BU_Stoch_pool/models/myresnet3.py

167 lines
5.4 KiB
Python

'''ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from .stoch import SConv2dAvg
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, stoch=False):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.stoch=stoch
if stoch:
self.conv2 = SConv2dAvg(planes, planes, kernel_size=3,
stride=1, padding=1) #bias=False) #Bias !?
else :
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
if self.stoch:
_,_,h1,w1=out.shape
h2,w2 = self.conv2.get_size(h1,w1)
mask2 = torch.ones((h2,w2), device=x.device)
selh2,selw2,mask1 = self.conv2.sample(h1,w1,mask=mask2)
out = self.bn2(self.conv2(out,selh2,selw2,mask2,stoch=self.stoch))
else:
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion *
planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10,stoch=False):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, stoch=stoch)
self.linear = nn.Linear(512*block.expansion, num_classes)
self.stoch = stoch
# if self.stoch:
# old_conv = self.layer4[-1].conv2
# self.layer4[-1].conv2=SConv2dAvg(old_conv.weight.shape[0],
# old_conv.weight.shape[1],
# old_conv.kernel_size,
# stride=4)#old_conv.stride[0]) #Bias !?
def _make_layer(self, block, planes, num_blocks, stride, stoch=False):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
if stoch:
layers[-1]=block(self.in_planes, planes, stride, stoch=True)
return nn.Sequential(*layers)
def forward(self, x , stoch = False):
#if self.training==False:
# stoch=False
#print(stoch)
# self.layer1.stoch=stoch
# self.layer2.stoch=stoch
# self.layer3.stoch=stoch
self.layer4[-1].stoch=stoch
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
# print(out.shape)
out = F.avg_pool2d(out, 4)
# print(out.shape)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def MyResNet18(stoch=True):
return ResNet(BasicBlock, [2, 2, 2, 2],stoch=stoch)
def ResNet34():
return ResNet(BasicBlock, [3, 4, 6, 3])
def MyResNet50():
return ResNet(Bottleneck, [3, 4, 6, 3])
def ResNet101():
return ResNet(Bottleneck, [3, 4, 23, 3])
def ResNet152():
return ResNet(Bottleneck, [3, 8, 36, 3])
def test():
net = ResNet18()
y = net(torch.randn(1, 3, 32, 32))
print(y.size())
# test()