smart_augmentation/Gradient-Descent-The-Ultimate-Optimizer/data_aug.py
Harle, Antoine (Contracteur) 3ae3e02e59 Initial Commit
2019-11-08 11:28:06 -05:00

244 lines
No EOL
9 KiB
Python

from hyperopt import *
#from hyperopt_v2 import *
import torchvision.transforms.functional as TF
import torchvision.transforms as T
#from scipy import ndimage
import kornia
import random
class MNIST_FullyConnected_Augmented(Optimizable):
"""
A fully-connected NN for the MNIST task. This is Optimizable but not itself
an optimizer.
"""
def __init__(self, num_inp, num_hid, num_out, optimizer, device = torch.device('cuda')):
self.device = device
#print(self.device)
parameters = {
"w1": torch.zeros(num_inp, num_hid, device=self.device).t(),
"b1": torch.zeros(num_hid, device=self.device).t(),
"w2": torch.zeros(num_hid, num_out, device=self.device).t(),
"b2": torch.zeros(num_out, device=self.device).t(),
#Data augmentation
"prob": torch.tensor(0.5, device=self.device),
"mag": torch.tensor(180.0, device=self.device),
}
super().__init__(parameters, optimizer)
def initialize(self):
nn.init.kaiming_uniform_(self.parameters["w1"], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.parameters["w2"], a=math.sqrt(5))
self.optimizer.initialize()
#print(self.device)
def forward(self, x):
"""Compute a prediction."""
#print("Prob:",self.parameters["prob"].item())
if random.random() < self.parameters["prob"]:
#angle = 45
#x = TF.rotate(x, angle)
#print(self.device)
#x = F.linear(x, torch.ones(28*28, 28*28, device=self.device).t()*self.parameters["mag"], bias=None)
x = x + self.parameters["mag"]
x = F.linear(x, self.parameters["w1"], self.parameters["b1"])
x = torch.tanh(x)
x = F.linear(x, self.parameters["w2"], self.parameters["b2"])
x = torch.tanh(x)
x = F.log_softmax(x, dim=1)
return x
def adjust(self):
self.optimizer.adjust(self.parameters)
def __str__(self):
return "mnist_FC_augmented / " + str(self.optimizer)
class LeNet(Optimizable, nn.Module):
def __init__(self, num_inp, num_out, optimizer, device = torch.device('cuda')):
nn.Module.__init__(self)
self.device = device
parameters = {
"w1": torch.zeros(20, num_inp, 5, 5, device=self.device),
"b1": torch.zeros(20, device=self.device),
"w2": torch.zeros(50, 20, 5, 5, device=self.device),
"b2": torch.zeros(50, device=self.device),
"w3": torch.zeros(500,4*4*50, device=self.device),
"b3": torch.zeros(500, device=self.device),
"w4": torch.zeros(10, 500, device=self.device),
"b4": torch.zeros(10, device=self.device),
#Data augmentation
"prob": torch.tensor(1.0, device=self.device),
"mag": torch.tensor(180.0, device=self.device),
}
super().__init__(parameters, optimizer)
def initialize(self):
nn.init.kaiming_uniform_(self.parameters["w1"], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.parameters["w2"], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.parameters["w3"], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.parameters["w4"], a=math.sqrt(5))
self.optimizer.initialize()
def forward(self, x):
if random.random() < self.parameters["prob"]:
batch_size = x.shape[0]
# create transformation (rotation)
alpha = self.parameters["mag"] # in degrees
angle = torch.ones(batch_size, device=self.device) * alpha
# define the rotation center
center = torch.ones(batch_size, 2, device=self.device)
center[..., 0] = x.shape[3] / 2 # x
center[..., 1] = x.shape[2] / 2 # y
#print(x.shape, center)
# define the scale factor
scale = torch.ones(batch_size, device=self.device)
# compute the transformation matrix
M = kornia.get_rotation_matrix2d(center, angle, scale)
# apply the transformation to original image
x = kornia.warp_affine(x, M, dsize=(x.shape[2], x.shape[3])) #dsize=(h, w)
#print("Start Shape ", x.shape)
out = F.relu(F.conv2d(input=x, weight=self.parameters["w1"], bias=self.parameters["b1"]))
#print("Shape ", out.shape)
out = F.max_pool2d(out, 2)
#print("Shape ", out.shape)
out = F.relu(F.conv2d(input=out, weight=self.parameters["w2"], bias=self.parameters["b2"]))
#print("Shape ", out.shape)
out = F.max_pool2d(out, 2)
#print("Shape ", out.shape)
out = out.view(out.size(0), -1)
#print("Shape ", out.shape)
out = F.relu(F.linear(out, self.parameters["w3"], self.parameters["b3"]))
#print("Shape ", out.shape)
out = F.linear(out, self.parameters["w4"], self.parameters["b4"])
#print("Shape ", out.shape)
return F.log_softmax(out, dim=1)
def adjust(self):
self.optimizer.adjust(self.parameters)
def __str__(self):
return "mnist_CNN_augmented / " + str(self.optimizer)
class LeNet_v2(Optimizable, nn.Module):
def __init__(self, num_inp, num_out, optimizer, device = torch.device('cuda')):
nn.Module.__init__(self)
self.device = device
self.conv1 = nn.Conv2d(num_inp, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
#self.fc1 = nn.Linear(4*4*50, 500)
self.fc1 = nn.Linear(1250, 500)
self.fc2 = nn.Linear(500, 10)
#print(self.conv1.weight)
parameters = {
"w1": self.conv1.weight,
"b1": self.conv1.bias,
"w2": self.conv2.weight,
"b2": self.conv2.bias,
"w3": self.fc1.weight,
"b3": self.fc1.bias,
"w4": self.fc2.weight,
"b4": self.fc2.bias,
#Data augmentation
"prob": torch.tensor(0.5, device=self.device),
"mag": torch.tensor(1.0, device=self.device),
}
Optimizable.__init__(self, parameters, optimizer)
'''
def forward(self, x): #Sature la memoire ???
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
#x = x.view(-1, 4*4*50)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
'''
def forward(self, x):
if random.random() < self.parameters["prob"].item():
#print(self.parameters["prob"])
#x = [T.ToTensor()(
# TF.affine(img=T.ToPILImage()(im), angle=self.parameters["mag"], translate=(0,0), scale=1, shear=0, resample=0, fillcolor=None))
# for im in torch.unbind(x,dim=0)]
#x = torch.stack(x,dim=0)
#x = [ndimage.rotate(im, self.parameters["mag"], reshape=False)
# for im in torch.unbind(x,dim=0)]
#x = torch.stack(x,dim=0)
#x = [im + self.parameters["mag"]
# for im in torch.unbind(x,dim=0)]
#x = torch.stack(x,dim=0)
batch_size = x.shape[0]
# create transformation (rotation)
alpha = self.parameters["mag"] * 180 # in degrees
angle = torch.ones(batch_size, device=self.device) * alpha
# define the rotation center
center = torch.ones(batch_size, 2, device=self.device)
center[..., 0] = x.shape[3] / 2 # x
center[..., 1] = x.shape[2] / 2 # y
#print(x.shape, center)
# define the scale factor
scale = torch.ones(batch_size, device=self.device)
# compute the transformation matrix
M = kornia.get_rotation_matrix2d(center, angle, scale)
# apply the transformation to original image
x = kornia.warp_affine(x, M, dsize=(x.shape[2], x.shape[3])) #dsize=(h, w)
#print("Start Shape ", x.shape)
out = F.relu(F.conv2d(input=x, weight=self.parameters["w1"], bias=self.parameters["b1"]))
#print("Shape ", out.shape)
out = F.max_pool2d(out, 2)
#print("Shape ", out.shape)
out = F.relu(F.conv2d(input=out, weight=self.parameters["w2"], bias=self.parameters["b2"]))
#print("Shape ", out.shape)
out = F.max_pool2d(out, 2)
#print("Shape ", out.shape)
out = out.view(out.size(0), -1)
#print("Shape ", out.shape)
out = F.relu(F.linear(out, self.parameters["w3"], self.parameters["b3"]))
#print("Shape ", out.shape)
out = F.linear(out, self.parameters["w4"], self.parameters["b4"])
#print("Shape ", out.shape)
return F.log_softmax(out, dim=1)
def initialize(self):
self.optimizer.initialize()
def adjust(self):
self.optimizer.adjust(self.parameters)
def adjust_val(self):
self.optimizer.adjust_val(self.parameters)
def eval(self):
self.parameters['prob']=torch.tensor(0.0, device=self.device)
def __str__(self):
return "mnist_CNN_augmented / " + str(self.optimizer)