switch to bitwise & or remove constant
// this is really a stupid warning as it warns on compile-time expressions involving enums
#ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS
#pragma clang diagnostic push
#endif
#pragma clang diagnostic ignored "-Wconstant-logical-operand"
#endif
#endif // not EIGEN_WARNINGS_DISABLED

View file

@ -0,0 +1,307 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_FORWARDDECLARATIONS_H
#define EIGEN_FORWARDDECLARATIONS_H
namespace internal {
template<typename T> struct traits;
// here we say once and for all that traits<const T> == traits<T>
// When constness must affect traits, it has to be constness on template parameters on which T itself depends.
// For example, traits<Map<const T> > != traits<Map<T> >, but
// traits<const Map<T> > == traits<Map<T> >
template<typename T> struct traits<const T> : traits<T> {};
template<typename Derived> struct has_direct_access
{
enum { ret = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0 };
};
template<typename Derived> struct accessors_level
{
enum { has_direct_access = (traits<Derived>::Flags & DirectAccessBit) ? 1 : 0,
has_write_access = (traits<Derived>::Flags & LvalueBit) ? 1 : 0,
value = has_direct_access ? (has_write_access ? DirectWriteAccessors : DirectAccessors)
: (has_write_access ? WriteAccessors : ReadOnlyAccessors)
};
};
} // end namespace internal
template<typename T> struct NumTraits;
template<typename Derived> struct EigenBase;
template<typename Derived> class DenseBase;
template<typename Derived> class PlainObjectBase;
template<typename Derived,
int Level = internal::accessors_level<Derived>::value >
class DenseCoeffsBase;
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
// workaround a bug in at least gcc 3.4.6
// the innermost ?: ternary operator is misparsed. We write it slightly
// differently and this makes gcc 3.4.6 happy, but it's ugly.
// The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
// (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
( (_Rows==1 && _Cols!=1) ? RowMajor
: !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
: ColMajor ),
#else
( (_Rows==1 && _Cols!=1) ? RowMajor
: (_Cols==1 && _Rows!=1) ? ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
#endif
int _MaxRows = _Rows,
int _MaxCols = _Cols
> class Matrix;
template<typename Derived> class MatrixBase;
template<typename Derived> class ArrayBase;
template<typename ExpressionType, unsigned int Added, unsigned int Removed> class Flagged;
template<typename ExpressionType, template <typename> class StorageBase > class NoAlias;
template<typename ExpressionType> class NestByValue;
template<typename ExpressionType> class ForceAlignedAccess;
template<typename ExpressionType> class SwapWrapper;
template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false,
bool HasDirectAccess = internal::has_direct_access<XprType>::ret> class Block;
template<typename MatrixType, int Size=Dynamic> class VectorBlock;
template<typename MatrixType> class Transpose;
template<typename MatrixType> class Conjugate;
template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp;
template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp;
template<typename ViewOp, typename MatrixType> class CwiseUnaryView;
template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
template<typename BinOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp;
template<typename Derived, typename Lhs, typename Rhs> class ProductBase;
template<typename Lhs, typename Rhs, int Mode> class GeneralProduct;
template<typename Lhs, typename Rhs, int NestingFlags> class CoeffBasedProduct;
template<typename Derived> class DiagonalBase;
template<typename _DiagonalVectorType> class DiagonalWrapper;
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct;
template<typename MatrixType, int Index = 0> class Diagonal;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class PermutationMatrix;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class Transpositions;
template<typename Derived> class PermutationBase;
template<typename Derived> class TranspositionsBase;
template<typename _IndicesType> class PermutationWrapper;
template<typename _IndicesType> class TranspositionsWrapper;
template<typename Derived,
int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
> class MapBase;
template<int InnerStrideAtCompileTime, int OuterStrideAtCompileTime> class Stride;
template<typename MatrixType, int MapOptions=Unaligned, typename StrideType = Stride<0,0> > class Map;
template<typename Derived> class TriangularBase;
template<typename MatrixType, unsigned int Mode> class TriangularView;
template<typename MatrixType, unsigned int Mode> class SelfAdjointView;
template<typename MatrixType> class SparseView;
template<typename ExpressionType> class WithFormat;
template<typename MatrixType> struct CommaInitializer;
template<typename Derived> class ReturnByValue;
template<typename ExpressionType> class ArrayWrapper;
namespace internal {
template<typename DecompositionType, typename Rhs> struct solve_retval_base;
template<typename DecompositionType, typename Rhs> struct solve_retval;
template<typename DecompositionType> struct kernel_retval_base;
template<typename DecompositionType> struct kernel_retval;
template<typename DecompositionType> struct image_retval_base;
template<typename DecompositionType> struct image_retval;
} // end namespace internal
namespace internal {
template<typename _Scalar, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynamic, int Subs=Dynamic, int Options=0> class BandMatrix;
}
namespace internal {
template<typename Lhs, typename Rhs> struct product_type;
}
template<typename Lhs, typename Rhs,
int ProductType = internal::product_type<Lhs,Rhs>::value>
struct ProductReturnType;
// this is a workaround for sun CC
template<typename Lhs, typename Rhs> struct LazyProductReturnType;
namespace internal {
// Provides scalar/packet-wise product and product with accumulation
// with optional conjugation of the arguments.
template<typename LhsScalar, typename RhsScalar, bool ConjLhs=false, bool ConjRhs=false> struct conj_helper;
template<typename Scalar> struct scalar_sum_op;
template<typename Scalar> struct scalar_difference_op;
template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op;
template<typename Scalar> struct scalar_quotient_op;
template<typename Scalar> struct scalar_opposite_op;
template<typename Scalar> struct scalar_conjugate_op;
template<typename Scalar> struct scalar_real_op;
template<typename Scalar> struct scalar_imag_op;
template<typename Scalar> struct scalar_abs_op;
template<typename Scalar> struct scalar_abs2_op;
template<typename Scalar> struct scalar_sqrt_op;
template<typename Scalar> struct scalar_exp_op;
template<typename Scalar> struct scalar_log_op;
template<typename Scalar> struct scalar_cos_op;
template<typename Scalar> struct scalar_sin_op;
template<typename Scalar> struct scalar_acos_op;
template<typename Scalar> struct scalar_asin_op;
template<typename Scalar> struct scalar_tan_op;
template<typename Scalar> struct scalar_pow_op;
template<typename Scalar> struct scalar_inverse_op;
template<typename Scalar> struct scalar_square_op;
template<typename Scalar> struct scalar_cube_op;
template<typename Scalar, typename NewType> struct scalar_cast_op;
template<typename Scalar> struct scalar_multiple_op;
template<typename Scalar> struct scalar_quotient1_op;
template<typename Scalar> struct scalar_min_op;
template<typename Scalar> struct scalar_max_op;
template<typename Scalar> struct scalar_random_op;
template<typename Scalar> struct scalar_add_op;
template<typename Scalar> struct scalar_constant_op;
template<typename Scalar> struct scalar_identity_op;
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op;
template<typename LhsScalar,typename RhsScalar> struct scalar_multiple2_op;
} // end namespace internal
struct IOFormat;
// Array module
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
// workaround a bug in at least gcc 3.4.6
// the innermost ?: ternary operator is misparsed. We write it slightly
// differently and this makes gcc 3.4.6 happy, but it's ugly.
// The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
// (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
( (_Rows==1 && _Cols!=1) ? RowMajor
: !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
: ColMajor ),
#else
( (_Rows==1 && _Cols!=1) ? RowMajor
: (_Cols==1 && _Rows!=1) ? ColMajor
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
#endif
int _MaxRows = _Rows, int _MaxCols = _Cols> class Array;
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> class Select;
template<typename MatrixType, typename BinaryOp, int Direction> class PartialReduxExpr;
template<typename ExpressionType, int Direction> class VectorwiseOp;
template<typename MatrixType,int RowFactor,int ColFactor> class Replicate;
template<typename MatrixType, int Direction = BothDirections> class Reverse;
template<typename MatrixType> class FullPivLU;
template<typename MatrixType> class PartialPivLU;
namespace internal {
template<typename MatrixType> struct inverse_impl;
}
template<typename MatrixType> class HouseholderQR;
template<typename MatrixType> class ColPivHouseholderQR;
template<typename MatrixType> class FullPivHouseholderQR;
template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD;
template<typename MatrixType, int UpLo = Lower> class LLT;
template<typename MatrixType, int UpLo = Lower> class LDLT;
template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
template<typename Scalar> class JacobiRotation;
// Geometry module:
template<typename Derived, int _Dim> class RotationBase;
template<typename Lhs, typename Rhs> class Cross;
template<typename Derived> class QuaternionBase;
template<typename Scalar> class Rotation2D;
template<typename Scalar> class AngleAxis;
template<typename Scalar,int Dim> class Translation;
#ifdef EIGEN2_SUPPORT
template<typename Derived, int _Dim> class eigen2_RotationBase;
template<typename Lhs, typename Rhs> class eigen2_Cross;
template<typename Scalar> class eigen2_Quaternion;
template<typename Scalar> class eigen2_Rotation2D;
template<typename Scalar> class eigen2_AngleAxis;
template<typename Scalar,int Dim> class eigen2_Transform;
template <typename _Scalar, int _AmbientDim> class eigen2_ParametrizedLine;
template <typename _Scalar, int _AmbientDim> class eigen2_Hyperplane;
template<typename Scalar,int Dim> class eigen2_Translation;
template<typename Scalar,int Dim> class eigen2_Scaling;
#endif
#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
template<typename Scalar> class Quaternion;
template<typename Scalar,int Dim> class Transform;
template <typename _Scalar, int _AmbientDim> class ParametrizedLine;
template <typename _Scalar, int _AmbientDim> class Hyperplane;
template<typename Scalar,int Dim> class Scaling;
#endif
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
template<typename Scalar, int Options = AutoAlign> class Quaternion;
template<typename Scalar,int Dim,int Mode,int _Options=AutoAlign> class Transform;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class Hyperplane;
template<typename Scalar> class UniformScaling;
template<typename MatrixType,int Direction> class Homogeneous;
#endif
// MatrixFunctions module
template<typename Derived> struct MatrixExponentialReturnValue;
template<typename Derived> class MatrixFunctionReturnValue;
namespace internal {
template <typename Scalar>
struct stem_function
{
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef ComplexScalar type(ComplexScalar, int);
};
}
#ifdef EIGEN2_SUPPORT
template<typename ExpressionType> class Cwise;
template<typename MatrixType> class Minor;
template<typename MatrixType> class LU;
template<typename MatrixType> class QR;
template<typename MatrixType> class SVD;
namespace internal {
template<typename MatrixType, unsigned int Mode> struct eigen2_part_return_type;
}
#endif
#endif // EIGEN_FORWARDDECLARATIONS_H

View file

@ -0,0 +1,418 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MACROS_H
#define EIGEN_MACROS_H
#define EIGEN_WORLD_VERSION 3
#define EIGEN_MAJOR_VERSION 0
#define EIGEN_MINOR_VERSION 0
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
EIGEN_MINOR_VERSION>=z))))
#ifdef __GNUC__
#define EIGEN_GNUC_AT_LEAST(x,y) ((__GNUC__==x && __GNUC_MINOR__>=y) || __GNUC__>x)
#else
#define EIGEN_GNUC_AT_LEAST(x,y) 0
#endif
#ifdef __GNUC__
#define EIGEN_GNUC_AT_MOST(x,y) ((__GNUC__==x && __GNUC_MINOR__<=y) || __GNUC__<x)
#else
#define EIGEN_GNUC_AT_MOST(x,y) 0
#endif
#if EIGEN_GNUC_AT_MOST(4,3)
// see bug 89
#define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 0
#else
#define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 1
#endif
#if defined(__GNUC__) && (__GNUC__ <= 3)
#define EIGEN_GCC3_OR_OLDER 1
#else
#define EIGEN_GCC3_OR_OLDER 0
#endif
// 16 byte alignment is only useful for vectorization. Since it affects the ABI, we need to enable
// 16 byte alignment on all platforms where vectorization might be enabled. In theory we could always
// enable alignment, but it can be a cause of problems on some platforms, so we just disable it in
// certain common platform (compiler+architecture combinations) to avoid these problems.
// Only static alignment is really problematic (relies on nonstandard compiler extensions that don't
// work everywhere, for example don't work on GCC/ARM), try to keep heap alignment even
// when we have to disable static alignment.
#if defined(__GNUC__) && !(defined(__i386__) || defined(__x86_64__) || defined(__powerpc__) || defined(__ppc__) || defined(__ia64__))
#define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 1
#else
#define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 0
#endif
// static alignment is completely disabled with GCC 3, Sun Studio, and QCC/QNX
#if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT \
&& !EIGEN_GCC3_OR_OLDER \
&& !defined(__SUNPRO_CC) \
&& !defined(__QNXNTO__)
#define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 1
#else
#define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 0
#endif
#ifdef EIGEN_DONT_ALIGN
#ifndef EIGEN_DONT_ALIGN_STATICALLY
#define EIGEN_DONT_ALIGN_STATICALLY
#endif
#define EIGEN_ALIGN 0
#else
#define EIGEN_ALIGN 1
#endif
// EIGEN_ALIGN_STATICALLY is the true test whether we want to align arrays on the stack or not. It takes into account both the user choice to explicitly disable
// alignment (EIGEN_DONT_ALIGN_STATICALLY) and the architecture config (EIGEN_ARCH_WANTS_STACK_ALIGNMENT). Henceforth, only EIGEN_ALIGN_STATICALLY should be used.
#if EIGEN_ARCH_WANTS_STACK_ALIGNMENT && !defined(EIGEN_DONT_ALIGN_STATICALLY)
#define EIGEN_ALIGN_STATICALLY 1
#else
#define EIGEN_ALIGN_STATICALLY 0
#ifndef EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
#define EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
#endif
#endif
#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION RowMajor
#else
#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ColMajor
#endif
#ifndef EIGEN_DEFAULT_DENSE_INDEX_TYPE
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE std::ptrdiff_t
#endif
/** Allows to disable some optimizations which might affect the accuracy of the result.
* Such optimization are enabled by default, and set EIGEN_FAST_MATH to 0 to disable them.
* They currently include:
* - single precision Cwise::sin() and Cwise::cos() when SSE vectorization is enabled.
*/
#ifndef EIGEN_FAST_MATH
#define EIGEN_FAST_MATH 1
#endif
#define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl;
// concatenate two tokens
#define EIGEN_CAT2(a,b) a ## b
#define EIGEN_CAT(a,b) EIGEN_CAT2(a,b)
// convert a token to a string
#define EIGEN_MAKESTRING2(a) #a
#define EIGEN_MAKESTRING(a) EIGEN_MAKESTRING2(a)
// EIGEN_ALWAYS_INLINE_ATTRIB should be use in the declaration of function
// which should be inlined even in debug mode.
// FIXME with the always_inline attribute,
// gcc 3.4.x reports the following compilation error:
// Eval.h:91: sorry, unimplemented: inlining failed in call to 'const Eigen::Eval<Derived> Eigen::MatrixBase<Scalar, Derived>::eval() const'
// : function body not available
#if EIGEN_GNUC_AT_LEAST(4,0)
#define EIGEN_ALWAYS_INLINE_ATTRIB __attribute__((always_inline))
#else
#define EIGEN_ALWAYS_INLINE_ATTRIB
#endif
#if EIGEN_GNUC_AT_LEAST(4,1) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#define EIGEN_FLATTEN_ATTRIB __attribute__((flatten))
#else
#define EIGEN_FLATTEN_ATTRIB
#endif
// EIGEN_FORCE_INLINE means "inline as much as possible"
#if (defined _MSC_VER) || (defined __INTEL_COMPILER)
#define EIGEN_STRONG_INLINE __forceinline
#else
#define EIGEN_STRONG_INLINE inline
#endif
#if (defined __GNUC__)
#define EIGEN_DONT_INLINE __attribute__((noinline))
#elif (defined _MSC_VER)
#define EIGEN_DONT_INLINE __declspec(noinline)
#else
#define EIGEN_DONT_INLINE
#endif
// this macro allows to get rid of linking errors about multiply defined functions.
// - static is not very good because it prevents definitions from different object files to be merged.
// So static causes the resulting linked executable to be bloated with multiple copies of the same function.
// - inline is not perfect either as it unwantedly hints the compiler toward inlining the function.
#define EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
#define EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS inline
#ifdef NDEBUG
# ifndef EIGEN_NO_DEBUG
# define EIGEN_NO_DEBUG
# endif
#endif
// eigen_plain_assert is where we implement the workaround for the assert() bug in GCC <= 4.3, see bug 89
#ifdef EIGEN_NO_DEBUG
#define eigen_plain_assert(x)
#else
#if EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO
namespace Eigen {
namespace internal {
inline bool copy_bool(bool b) { return b; }
}
}
#define eigen_plain_assert(x) assert(x)
#else
// work around bug 89
#include <cstdlib> // for abort
#include <iostream> // for std::cerr
namespace Eigen {
namespace internal {
// trivial function copying a bool. Must be EIGEN_DONT_INLINE, so we implement it after including Eigen headers.
// see bug 89.
namespace {
EIGEN_DONT_INLINE bool copy_bool(bool b) { return b; }
}
inline void assert_fail(const char *condition, const char *function, const char *file, int line)
{
std::cerr << "assertion failed: " << condition << " in function " << function << " at " << file << ":" << line << std::endl;
abort();
}
}
}
#define eigen_plain_assert(x) \
do { \
if(!Eigen::internal::copy_bool(x)) \
Eigen::internal::assert_fail(EIGEN_MAKESTRING(x), __PRETTY_FUNCTION__, __FILE__, __LINE__); \
} while(false)
#endif
#endif
// eigen_assert can be overridden
#ifndef eigen_assert
#define eigen_assert(x) eigen_plain_assert(x)
#endif
#ifdef EIGEN_INTERNAL_DEBUGGING
#define eigen_internal_assert(x) eigen_assert(x)
#else
#define eigen_internal_assert(x)
#endif
#ifdef EIGEN_NO_DEBUG
#define EIGEN_ONLY_USED_FOR_DEBUG(x) (void)x
#else
#define EIGEN_ONLY_USED_FOR_DEBUG(x)
#endif
#if (defined __GNUC__)
#define EIGEN_DEPRECATED __attribute__((deprecated))
#elif (defined _MSC_VER)
#define EIGEN_DEPRECATED __declspec(deprecated)
#else
#define EIGEN_DEPRECATED
#endif
#if (defined __GNUC__)
#define EIGEN_UNUSED __attribute__((unused))
#else
#define EIGEN_UNUSED
#endif
// Suppresses 'unused variable' warnings.
#define EIGEN_UNUSED_VARIABLE(var) (void)var;
#if (defined __GNUC__)
#define EIGEN_ASM_COMMENT(X) asm("#"X)
#else
#define EIGEN_ASM_COMMENT(X)
#endif
/* EIGEN_ALIGN_TO_BOUNDARY(n) forces data to be n-byte aligned. This is used to satisfy SIMD requirements.
* However, we do that EVEN if vectorization (EIGEN_VECTORIZE) is disabled,
* so that vectorization doesn't affect binary compatibility.
*
* If we made alignment depend on whether or not EIGEN_VECTORIZE is defined, it would be impossible to link
* vectorized and non-vectorized code.
*/
#if (defined __GNUC__) || (defined __PGI) || (defined __IBMCPP__)
#define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
#elif (defined _MSC_VER)
#define EIGEN_ALIGN_TO_BOUNDARY(n) __declspec(align(n))
#elif (defined __SUNPRO_CC)
// FIXME not sure about this one:
#define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
#else
#error Please tell me what is the equivalent of __attribute__((aligned(n))) for your compiler
#endif
#define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16)
#if EIGEN_ALIGN_STATICALLY
#define EIGEN_USER_ALIGN_TO_BOUNDARY(n) EIGEN_ALIGN_TO_BOUNDARY(n)
#define EIGEN_USER_ALIGN16 EIGEN_ALIGN16
#else
#define EIGEN_USER_ALIGN_TO_BOUNDARY(n)
#define EIGEN_USER_ALIGN16
#endif
#ifdef EIGEN_DONT_USE_RESTRICT_KEYWORD
#define EIGEN_RESTRICT
#endif
#ifndef EIGEN_RESTRICT
#define EIGEN_RESTRICT __restrict
#endif
#ifndef EIGEN_STACK_ALLOCATION_LIMIT
#define EIGEN_STACK_ALLOCATION_LIMIT 20000
#endif
#ifndef EIGEN_DEFAULT_IO_FORMAT
#ifdef EIGEN_MAKING_DOCS
// format used in Eigen's documentation
// needed to define it here as escaping characters in CMake add_definition's argument seems very problematic.
#define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat(3, 0, " ", "\n", "", "")
#else
#define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat()
#endif
#endif
// just an empty macro !
#define EIGEN_EMPTY
#if defined(_MSC_VER) && (!defined(__INTEL_COMPILER))
#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
using Base::operator =;
#else
#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
using Base::operator =; \
EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) \
{ \
Base::operator=(other); \
return *this; \
}
#endif
#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived)
/**
* Just a side note. Commenting within defines works only by documenting
* behind the object (via '!<'). Comments cannot be multi-line and thus
* we have these extra long lines. What is confusing doxygen over here is
* that we use '\' and basically have a bunch of typedefs with their
* documentation in a single line.
**/
#define EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) \
typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex<float>. */ \
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex<T>, T were corresponding to RealScalar. */ \
typedef typename Base::CoeffReturnType CoeffReturnType; /*!< \brief The return type for coefficient access. \details Depending on whether the object allows direct coefficient access (e.g. for a MatrixXd), this type is either 'const Scalar&' or simply 'Scalar' for objects that do not allow direct coefficient access. */ \
typedef typename Eigen::internal::nested<Derived>::type Nested; \
typedef typename Eigen::internal::traits<Derived>::StorageKind StorageKind; \
typedef typename Eigen::internal::traits<Derived>::Index Index; \
enum { RowsAtCompileTime = Eigen::internal::traits<Derived>::RowsAtCompileTime, \
ColsAtCompileTime = Eigen::internal::traits<Derived>::ColsAtCompileTime, \
Flags = Eigen::internal::traits<Derived>::Flags, \
CoeffReadCost = Eigen::internal::traits<Derived>::CoeffReadCost, \
SizeAtCompileTime = Base::SizeAtCompileTime, \
MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \
IsVectorAtCompileTime = Base::IsVectorAtCompileTime };
#define EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \
typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex<float>. */ \
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex<T>, T were corresponding to RealScalar. */ \
typedef typename Base::PacketScalar PacketScalar; \
typedef typename Base::CoeffReturnType CoeffReturnType; /*!< \brief The return type for coefficient access. \details Depending on whether the object allows direct coefficient access (e.g. for a MatrixXd), this type is either 'const Scalar&' or simply 'Scalar' for objects that do not allow direct coefficient access. */ \
typedef typename Eigen::internal::nested<Derived>::type Nested; \
typedef typename Eigen::internal::traits<Derived>::StorageKind StorageKind; \
typedef typename Eigen::internal::traits<Derived>::Index Index; \
enum { RowsAtCompileTime = Eigen::internal::traits<Derived>::RowsAtCompileTime, \
ColsAtCompileTime = Eigen::internal::traits<Derived>::ColsAtCompileTime, \
MaxRowsAtCompileTime = Eigen::internal::traits<Derived>::MaxRowsAtCompileTime, \
MaxColsAtCompileTime = Eigen::internal::traits<Derived>::MaxColsAtCompileTime, \
Flags = Eigen::internal::traits<Derived>::Flags, \
CoeffReadCost = Eigen::internal::traits<Derived>::CoeffReadCost, \
SizeAtCompileTime = Base::SizeAtCompileTime, \
MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \
IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; \
using Base::derived; \
using Base::const_cast_derived;
#define EIGEN_PLAIN_ENUM_MIN(a,b) (((int)a <= (int)b) ? (int)a : (int)b)
#define EIGEN_PLAIN_ENUM_MAX(a,b) (((int)a >= (int)b) ? (int)a : (int)b)
// EIGEN_SIZE_MIN_PREFER_DYNAMIC gives the min between compile-time sizes. 0 has absolute priority, followed by 1,
// followed by Dynamic, followed by other finite values. The reason for giving Dynamic the priority over
// finite values is that min(3, Dynamic) should be Dynamic, since that could be anything between 0 and 3.
#define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a,b) (((int)a == 0 || (int)b == 0) ? 0 \
: ((int)a == 1 || (int)b == 1) ? 1 \
: ((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \
: ((int)a <= (int)b) ? (int)a : (int)b)
// EIGEN_SIZE_MIN_PREFER_FIXED is a variant of EIGEN_SIZE_MIN_PREFER_DYNAMIC comparing MaxSizes. The difference is that finite values
// now have priority over Dynamic, so that min(3, Dynamic) gives 3. Indeed, whatever the actual value is
// (between 0 and 3), it is not more than 3.
#define EIGEN_SIZE_MIN_PREFER_FIXED(a,b) (((int)a == 0 || (int)b == 0) ? 0 \
: ((int)a == 1 || (int)b == 1) ? 1 \
: ((int)a == Dynamic && (int)b == Dynamic) ? Dynamic \
: ((int)a == Dynamic) ? (int)b \
: ((int)b == Dynamic) ? (int)a \
: ((int)a <= (int)b) ? (int)a : (int)b)
// see EIGEN_SIZE_MIN_PREFER_DYNAMIC. No need for a separate variant for MaxSizes here.
#define EIGEN_SIZE_MAX(a,b) (((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \
: ((int)a >= (int)b) ? (int)a : (int)b)
#define EIGEN_LOGICAL_XOR(a,b) (((a) || (b)) && !((a) && (b)))
#define EIGEN_IMPLIES(a,b) (!(a) || (b))
#define EIGEN_MAKE_CWISE_BINARY_OP(METHOD,FUNCTOR) \
template<typename OtherDerived> \
EIGEN_STRONG_INLINE const CwiseBinaryOp<FUNCTOR<Scalar>, const Derived, const OtherDerived> \
METHOD(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const \
{ \
return CwiseBinaryOp<FUNCTOR<Scalar>, const Derived, const OtherDerived>(derived(), other.derived()); \
}
// the expression type of a cwise product
#define EIGEN_CWISE_PRODUCT_RETURN_TYPE(LHS,RHS) \
CwiseBinaryOp< \
internal::scalar_product_op< \
typename internal::traits<LHS>::Scalar, \
typename internal::traits<RHS>::Scalar \
>, \
const LHS, \
const RHS \
>
#endif // EIGEN_MACROS_H

View file

@ -0,0 +1,860 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
// Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
/*****************************************************************************
*** Platform checks for aligned malloc functions ***
*****************************************************************************/
#ifndef EIGEN_MEMORY_H
#define EIGEN_MEMORY_H
// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
// This is true at least since glibc 2.8.
// This leaves the question how to detect 64-bit. According to this document,
// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
&& defined(__LP64__)
#define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
#endif
// FreeBSD 6 seems to have 16-byte aligned malloc
// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
#if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
#endif
#if defined(__APPLE__) \
|| defined(_WIN64) \
|| EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
|| EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
#define EIGEN_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_MALLOC_ALREADY_ALIGNED 0
#endif
#if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) \
&& (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
#define EIGEN_HAS_POSIX_MEMALIGN 1
#else
#define EIGEN_HAS_POSIX_MEMALIGN 0
#endif
#ifdef EIGEN_VECTORIZE_SSE
#define EIGEN_HAS_MM_MALLOC 1
#else
#define EIGEN_HAS_MM_MALLOC 0
#endif
namespace internal {
/*****************************************************************************
*** Implementation of handmade aligned functions ***
*****************************************************************************/
/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
/** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
* Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
*/
inline void* handmade_aligned_malloc(size_t size)
{
void *original = std::malloc(size+16);
if (original == 0) return 0;
void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
*(reinterpret_cast<void**>(aligned) - 1) = original;
return aligned;
}
/** \internal Frees memory allocated with handmade_aligned_malloc */
inline void handmade_aligned_free(void *ptr)
{
if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
}
/** \internal
* \brief Reallocates aligned memory.
* Since we know that our handmade version is based on std::realloc
* we can use std::realloc to implement efficient reallocation.
*/
inline void* handmade_aligned_realloc(void* ptr, size_t size, size_t = 0)
{
if (ptr == 0) return handmade_aligned_malloc(size);
void *original = *(reinterpret_cast<void**>(ptr) - 1);
original = std::realloc(original,size+16);
if (original == 0) return 0;
void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
*(reinterpret_cast<void**>(aligned) - 1) = original;
return aligned;
}
/*****************************************************************************
*** Implementation of generic aligned realloc (when no realloc can be used)***
*****************************************************************************/
void* aligned_malloc(size_t size);
void aligned_free(void *ptr);
/** \internal
* \brief Reallocates aligned memory.
* Allows reallocation with aligned ptr types. This implementation will
* always create a new memory chunk and copy the old data.
*/
inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
{
if (ptr==0)
return aligned_malloc(size);
if (size==0)
{
aligned_free(ptr);
return 0;
}
void* newptr = aligned_malloc(size);
if (newptr == 0)
{
#ifdef EIGEN_HAS_ERRNO
errno = ENOMEM; // according to the standard
#endif
return 0;
}
if (ptr != 0)
{
std::memcpy(newptr, ptr, std::min(size,old_size));
aligned_free(ptr);
}
return newptr;
}
/*****************************************************************************
*** Implementation of portable aligned versions of malloc/free/realloc ***
*****************************************************************************/
#ifdef EIGEN_NO_MALLOC
inline void check_that_malloc_is_allowed()
{
eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
}
#elif defined EIGEN_RUNTIME_NO_MALLOC
inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
{
static bool value = true;
if (update == 1)
value = new_value;
return value;
}
inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
inline void check_that_malloc_is_allowed()
{
eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
}
#else
inline void check_that_malloc_is_allowed()
{}
#endif
/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
* On allocation error, the returned pointer is null, and if exceptions are enabled then a std::bad_alloc is thrown.
*/
inline void* aligned_malloc(size_t size)
{
check_that_malloc_is_allowed();
void *result;
#if !EIGEN_ALIGN
result = std::malloc(size);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
result = std::malloc(size);
#elif EIGEN_HAS_POSIX_MEMALIGN
if(posix_memalign(&result, 16, size)) result = 0;
#elif EIGEN_HAS_MM_MALLOC
result = _mm_malloc(size, 16);
#elif (defined _MSC_VER)
result = _aligned_malloc(size, 16);
#else
result = handmade_aligned_malloc(size);
#endif
#ifdef EIGEN_EXCEPTIONS
if(result == 0)
throw std::bad_alloc();
#endif
return result;
}
/** \internal Frees memory allocated with aligned_malloc. */
inline void aligned_free(void *ptr)
{
#if !EIGEN_ALIGN
std::free(ptr);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
std::free(ptr);
#elif EIGEN_HAS_POSIX_MEMALIGN
std::free(ptr);
#elif EIGEN_HAS_MM_MALLOC
_mm_free(ptr);
#elif defined(_MSC_VER)
_aligned_free(ptr);
#else
handmade_aligned_free(ptr);
#endif
}
/**
* \internal
* \brief Reallocates an aligned block of memory.
* \throws std::bad_alloc if EIGEN_EXCEPTIONS are defined.
**/
inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
{
EIGEN_UNUSED_VARIABLE(old_size);
void *result;
#if !EIGEN_ALIGN
result = std::realloc(ptr,new_size);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
result = std::realloc(ptr,new_size);
#elif EIGEN_HAS_POSIX_MEMALIGN
result = generic_aligned_realloc(ptr,new_size,old_size);
#elif EIGEN_HAS_MM_MALLOC
// The defined(_mm_free) is just here to verify that this MSVC version
// implements _mm_malloc/_mm_free based on the corresponding _aligned_
// functions. This may not always be the case and we just try to be safe.
#if defined(_MSC_VER) && defined(_mm_free)
result = _aligned_realloc(ptr,new_size,16);
#else
result = generic_aligned_realloc(ptr,new_size,old_size);
#endif
#elif defined(_MSC_VER)
result = _aligned_realloc(ptr,new_size,16);
#else
result = handmade_aligned_realloc(ptr,new_size,old_size);
#endif
#ifdef EIGEN_EXCEPTIONS
if (result==0 && new_size!=0)
throw std::bad_alloc();
#endif
return result;
}
/*****************************************************************************
*** Implementation of conditionally aligned functions ***
*****************************************************************************/
/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
* On allocation error, the returned pointer is null, and if exceptions are enabled then a std::bad_alloc is thrown.
*/
template<bool Align> inline void* conditional_aligned_malloc(size_t size)
{
return aligned_malloc(size);
}
template<> inline void* conditional_aligned_malloc<false>(size_t size)
{
check_that_malloc_is_allowed();
void *result = std::malloc(size);
#ifdef EIGEN_EXCEPTIONS
if(!result) throw std::bad_alloc();
#endif
return result;
}
/** \internal Frees memory allocated with conditional_aligned_malloc */
template<bool Align> inline void conditional_aligned_free(void *ptr)
{
aligned_free(ptr);
}
template<> inline void conditional_aligned_free<false>(void *ptr)
{
std::free(ptr);
}
template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
{
return aligned_realloc(ptr, new_size, old_size);
}
template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
{
return std::realloc(ptr, new_size);
}
/*****************************************************************************
*** Construction/destruction of array elements ***
*****************************************************************************/
/** \internal Constructs the elements of an array.
* The \a size parameter tells on how many objects to call the constructor of T.
*/
template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
{
for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
return ptr;
}
/** \internal Destructs the elements of an array.
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
{
// always destruct an array starting from the end.
if(ptr)
while(size) ptr[--size].~T();
}
/*****************************************************************************
*** Implementation of aligned new/delete-like functions ***
*****************************************************************************/
/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
* On allocation error, the returned pointer is undefined, but if exceptions are enabled then a std::bad_alloc is thrown.
* The default constructor of T is called.
*/
template<typename T> inline T* aligned_new(size_t size)
{
T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
return construct_elements_of_array(result, size);
}
template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
{
T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
return construct_elements_of_array(result, size);
}
/** \internal Deletes objects constructed with aligned_new
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template<typename T> inline void aligned_delete(T *ptr, size_t size)
{
destruct_elements_of_array<T>(ptr, size);
aligned_free(ptr);
}
/** \internal Deletes objects constructed with conditional_aligned_new
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
{
destruct_elements_of_array<T>(ptr, size);
conditional_aligned_free<Align>(ptr);
}
template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
{
if(new_size < old_size)
destruct_elements_of_array(pts+new_size, old_size-new_size);
T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
if(new_size > old_size)
construct_elements_of_array(result+old_size, new_size-old_size);
return result;
}
template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
{
T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
if(NumTraits<T>::RequireInitialization)
construct_elements_of_array(result, size);
return result;
}
template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
{
if(NumTraits<T>::RequireInitialization && (new_size < old_size))
destruct_elements_of_array(pts+new_size, old_size-new_size);
T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
if(NumTraits<T>::RequireInitialization && (new_size > old_size))
construct_elements_of_array(result+old_size, new_size-old_size);
return result;
}
template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
{
if(NumTraits<T>::RequireInitialization)
destruct_elements_of_array<T>(ptr, size);
conditional_aligned_free<Align>(ptr);
}
/****************************************************************************/
/** \internal Returns the index of the first element of the array that is well aligned for vectorization.
*
* \param array the address of the start of the array
* \param size the size of the array
*
* \note If no element of the array is well aligned, the size of the array is returned. Typically,
* for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the
* packet size for the given scalar type is 1, then everything is considered well-aligned.
*
* \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a
* power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the
* other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
* example with Scalar=double on certain 32-bit platforms, see bug #79.
*
* There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
*/
template<typename Scalar, typename Index>
inline static Index first_aligned(const Scalar* array, Index size)
{
typedef typename packet_traits<Scalar>::type Packet;
enum { PacketSize = packet_traits<Scalar>::size,
PacketAlignedMask = PacketSize-1
};
if(PacketSize==1)
{
// Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
// of the array have the same alignment.
return 0;
}
else if(size_t(array) & (sizeof(Scalar)-1))
{
// There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
// Consequently, no element of the array is well aligned.
return size;
}
else
{
return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
& PacketAlignedMask, size);
}
}
} // end namespace internal
/*****************************************************************************
*** Implementation of runtime stack allocation (falling back to malloc) ***
*****************************************************************************/
/** \internal
* Allocates an aligned buffer of SIZE bytes on the stack if SIZE is smaller than
* EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
* (currently, this is Linux only). Otherwise the memory is allocated on the heap.
* Data allocated with ei_aligned_stack_alloc \b must be freed by calling
* ei_aligned_stack_free(PTR,SIZE).
* \code
* float * data = ei_aligned_stack_alloc(float,array.size());
* // ...
* ei_aligned_stack_free(data,float,array.size());
* \endcode
*/
#if (defined __linux__)
#define ei_aligned_stack_alloc(SIZE) (SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) \
? alloca(SIZE) \
: Eigen::internal::aligned_malloc(SIZE)
#define ei_aligned_stack_free(PTR,SIZE) if(SIZE>EIGEN_STACK_ALLOCATION_LIMIT) Eigen::internal::aligned_free(PTR)
#elif defined(_MSC_VER)
#define ei_aligned_stack_alloc(SIZE) (SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) \
? _alloca(SIZE) \
: Eigen::internal::aligned_malloc(SIZE)
#define ei_aligned_stack_free(PTR,SIZE) if(SIZE>EIGEN_STACK_ALLOCATION_LIMIT) Eigen::internal::aligned_free(PTR)
#else
#define ei_aligned_stack_alloc(SIZE) Eigen::internal::aligned_malloc(SIZE)
#define ei_aligned_stack_free(PTR,SIZE) Eigen::internal::aligned_free(PTR)
#endif
#define ei_aligned_stack_new(TYPE,SIZE) Eigen::internal::construct_elements_of_array(reinterpret_cast<TYPE*>(ei_aligned_stack_alloc(sizeof(TYPE)*SIZE)), SIZE)
#define ei_aligned_stack_delete(TYPE,PTR,SIZE) do {Eigen::internal::destruct_elements_of_array<TYPE>(PTR, SIZE); \
ei_aligned_stack_free(PTR,sizeof(TYPE)*SIZE);} while(0)
/*****************************************************************************
*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
*****************************************************************************/
#if EIGEN_ALIGN
#ifdef EIGEN_EXCEPTIONS
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void* operator new(size_t size, const std::nothrow_t&) throw() { \
try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
catch (...) { return 0; } \
return 0; \
}
#else
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void* operator new(size_t size, const std::nothrow_t&) throw() { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
}
#endif
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
void *operator new(size_t size) { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
} \
void *operator new[](size_t size) { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
} \
void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
/* in-place new and delete. since (at least afaik) there is no actual */ \
/* memory allocated we can safely let the default implementation handle */ \
/* this particular case. */ \
static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
/* nothrow-new (returns zero instead of std::bad_alloc) */ \
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void operator delete(void *ptr, const std::nothrow_t&) throw() { \
Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
} \
typedef void eigen_aligned_operator_new_marker_type;
#else
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
#endif
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0))
/****************************************************************************/
/** \class aligned_allocator
* \ingroup Core_Module
*
* \brief STL compatible allocator to use with with 16 byte aligned types
*
* Example:
* \code
* // Matrix4f requires 16 bytes alignment:
* std::map< int, Matrix4f, std::less<int>,
* aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
* std::map< int, Vector3f > my_map_vec3;
* \endcode
*
* \sa \ref TopicStlContainers.
*/
template<class T>
class aligned_allocator
{
public:
typedef size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template<class U>
struct rebind
{
typedef aligned_allocator<U> other;
};
pointer address( reference value ) const
{
return &value;
}
const_pointer address( const_reference value ) const
{
return &value;
}
aligned_allocator() throw()
{
}
aligned_allocator( const aligned_allocator& ) throw()
{
}
template<class U>
aligned_allocator( const aligned_allocator<U>& ) throw()
{
}
~aligned_allocator() throw()
{
}
size_type max_size() const throw()
{
return std::numeric_limits<size_type>::max();
}
pointer allocate( size_type num, const_pointer* hint = 0 )
{
static_cast<void>( hint ); // suppress unused variable warning
return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
}
void construct( pointer p, const T& value )
{
::new( p ) T( value );
}
void destroy( pointer p )
{
p->~T();
}
void deallocate( pointer p, size_type /*num*/ )
{
internal::aligned_free( p );
}
bool operator!=(const aligned_allocator<T>& ) const
{ return false; }
bool operator==(const aligned_allocator<T>& ) const
{ return true; }
};
//---------- Cache sizes ----------
#if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
# if defined(__PIC__) && defined(__i386__)
// Case for x86 with PIC
# define EIGEN_CPUID(abcd,func,id) \
__asm__ __volatile__ ("xchgl %%ebx, %%esi;cpuid; xchgl %%ebx,%%esi": "=a" (abcd[0]), "=S" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
# else
// Case for x86_64 or x86 w/o PIC
# define EIGEN_CPUID(abcd,func,id) \
__asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id) );
# endif
#elif defined(_MSC_VER)
# if (_MSC_VER > 1500)
# define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
# endif
#endif
namespace internal {
#ifdef EIGEN_CPUID
inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
{
return abcd[1]==((int*)(vendor))[0] && abcd[3]==((int*)(vendor))[1] && abcd[2]==((int*)(vendor))[2];
}
inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
{
int abcd[4];
l1 = l2 = l3 = 0;
int cache_id = 0;
int cache_type = 0;
do {
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
EIGEN_CPUID(abcd,0x4,cache_id);
cache_type = (abcd[0] & 0x0F) >> 0;
if(cache_type==1||cache_type==3) // data or unified cache
{
int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
int sets = (abcd[2]); // C[31:0]
int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
switch(cache_level)
{
case 1: l1 = cache_size; break;
case 2: l2 = cache_size; break;
case 3: l3 = cache_size; break;
default: break;
}
}
cache_id++;
} while(cache_type>0 && cache_id<16);
}
inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
{
int abcd[4];
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
l1 = l2 = l3 = 0;
EIGEN_CPUID(abcd,0x00000002,0);
unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
bool check_for_p2_core2 = false;
for(int i=0; i<14; ++i)
{
switch(bytes[i])
{
case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
default: break;
}
}
if(check_for_p2_core2 && l2 == l3)
l3 = 0;
l1 *= 1024;
l2 *= 1024;
l3 *= 1024;
}
inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
{
if(max_std_funcs>=4)
queryCacheSizes_intel_direct(l1,l2,l3);
else
queryCacheSizes_intel_codes(l1,l2,l3);
}
inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
{
int abcd[4];
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
EIGEN_CPUID(abcd,0x80000005,0);
l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
EIGEN_CPUID(abcd,0x80000006,0);
l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
}
#endif
/** \internal
* Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
inline void queryCacheSizes(int& l1, int& l2, int& l3)
{
#ifdef EIGEN_CPUID
int abcd[4];
// identify the CPU vendor
EIGEN_CPUID(abcd,0x0,0);
int max_std_funcs = abcd[1];
if(cpuid_is_vendor(abcd,"GenuineIntel"))
queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
queryCacheSizes_amd(l1,l2,l3);
else
// by default let's use Intel's API
queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
// here is the list of other vendors:
// ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
// ||cpuid_is_vendor(abcd,"CyrixInstead")
// ||cpuid_is_vendor(abcd,"CentaurHauls")
// ||cpuid_is_vendor(abcd,"GenuineTMx86")
// ||cpuid_is_vendor(abcd,"TransmetaCPU")
// ||cpuid_is_vendor(abcd,"RiseRiseRise")
// ||cpuid_is_vendor(abcd,"Geode by NSC")
// ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
// ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
// ||cpuid_is_vendor(abcd,"NexGenDriven")
#else
l1 = l2 = l3 = -1;
#endif
}
/** \internal
* \returns the size in Bytes of the L1 data cache */
inline int queryL1CacheSize()
{
int l1(-1), l2, l3;
queryCacheSizes(l1,l2,l3);
return l1;
}
/** \internal
* \returns the size in Bytes of the L2 or L3 cache if this later is present */
inline int queryTopLevelCacheSize()
{
int l1, l2(-1), l3(-1);
queryCacheSizes(l1,l2,l3);
return std::max(l2,l3);
}
} // end namespace internal
#endif // EIGEN_MEMORY_H

View file

@ -0,0 +1,229 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_META_H
#define EIGEN_META_H
namespace internal {
/** \internal
* \file Meta.h
* This file contains generic metaprogramming classes which are not specifically related to Eigen.
* \note In case you wonder, yes we're aware that Boost already provides all these features,
* we however don't want to add a dependency to Boost.
*/
struct true_type { enum { value = 1 }; };
struct false_type { enum { value = 0 }; };
template<bool Condition, typename Then, typename Else>
struct conditional { typedef Then type; };
template<typename Then, typename Else>
struct conditional <false, Then, Else> { typedef Else type; };
template<typename T, typename U> struct is_same { enum { value = 0 }; };
template<typename T> struct is_same<T,T> { enum { value = 1 }; };
template<typename T> struct remove_reference { typedef T type; };
template<typename T> struct remove_reference<T&> { typedef T type; };
template<typename T> struct remove_pointer { typedef T type; };
template<typename T> struct remove_pointer<T*> { typedef T type; };
template<typename T> struct remove_pointer<T*const> { typedef T type; };
template <class T> struct remove_const { typedef T type; };
template <class T> struct remove_const<const T> { typedef T type; };
template <class T> struct remove_const<const T[]> { typedef T type[]; };
template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; };
template<typename T> struct remove_all { typedef T type; };
template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; };
template<typename T> struct is_arithmetic { enum { value = false }; };
template<> struct is_arithmetic<float> { enum { value = true }; };
template<> struct is_arithmetic<double> { enum { value = true }; };
template<> struct is_arithmetic<long double> { enum { value = true }; };
template<> struct is_arithmetic<bool> { enum { value = true }; };
template<> struct is_arithmetic<char> { enum { value = true }; };
template<> struct is_arithmetic<signed char> { enum { value = true }; };
template<> struct is_arithmetic<unsigned char> { enum { value = true }; };
template<> struct is_arithmetic<signed short> { enum { value = true }; };
template<> struct is_arithmetic<unsigned short>{ enum { value = true }; };
template<> struct is_arithmetic<signed int> { enum { value = true }; };
template<> struct is_arithmetic<unsigned int> { enum { value = true }; };
template<> struct is_arithmetic<signed long> { enum { value = true }; };
template<> struct is_arithmetic<unsigned long> { enum { value = true }; };
template<> struct is_arithmetic<signed long long> { enum { value = true }; };
template<> struct is_arithmetic<unsigned long long> { enum { value = true }; };
template <typename T> struct add_const { typedef const T type; };
template <typename T> struct add_const<T&> { typedef T& type; };
template <typename T> struct is_const { enum { value = 0 }; };
template <typename T> struct is_const<T const> { enum { value = 1 }; };
template<typename T> struct add_const_on_value_type { typedef const T type; };
template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; };
template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; };
template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; };
template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; };
/** \internal Allows to enable/disable an overload
* according to a compile time condition.
*/
template<bool Condition, typename T> struct enable_if;
template<typename T> struct enable_if<true,T>
{ typedef T type; };
/** \internal
* Convenient struct to get the result type of a unary or binary functor.
*
* It supports both the current STL mechanism (using the result_type member) as well as
* upcoming next STL generation (using a templated result member).
* If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack.
*/
template<typename T> struct result_of {};
struct has_none {int a[1];};
struct has_std_result_type {int a[2];};
struct has_tr1_result {int a[3];};
template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)>
struct unary_result_of_select {typedef ArgType type;};
template<typename Func, typename ArgType>
struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};
template<typename Func, typename ArgType>
struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
template<typename Func, typename ArgType>
struct result_of<Func(ArgType)> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type;
};
template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)>
struct binary_result_of_select {typedef ArgType0 type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)>
{typedef typename Func::result_type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct result_of<Func(ArgType0,ArgType1)> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
};
/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
* Usage example: \code meta_sqrt<1023>::ret \endcode
*/
template<int Y,
int InfX = 0,
int SupX = ((Y==1) ? 1 : Y/2),
bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
// use ?: instead of || just to shut up a stupid gcc 4.3 warning
class meta_sqrt
{
enum {
MidX = (InfX+SupX)/2,
TakeInf = MidX*MidX > Y ? 1 : 0,
NewInf = int(TakeInf) ? InfX : int(MidX),
NewSup = int(TakeInf) ? int(MidX) : SupX
};
public:
enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret };
};
template<int Y, int InfX, int SupX>
class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
/** \internal determines whether the product of two numeric types is allowed and what the return type is */
template<typename T, typename U> struct scalar_product_traits;
template<typename T> struct scalar_product_traits<T,T>
{
//enum { Cost = NumTraits<T>::MulCost };
typedef T ReturnType;
};
template<typename T> struct scalar_product_traits<T,std::complex<T> >
{
//enum { Cost = 2*NumTraits<T>::MulCost };
typedef std::complex<T> ReturnType;
};
template<typename T> struct scalar_product_traits<std::complex<T>, T>
{
//enum { Cost = 2*NumTraits<T>::MulCost };
typedef std::complex<T> ReturnType;
};
// FIXME quick workaround around current limitation of result_of
// template<typename Scalar, typename ArgType0, typename ArgType1>
// struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> {
// typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type;
// };
template<typename T> struct is_diagonal
{ enum { ret = false }; };
template<typename T> struct is_diagonal<DiagonalBase<T> >
{ enum { ret = true }; };
template<typename T> struct is_diagonal<DiagonalWrapper<T> >
{ enum { ret = true }; };
template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> >
{ enum { ret = true }; };
} // end namespace internal
#endif // EIGEN_META_H

View file

@ -0,0 +1,14 @@
#ifdef EIGEN_WARNINGS_DISABLED
#undef EIGEN_WARNINGS_DISABLED
#ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS
#ifdef _MSC_VER
#pragma warning( pop )
#elif defined __INTEL_COMPILER
#pragma warning pop
#elif defined __clang__
#pragma clang diagnostic pop
#endif
#endif
#endif // EIGEN_WARNINGS_DISABLED

View file

@ -0,0 +1,198 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_STATIC_ASSERT_H
#define EIGEN_STATIC_ASSERT_H
/* Some notes on Eigen's static assertion mechanism:
*
* - in EIGEN_STATIC_ASSERT(CONDITION,MSG) the parameter CONDITION must be a compile time boolean
* expression, and MSG an enum listed in struct internal::static_assertion<true>
*
* - define EIGEN_NO_STATIC_ASSERT to disable them (and save compilation time)
* in that case, the static assertion is converted to the following runtime assert:
* eigen_assert(CONDITION && "MSG")
*
* - currently EIGEN_STATIC_ASSERT can only be used in function scope
*
*/
#ifndef EIGEN_NO_STATIC_ASSERT
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || (defined(_MSC_VER) && (_MSC_VER >= 1600))
// if native static_assert is enabled, let's use it
#define EIGEN_STATIC_ASSERT(X,MSG) static_assert(X,#MSG);
#else // not CXX0X
namespace internal {
template<bool condition>
struct static_assertion {};
template<>
struct static_assertion<true>
{
enum {
YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX,
YOU_MIXED_VECTORS_OF_DIFFERENT_SIZES,
YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES,
THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE,
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE,
THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE,
YOU_MADE_A_PROGRAMMING_MISTAKE,
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT,
EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE,
YOU_CALLED_A_FIXED_SIZE_METHOD_ON_A_DYNAMIC_SIZE_MATRIX_OR_VECTOR,
YOU_CALLED_A_DYNAMIC_SIZE_METHOD_ON_A_FIXED_SIZE_MATRIX_OR_VECTOR,
UNALIGNED_LOAD_AND_STORE_OPERATIONS_UNIMPLEMENTED_ON_ALTIVEC,
THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES,
NUMERIC_TYPE_MUST_BE_REAL,
COEFFICIENT_WRITE_ACCESS_TO_SELFADJOINT_NOT_SUPPORTED,
WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED,
THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE,
INVALID_MATRIX_PRODUCT,
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS,
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION,
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY,
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES,
THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES,
INVALID_MATRIX_TEMPLATE_PARAMETERS,
INVALID_MATRIXBASE_TEMPLATE_PARAMETERS,
BOTH_MATRICES_MUST_HAVE_THE_SAME_STORAGE_ORDER,
THIS_METHOD_IS_ONLY_FOR_DIAGONAL_MATRIX,
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE,
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES,
YOU_ALREADY_SPECIFIED_THIS_STRIDE,
INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD,
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1,
THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS,
YOU_CANNOT_MIX_ARRAYS_AND_MATRICES,
YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION,
THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY,
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT,
THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS
};
};
} // end namespace internal
// Specialized implementation for MSVC to avoid "conditional
// expression is constant" warnings. This implementation doesn't
// appear to work under GCC, hence the multiple implementations.
#ifdef _MSC_VER
#define EIGEN_STATIC_ASSERT(CONDITION,MSG) \
{Eigen::internal::static_assertion<bool(CONDITION)>::MSG;}
#else
#define EIGEN_STATIC_ASSERT(CONDITION,MSG) \
if (Eigen::internal::static_assertion<bool(CONDITION)>::MSG) {}
#endif
#endif // not CXX0X
#else // EIGEN_NO_STATIC_ASSERT
#define EIGEN_STATIC_ASSERT(CONDITION,MSG) eigen_assert((CONDITION) && #MSG);
#endif // EIGEN_NO_STATIC_ASSERT
// static assertion failing if the type \a TYPE is not a vector type
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE) \
EIGEN_STATIC_ASSERT(TYPE::IsVectorAtCompileTime, \
YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX)
// static assertion failing if the type \a TYPE is not fixed-size
#define EIGEN_STATIC_ASSERT_FIXED_SIZE(TYPE) \
EIGEN_STATIC_ASSERT(TYPE::SizeAtCompileTime!=Eigen::Dynamic, \
YOU_CALLED_A_FIXED_SIZE_METHOD_ON_A_DYNAMIC_SIZE_MATRIX_OR_VECTOR)
// static assertion failing if the type \a TYPE is not dynamic-size
#define EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(TYPE) \
EIGEN_STATIC_ASSERT(TYPE::SizeAtCompileTime==Eigen::Dynamic, \
YOU_CALLED_A_DYNAMIC_SIZE_METHOD_ON_A_FIXED_SIZE_MATRIX_OR_VECTOR)
// static assertion failing if the type \a TYPE is not a vector type of the given size
#define EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(TYPE, SIZE) \
EIGEN_STATIC_ASSERT(TYPE::IsVectorAtCompileTime && TYPE::SizeAtCompileTime==SIZE, \
THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE)
// static assertion failing if the type \a TYPE is not a vector type of the given size
#define EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(TYPE, ROWS, COLS) \
EIGEN_STATIC_ASSERT(TYPE::RowsAtCompileTime==ROWS && TYPE::ColsAtCompileTime==COLS, \
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE)
// static assertion failing if the two vector expression types are not compatible (same fixed-size or dynamic size)
#define EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(TYPE0,TYPE1) \
EIGEN_STATIC_ASSERT( \
(int(TYPE0::SizeAtCompileTime)==Eigen::Dynamic \
|| int(TYPE1::SizeAtCompileTime)==Eigen::Dynamic \
|| int(TYPE0::SizeAtCompileTime)==int(TYPE1::SizeAtCompileTime)),\
YOU_MIXED_VECTORS_OF_DIFFERENT_SIZES)
#define EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0,TYPE1) \
( \
(int(TYPE0::SizeAtCompileTime)==0 && int(TYPE1::SizeAtCompileTime)==0) \
|| (\
(int(TYPE0::RowsAtCompileTime)==Eigen::Dynamic \
|| int(TYPE1::RowsAtCompileTime)==Eigen::Dynamic \
|| int(TYPE0::RowsAtCompileTime)==int(TYPE1::RowsAtCompileTime)) \
&& (int(TYPE0::ColsAtCompileTime)==Eigen::Dynamic \
|| int(TYPE1::ColsAtCompileTime)==Eigen::Dynamic \
|| int(TYPE0::ColsAtCompileTime)==int(TYPE1::ColsAtCompileTime))\
) \
)
#ifdef EIGEN2_SUPPORT
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \
eigen_assert(!NumTraits<Scalar>::IsInteger);
#else
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \
EIGEN_STATIC_ASSERT(!NumTraits<TYPE>::IsInteger, THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
#endif
// static assertion failing if it is guaranteed at compile-time that the two matrix expression types have different sizes
#define EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(TYPE0,TYPE1) \
EIGEN_STATIC_ASSERT( \
EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0,TYPE1),\
YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES)
#define EIGEN_STATIC_ASSERT_SIZE_1x1(TYPE) \
EIGEN_STATIC_ASSERT((TYPE::RowsAtCompileTime == 1 || TYPE::RowsAtCompileTime == Dynamic) && \
(TYPE::ColsAtCompileTime == 1 || TYPE::ColsAtCompileTime == Dynamic), \
THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS)
#define EIGEN_STATIC_ASSERT_LVALUE(Derived) \
EIGEN_STATIC_ASSERT(internal::is_lvalue<Derived>::value, \
THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY)
#endif // EIGEN_STATIC_ASSERT_H

Some files were not shown because too many files have changed in this diff Show more