mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 20:20:46 +02:00
93 lines
No EOL
3.9 KiB
Python
Executable file
93 lines
No EOL
3.9 KiB
Python
Executable file
from utils import *
|
|
|
|
if __name__ == "__main__":
|
|
|
|
'''
|
|
files=[
|
|
#"res/good_TF_tests/log/Aug_mod(Data_augV5(Mix0.5-14TFx2-MagFxSh)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
|
|
#"res/good_TF_tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
|
|
"res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-150epochs(dataug:0)-0in_it-0.json",
|
|
#"res/log/Aug_mod(RandAugUDA(18TFx2-Mag1)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
|
|
]
|
|
|
|
for idx, file in enumerate(files):
|
|
#legend+=str(idx)+'-'+file+'\n'
|
|
with open(file) as json_file:
|
|
data = json.load(json_file)
|
|
plot_resV2(data['Log'], fig_name=file.replace('.json','').replace('log/',''), param_names=data['Param_names'])
|
|
#plot_TF_influence(data['Log'], param_names=data['Param_names'])
|
|
'''
|
|
## Loss , Acc, Proba = f(epoch) ##
|
|
#plot_compare(filenames=files, fig_name="res/compare")
|
|
|
|
'''
|
|
## Acc, Time, Epochs = f(n_tf) ##
|
|
#fig_name="res/TF_nb_tests_compare"
|
|
fig_name="res/TF_seq_tests_compare"
|
|
inner_its = [0, 10]
|
|
dataug_epoch_starts= [0]
|
|
TF_nb = 14#[len(TF.TF_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
|
|
N_seq_TF= [1, 2, 3, 4, 6] #[1]
|
|
|
|
fig, ax = plt.subplots(ncols=3, figsize=(30, 8))
|
|
for in_it in inner_its:
|
|
for dataug in dataug_epoch_starts:
|
|
|
|
#n_tf = TF_nb
|
|
#filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF)-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(n_tf, dataug, in_it) for n_tf in TF_nb]
|
|
#filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(n_tf, 1, dataug, in_it) for n_tf in TF_nb]
|
|
|
|
n_tf = N_seq_TF
|
|
#filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(TF_nb, n_tf, dataug, in_it) for n_tf in N_seq_TF]
|
|
filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(TF_nb, n_tf, dataug, in_it) for n_tf in N_seq_TF]
|
|
|
|
|
|
all_data=[]
|
|
#legend=""
|
|
for idx, file in enumerate(filenames):
|
|
#legend+=str(idx)+'-'+file+'\n'
|
|
with open(file) as json_file:
|
|
data = json.load(json_file)
|
|
all_data.append(data)
|
|
|
|
acc = [x["Accuracy"] for x in all_data]
|
|
epochs = [len(x["Log"]) for x in all_data]
|
|
time = [x["Time"][0] for x in all_data]
|
|
#for i in range(len(time)): time[i] *= epochs[i] #Estimation temps total
|
|
|
|
ax[0].plot(n_tf, acc, label="{} in_it/{} dataug".format(in_it,dataug))
|
|
ax[1].plot(n_tf, time, label="{} in_it/{} dataug".format(in_it,dataug))
|
|
ax[2].plot(n_tf, epochs, label="{} in_it/{} dataug".format(in_it,dataug))
|
|
|
|
|
|
#for data in all_data:
|
|
#print(np.mean([x["param"] for x in data["Log"]], axis=0))
|
|
#print(len(data["Param_names"]), np.argsort(np.argsort(np.mean([x["param"] for x in data["Log"]], axis=0))))
|
|
|
|
|
|
ax[0].set_title('Acc')
|
|
ax[1].set_title('Time')
|
|
ax[2].set_title('Epochs')
|
|
for a in ax: a.legend()
|
|
|
|
fig_name = fig_name.replace('.',',')
|
|
plt.savefig(fig_name, bbox_inches='tight')
|
|
plt.close()
|
|
'''
|
|
|
|
#Res print
|
|
#'''
|
|
nb_run=3
|
|
accs = []
|
|
times = []
|
|
files = ["res/brutus-tests/log/Aug_mod(Data_augV5(Mix1.0-18TFx3-MagFxSh)-LeNet)-150epochs(dataug:0)-1in_it-%s.json"%str(run) for run in range(nb_run)]
|
|
|
|
for idx, file in enumerate(files):
|
|
#legend+=str(idx)+'-'+file+'\n'
|
|
with open(file) as json_file:
|
|
data = json.load(json_file)
|
|
accs.append(data['Accuracy'])
|
|
times.append(data['Time'][0])
|
|
|
|
print(files[0], np.mean(accs), np.std(accs), np.mean(times))
|
|
#''' |