added faster filtering and convolution, but not working yet for BU

This commit is contained in:
Marco Pedersoli 2020-06-13 20:47:19 -04:00
parent 9d68bc30bd
commit f7436d0002
5 changed files with 295 additions and 11 deletions

17
main.py
View file

@ -49,7 +49,7 @@ checkpoint=False
# Data
print('==> Preparing data..')
dataroot="~/scratch/data"
dataroot="./data"
download_data=False
transform_train = [
# transforms.RandomCrop(32, padding=4),
@ -116,7 +116,7 @@ print('==> Building model..')
# net = MyLeNetMatStochBU() # 10.5s - 45.3% #1.3GB
net=globals()[args.net]()
print(net)
#print(net)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
@ -244,7 +244,7 @@ def stest(epoch,times=10):
best_acc = acc
import matplotlib.pyplot as plt
def plot_res(log, fig_name='res'):
def plot_res(log, best_acc,fig_name='res'):
"""Save a visual graph of the logs.
Args:
@ -260,7 +260,7 @@ def plot_res(log, fig_name='res'):
ax[0].plot(epochs,[x["test_loss"] for x in log], label='Test')
ax[0].legend()
ax[1].set_title('Acc')
ax[1].set_title('Acc %s'%best_acc)
ax[1].plot(epochs,[x["train_acc"] for x in log], label='Train')
ax[1].plot(epochs,[x["test_acc"] for x in log], label='Test')
ax[1].legend()
@ -270,7 +270,7 @@ def plot_res(log, fig_name='res'):
plt.savefig(fig_name, bbox_inches='tight')
plt.close()
from warmup_scheduler import GradualWarmupScheduler
#from warmup_scheduler import GradualWarmupScheduler
def get_scheduler(schedule, epochs, warmup_mul, warmup_ep):
scheduler=None
if schedule=='cosine':
@ -328,11 +328,12 @@ for epoch in range(start_epoch, start_epoch+args.epochs):
print('\nEpoch: %d' % epoch)
print("Acc : %.2f / %.2f"%(train_acc, test_acc))
print("Loss : %.2f / %.2f"%(train_loss, test_loss))
print('Time:',time.perf_counter() - t0)
exec_time=time.perf_counter() - t0
print('-'*9)
print('Best Acc : %.2f'%best_acc)
print('Training time (s):',exec_time)
print('Training time (min):',exec_time/60)
import json
@ -344,8 +345,8 @@ except:
print("Failed to save logs :",filename)
print(sys.exc_info()[1])
try:
plot_res(log, fig_name=res_folder+filename)
plot_res(log,best_acc, fig_name=res_folder+filename)
print('Plot :\"',res_folder+filename, '\" saved !')
except:
print("Failed to plot res")
print(sys.exc_info()[1])
print(sys.exc_info()[1])

View file

@ -1,2 +1,2 @@
from .mylenet4 import *
from .myresnet3 import *
from .myresnet4 import *

View file

@ -119,7 +119,7 @@ class ResNet(nn.Module):
def forward(self, x , stoch = False):
#if self.training==False:
# stoch=False
print(stoch)
#print(stoch)
# self.layer1.stoch=stoch
# self.layer2.stoch=stoch
# self.layer3.stoch=stoch

213
models/myresnet4.py Normal file
View file

@ -0,0 +1,213 @@
'''ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from .stochsim import savg_pool2d
from .stoch import *
class SAvg_Pool2d(nn.Module):
def __init__(self, stride=1, padding=0, dilation=1, groups=1,ceil_mode=True,bias=False,mode='s'):
super(SAvg_Pool2d, self).__init__()
self.stride = stride
self.mode = mode
self.ceil_mode = ceil_mode
def forward(self, x,stoch = True):
out = savg_pool2d(x, self.stride, mode = self.mode,ceil_mode = self.ceil_mode)
return out
stochmode = 'sim'#'sim'#'stride''stoch'''
finalstochpool = True
simmode = 'sbc'
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1,pool=1):
super(BasicBlock, self).__init__()
if stochmode=='' or stride==1:
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
elif stochmode=='stride':
if finalstochpool:
stride = stride*pool
self.conv1 = SConv2dStride(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
elif stochmode=='sim':
if finalstochpool:
stride = stride*pool
self.conv1 = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=1, bias=False),
SAvg_Pool2d(stride, mode = simmode,ceil_mode = True)
)
elif stochmode=='stoch':
if finalstochpool:
stride = stride*pool
self.conv1 = SConv2dAvg(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
if stochmode=='stoch':
if pool!=1 and finalstochpool:
self.conv2 = SConv2dAvg(planes, planes, kernel_size=3,
stride=pool, padding=1, bias=False)
else:
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
else:
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
if stochmode=='stride':
self.shortcut = nn.Sequential(
SConv2dStride(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
elif stochmode=='stoch':
self.shortcut = nn.Sequential(
SConv2dAvg(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
elif stochmode=='sim':
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=1, bias=False),
SAvg_Pool2d(stride, mode = simmode,ceil_mode = True),
nn.BatchNorm2d(self.expansion*planes)
)
elif stochmode=='':
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
#only basic block has been updated!!!
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
#self.conv1 = SConv2dStride(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = SConv2dStride(planes, planes, kernel_size=3,stride=stride, padding=1, bias=False)
#self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = SConv2dStride(planes, self.expansion*planes, kernel_size=1, bias=False)
#self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
#nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
SConv2dStride(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10,stoch=False):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2,pool=4)
self.linear = nn.Linear(512*block.expansion, num_classes)
self.stoch = stoch
def _make_layer(self, block, planes, num_blocks, stride, pool=1):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride,pool))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x ,stoch = True):
#if self.training==False:
# stoch=False
#stoch=True
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
#if self.stoch:
if stochmode=='':
if not(finalstochpool):
#if stochmode == '':
out = F.avg_pool2d(out, 4)
else:
out = savg_pool2d(out, 4, mode = simmode)
else:
if not(finalstochpool):
out = F.avg_pool2d(out, 4)
# else:
# if stoch:
# out = savg_pool2d(out, 4, mode = 's')
# else:
# out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def MyResNet18(stoch=False):
return ResNet(BasicBlock, [2, 2, 2, 2],stoch=stoch)
def ResNet34():
return ResNet(BasicBlock, [3, 4, 6, 3])
def MyResNet50():
return ResNet(Bottleneck, [3, 4, 6, 3])
def ResNet101():
return ResNet(Bottleneck, [3, 4, 23, 3])
def ResNet152():
return ResNet(Bottleneck, [3, 8, 36, 3])
def test():
net = ResNet18()
y = net(torch.randn(1, 3, 32, 32))
print(y.size())
# test()

View file

@ -4,6 +4,7 @@ import torch.nn as nn
import torch.nn.functional as F
import math
import opt_einsum as oe
class SConv2dStride(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,ceil_mode=True,bias=False):
@ -54,6 +55,73 @@ class SConv2dAvg(nn.Module):
batch_size, in_channels, in_h, in_w = input.shape
out_channels, in_channels, kh, kw = self.weight.shape
afterconv_h = in_h+2*self.padding-(kh-1) #size after conv
afterconv_w = in_w+2*self.padding-(kw-1)
if self.ceil_mode: #ceil_mode = talse default mode for strided conv
out_h = math.ceil(afterconv_h/stride)
out_w = math.ceil(afterconv_w/stride)
else: #ceil_mode = false default mode for pooling
out_h = math.floor(afterconv_h/stride)
out_w = math.floor(afterconv_w/stride)
unfold = torch.nn.Unfold(kernel_size=(kh, kw), dilation=self.dilation, padding=self.padding, stride=1)
inp_unf = unfold(input) #transform into a matrix (batch_size, in_channels*kh*kw,afterconv_h,afterconv_w)
if stride!=1: # if stride==1 there is no pooling
inp_unf = inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h,afterconv_w)
if selh[0,0]==-1: # if not given sampled selection
#selction of where to sample for each pooling location
sel = torch.randint(stride*stride,(out_h,out_w), device=device)
if self.ceil_mode: #in case of ceil_mode need to select only the good locations for the last regions
resth = (out_h*stride)-afterconv_h
restw = (out_w*stride)-afterconv_w
if resth!=0:
sel[-1] = (sel[-1]//stride)%(stride-resth)*stride+(sel[-1]%stride)
sel[:,-1] = (sel[:,-1]%stride)%(stride-restw)+sel[:,-1]//stride*stride
#print(stride-resth,sel[-1])
#print(stride-restw,sel[:,-1])
rng = torch.arange(0,afterconv_h*afterconv_w,stride*stride,device=device).view(out_h,out_w)
index = sel+rng
index = index.repeat(batch_size,in_channels*kh*kw,1,1)
if mask[0,0]==-1:# in case of not given mask use only sampled selection
#inp_unf = inp_unf[:,:,rng_h,rng_w].view(batch_size,in_channels*kh*kw,-1)
inp_unf = torch.gather(inp_unf.view(batch_size,in_channels*kh*kw,afterconv_h*afterconv_w),2,index.view(batch_size,in_channels*kh*kw,out_h*out_w)).view(batch_size,in_channels*kh*kw,out_h*out_w)
else:#in case of a valid mask use selection only on the mask locations
inp_unf = inp_unf[:,:,rng_h[mask>0],rng_w[mask>0]]
#Matrix mul
if self.bias is None:
#flt = self.weight.view(self.weight.size(0), -1).t()
#out_unf = inp_unf.transpose(2,1).matmul(flt).transpose(1, 2)
out_unf = oe.contract('bji,kj->bki',inp_unf,self.weight.view(self.weight.size(0), -1),backend='torch')
#print(((out_unf-out_unf1)**2).mean())
else:
#out_unf = oe.contract('bji,kj,b->bki',inp_unf,self.weight.view(self.weight.size(0), -1),self.bias,backend='torch')#+self.bias.view(1,-1,1)#still slow
out_unf = oe.contract('bji,kj->bki',inp_unf,self.weight.view(self.weight.size(0), -1),backend='torch')+self.bias.view(1,-1,1)#still slow
#self.flt = self.weight.view(self.weight.size(0), -1).t()
#out_unf = (inp_unf.transpose(1, 2).matmul(self.flt) + self.bias).transpose(1, 2)
if stride==1 or mask[0,0]==-1:# in case of no mask and stride==1
out = out_unf.view(batch_size,out_channels,out_h,out_w) #Fold
#if stoch==False: #this is done outside for more clarity
# out = F.avg_pool2d(out,self.stride,ceil_mode=True)
else:#in case of mask
out = torch.zeros(batch_size, out_channels,out_h,out_w,device=device)
out[:,:,mask>0] = out_unf
return out
def forward_(self, input, selh=-torch.ones(1,1), selw=-torch.ones(1,1), mask=-torch.ones(1,1),stoch=True,stride=-1):
device=input.device
if stride==-1:
stride = self.stride #if stride not defined use self.stride
if stoch==False:
stride=1 #test with real average pooling
batch_size, in_channels, in_h, in_w = input.shape
out_channels, in_channels, kh, kw = self.weight.shape
afterconv_h = in_h+2*self.padding-(kh-1) #size after conv
afterconv_w = in_w+2*self.padding-(kw-1)
if self.ceil_mode: #ceil_mode = talse default mode for strided conv
@ -87,8 +155,10 @@ class SConv2dAvg(nn.Module):
#Matrix mul
if self.bias is None:
out_unf = inp_unf.transpose(1, 2).matmul(self.weight.view(self.weight.size(0), -1).t()).transpose(1, 2)
#out_unf = inp_unf.transpose(1, 2).matmul(self.weight.view(self.weight.size(0), -1).t()).transpose(1, 2)
out_unf = oe.contract('bji,kj->bki',inp_unf,self.weight.view(self.weight.size(0), -1),backend='torch')
else:
dgdg
out_unf = (inp_unf.transpose(1, 2).matmul(self.weight.view(self.weight.size(0), -1).t()) + self.bias).transpose(1, 2)
if stride==1 or mask[0,0]==-1:# in case of no mask and stride==1