mirror of
https://github.com/AntoineHX/BU_Stoch_pool.git
synced 2025-05-03 17:20:45 +02:00
167 lines
5.4 KiB
Python
167 lines
5.4 KiB
Python
'''ResNet in PyTorch.
|
|
|
|
For Pre-activation ResNet, see 'preact_resnet.py'.
|
|
|
|
Reference:
|
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
|
|
Deep Residual Learning for Image Recognition. arXiv:1512.03385
|
|
'''
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .stoch import SConv2dAvg
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, in_planes, planes, stride=1, stoch=False):
|
|
super(BasicBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(
|
|
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
|
|
self.stoch=stoch
|
|
if stoch:
|
|
self.conv2 = SConv2dAvg(planes, planes, kernel_size=3,
|
|
stride=1, padding=1) #bias=False) #Bias !?
|
|
else :
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
|
|
stride=1, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
|
|
self.shortcut = nn.Sequential()
|
|
if stride != 1 or in_planes != self.expansion*planes:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_planes, self.expansion*planes,
|
|
kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(self.expansion*planes)
|
|
)
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
if self.stoch:
|
|
_,_,h1,w1=out.shape
|
|
h2,w2 = self.conv2.get_size(h1,w1)
|
|
mask2 = torch.ones((h2,w2), device=x.device)
|
|
selh2,selw2,mask1 = self.conv2.sample(h1,w1,mask=mask2)
|
|
out = self.bn2(self.conv2(out,selh2,selw2,mask2,stoch=self.stoch))
|
|
else:
|
|
out = self.bn2(self.conv2(out))
|
|
out += self.shortcut(x)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
super(Bottleneck, self).__init__()
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
|
|
stride=stride, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv3 = nn.Conv2d(planes, self.expansion *
|
|
planes, kernel_size=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
|
|
|
|
self.shortcut = nn.Sequential()
|
|
if stride != 1 or in_planes != self.expansion*planes:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_planes, self.expansion*planes,
|
|
kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(self.expansion*planes)
|
|
)
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = F.relu(self.bn2(self.conv2(out)))
|
|
out = self.bn3(self.conv3(out))
|
|
out += self.shortcut(x)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
def __init__(self, block, num_blocks, num_classes=10,stoch=False):
|
|
super(ResNet, self).__init__()
|
|
self.in_planes = 64
|
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
|
|
stride=1, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, stoch=stoch)
|
|
self.linear = nn.Linear(512*block.expansion, num_classes)
|
|
self.stoch = stoch
|
|
|
|
# if self.stoch:
|
|
# old_conv = self.layer4[-1].conv2
|
|
# self.layer4[-1].conv2=SConv2dAvg(old_conv.weight.shape[0],
|
|
# old_conv.weight.shape[1],
|
|
# old_conv.kernel_size,
|
|
# stride=4)#old_conv.stride[0]) #Bias !?
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride, stoch=False):
|
|
strides = [stride] + [1]*(num_blocks-1)
|
|
layers = []
|
|
for stride in strides:
|
|
layers.append(block(self.in_planes, planes, stride))
|
|
self.in_planes = planes * block.expansion
|
|
if stoch:
|
|
layers[-1]=block(self.in_planes, planes, stride, stoch=True)
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x , stoch = False):
|
|
#if self.training==False:
|
|
# stoch=False
|
|
#print(stoch)
|
|
# self.layer1.stoch=stoch
|
|
# self.layer2.stoch=stoch
|
|
# self.layer3.stoch=stoch
|
|
self.layer4[-1].stoch=stoch
|
|
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = self.layer1(out)
|
|
out = self.layer2(out)
|
|
out = self.layer3(out)
|
|
out = self.layer4(out)
|
|
|
|
# print(out.shape)
|
|
out = F.avg_pool2d(out, 4)
|
|
# print(out.shape)
|
|
out = out.view(out.size(0), -1)
|
|
out = self.linear(out)
|
|
return out
|
|
|
|
|
|
def MyResNet18(stoch=True):
|
|
return ResNet(BasicBlock, [2, 2, 2, 2],stoch=stoch)
|
|
|
|
|
|
def ResNet34():
|
|
return ResNet(BasicBlock, [3, 4, 6, 3])
|
|
|
|
|
|
def MyResNet50():
|
|
return ResNet(Bottleneck, [3, 4, 6, 3])
|
|
|
|
|
|
def ResNet101():
|
|
return ResNet(Bottleneck, [3, 4, 23, 3])
|
|
|
|
|
|
def ResNet152():
|
|
return ResNet(Bottleneck, [3, 8, 36, 3])
|
|
|
|
|
|
def test():
|
|
net = ResNet18()
|
|
y = net(torch.randn(1, 3, 32, 32))
|
|
print(y.size())
|
|
|
|
# test()
|