mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
51 lines
2.3 KiB
Python
Executable file
51 lines
2.3 KiB
Python
Executable file
""" Dataset definition.
|
|
|
|
MNIST / CIFAR10
|
|
"""
|
|
import torch
|
|
from torch.utils.data import SubsetRandomSampler
|
|
import torchvision
|
|
|
|
BATCH_SIZE = 300
|
|
TEST_SIZE = 300
|
|
#TEST_SIZE = 10000 #legerement +Rapide / + Consomation memoire !
|
|
|
|
download_data=False
|
|
num_workers=2 #4
|
|
pin_memory=False #True :+ GPU memory / + Lent
|
|
|
|
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
|
|
#transform_train = torchvision.transforms.Compose([
|
|
# torchvision.transforms.RandomHorizontalFlip(),
|
|
# torchvision.transforms.ToTensor(),
|
|
# torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
|
#])
|
|
transform = torchvision.transforms.Compose([
|
|
torchvision.transforms.ToTensor(),
|
|
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
|
])
|
|
|
|
#data_train = torchvision.datasets.MNIST(
|
|
# "./data", train=True, download=True,
|
|
# transform=torchvision.transforms.Compose([
|
|
# #torchvision.transforms.RandomAffine(degrees=180, translate=None, scale=None, shear=None, resample=False, fillcolor=0),
|
|
# torchvision.transforms.ToTensor()
|
|
# ])
|
|
#)
|
|
#data_test = torchvision.datasets.MNIST(
|
|
# "./data", train=False, download=True, transform=torchvision.transforms.ToTensor()
|
|
#)
|
|
|
|
### Classic Dataset ###
|
|
data_train = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform)
|
|
#data_val = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform)
|
|
data_test = torchvision.datasets.CIFAR10("../data", train=False, download=download_data, transform=transform)
|
|
|
|
train_subset_indices=range(int(len(data_train)/2))
|
|
val_subset_indices=range(int(len(data_train)/2),len(data_train))
|
|
#train_subset_indices=range(BATCH_SIZE*10)
|
|
#val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20)
|
|
|
|
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
|
dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
|
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False, num_workers=num_workers, pin_memory=pin_memory)
|