smart_augmentation/higher/train_utils.py
Harle, Antoine (Contracteur) f2019aae4a Stockage code inutile dans old
2020-01-22 11:15:56 -05:00

426 lines
No EOL
16 KiB
Python
Executable file

import torch
#import torch.optim
import torchvision
import higher
from datasets import *
from utils import *
def test(model):
device = next(model.parameters()).device
model.eval()
#for i, (features, labels) in enumerate(dl_test):
# features,labels = features.to(device), labels.to(device)
# pred = model.forward(features)
# return pred.argmax(dim=1).eq(labels).sum().item() / dl_test.batch_size * 100
correct = 0
total = 0
loss = []
with torch.no_grad():
for features, labels in dl_test:
features,labels = features.to(device), labels.to(device)
outputs = model(features)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
loss.append(F.cross_entropy(outputs, labels).item())
accuracy = 100 * correct / total
return accuracy, np.mean(loss)
def compute_vaLoss(model, dl_it, dl):
device = next(model.parameters()).device
try:
xs, ys = next(dl_it)
except StopIteration: #Fin epoch val
dl_it = iter(dl)
xs, ys = next(dl_it)
xs, ys = xs.to(device), ys.to(device)
model.eval() #Validation sans transfornations !
return F.cross_entropy(F.log_softmax(model(xs), dim=1), ys)
def train_classic(model, opt_param, epochs=1, print_freq=1):
device = next(model.parameters()).device
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
optim = torch.optim.SGD(model.parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
model.train()
dl_val_it = iter(dl_val)
log = []
for epoch in range(epochs):
#print_torch_mem("Start epoch")
t0 = time.process_time()
for i, (features, labels) in enumerate(dl_train):
#print_torch_mem("Start iter")
features,labels = features.to(device), labels.to(device)
optim.zero_grad()
logits = model.forward(features)
pred = F.log_softmax(logits, dim=1)
loss = F.cross_entropy(pred,labels)
loss.backward()
optim.step()
#### Tests ####
tf = time.process_time()
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
accuracy, _ =test(model)
model.train()
#### Print ####
if(print_freq and epoch%print_freq==0):
print('-'*9)
print('Epoch : %d/%d'%(epoch,epochs))
print('Time : %.00f'%(tf - t0))
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
print('Accuracy :', accuracy)
#### Log ####
data={
"epoch": epoch,
"train_loss": loss.item(),
"val_loss": val_loss.item(),
"acc": accuracy,
"time": tf - t0,
"param": None,
}
log.append(data)
return log
def train_classic_higher(model, epochs=1):
device = next(model.parameters()).device
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
model.train()
dl_val_it = iter(dl_val)
log = []
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
diffopt = higher.optim.get_diff_optim(optim, model.parameters(),fmodel=fmodel,track_higher_grads=False)
#with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=False) as (fmodel, diffopt):
for epoch in range(epochs):
#print_torch_mem("Start epoch "+str(epoch))
#print("Fast param ",len(fmodel._fast_params))
t0 = time.process_time()
for i, (features, labels) in enumerate(dl_train):
#print_torch_mem("Start iter")
features,labels = features.to(device), labels.to(device)
#optim.zero_grad()
logits = model.forward(features)
pred = F.log_softmax(logits, dim=1)
loss = F.cross_entropy(pred,labels)
#.backward()
#optim.step()
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
model_copy(src=fmodel, dst=model, patch_copy=False)
optim_copy(dopt=diffopt, opt=optim)
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
diffopt = higher.optim.get_diff_optim(optim, model.parameters(),fmodel=fmodel,track_higher_grads=False)
#### Tests ####
tf = time.process_time()
try:
xs_val, ys_val = next(dl_val_it)
except StopIteration: #Fin epoch val
dl_val_it = iter(dl_val)
xs_val, ys_val = next(dl_val_it)
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
val_loss = F.cross_entropy(model(xs_val), ys_val)
accuracy, _ =test(model)
model.train()
#### Log ####
data={
"epoch": epoch,
"train_loss": loss.item(),
"val_loss": val_loss.item(),
"acc": accuracy,
"time": tf - t0,
"param": None,
}
log.append(data)
return log
def train_UDA(model, dl_unsup, opt_param, epochs=1, print_freq=1):
device = next(model.parameters()).device
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
opt = torch.optim.SGD(model.parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
model.train()
dl_val_it = iter(dl_val)
dl_unsup_it =iter(dl_unsup)
log = []
for epoch in range(epochs):
#print_torch_mem("Start epoch")
t0 = time.process_time()
for i, (features, labels) in enumerate(dl_train):
#print_torch_mem("Start iter")
features,labels = features.to(device), labels.to(device)
optim.zero_grad()
#Supervised
logits = model.forward(features)
pred = F.log_softmax(logits, dim=1)
sup_loss = F.cross_entropy(pred,labels)
#Unsupervised
try:
aug_xs, origin_xs, ys = next(dl_unsup_it)
except StopIteration: #Fin epoch val
dl_unsup_it =iter(dl_unsup)
aug_xs, origin_xs, ys = next(dl_unsup_it)
aug_xs, origin_xs, ys = aug_xs.to(device), origin_xs.to(device), ys.to(device)
#print(aug_xs.shape, origin_xs.shape, ys.shape)
sup_logits = model.forward(origin_xs)
unsup_logits = model.forward(aug_xs)
log_sup=F.log_softmax(sup_logits, dim=1)
log_unsup=F.log_softmax(unsup_logits, dim=1)
#KL div w/ logits
unsup_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_unsup)
unsup_loss=unsup_loss.sum(dim=-1).mean()
#print(unsup_loss)
unsupp_coeff = 1
loss = sup_loss + unsup_loss * unsupp_coeff
loss.backward()
optim.step()
#### Tests ####
tf = time.process_time()
try:
xs_val, ys_val = next(dl_val_it)
except StopIteration: #Fin epoch val
dl_val_it = iter(dl_val)
xs_val, ys_val = next(dl_val_it)
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
val_loss = F.cross_entropy(model(xs_val), ys_val)
accuracy, _ =test(model)
model.train()
#### Print ####
if(print_freq and epoch%print_freq==0):
print('-'*9)
print('Epoch : %d/%d'%(epoch,epochs))
print('Time : %.00f'%(tf - t0))
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
print('Sup Loss :', sup_loss.item(), '/ unsup_loss :', unsup_loss.item())
print('Accuracy :', accuracy)
#### Log ####
data={
"epoch": epoch,
"train_loss": loss.item(),
"val_loss": val_loss.item(),
"acc": accuracy,
"time": tf - t0,
"param": None,
}
log.append(data)
return log
def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, hp_opt=False, save_sample=False):
device = next(model.parameters()).device
log = []
dl_val_it = iter(dl_val)
val_loss=None
high_grad_track = True
if inner_it == 0: #No HP optimization
high_grad_track=False
if dataug_epoch_start!=0: #Augmentation de donnee differee
model.augment(mode=False)
high_grad_track = False
## Optimizers ##
#Inner Opt
inner_opt = torch.optim.SGD(model['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
diffopt = model['model'].get_diffopt(
inner_opt,
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
track_higher_grads=high_grad_track)
#Meta Opt
hyper_param = list(model['data_aug'].parameters())
if hp_opt :
for param_group in diffopt.param_groups:
for param in list(opt_param['Inner'].keys())[1:]:
param_group[param]=torch.tensor(param_group[param]).to(device).requires_grad_()
hyper_param += [param_group[param]]
meta_opt = torch.optim.Adam(hyper_param, lr=opt_param['Meta']['lr']) #lr=1e-2
model.train()
meta_opt.zero_grad()
for epoch in range(1, epochs+1):
t0 = time.process_time()
for i, (xs, ys) in enumerate(dl_train):
xs, ys = xs.to(device), ys.to(device)
if(not KLdiv):
#Methode uniforme
logits = model(xs) # modified `params` can also be passed as a kwarg
loss = F.cross_entropy(F.log_softmax(logits, dim=1), ys, reduction='none') # no need to call loss.backwards()
if model._data_augmentation: #Weight loss
w_loss = model['data_aug'].loss_weight()#.to(device)
loss = loss * w_loss
loss = loss.mean()
else:
#Methode KL div
# Supervised loss (classic)
if model.is_augmenting() :
model.augment(mode=False)
sup_logits = model(xs)
model.augment(mode=True)
else:
sup_logits = model(xs)
log_sup=F.log_softmax(sup_logits, dim=1)
loss = F.cross_entropy(log_sup, ys)
# Unsupervised loss (KLdiv)
if model.is_augmenting() :
aug_logits = model(xs)
log_aug=F.log_softmax(aug_logits, dim=1)
aug_loss=0
w_loss = model['data_aug'].loss_weight() #Weight loss
#KL div w/ logits - Similarite predictions (distributions)
aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug)
aug_loss = aug_loss.sum(dim=-1)
aug_loss = (w_loss * aug_loss).mean()
aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean()
unsupp_coeff = 1
loss += aug_loss * unsupp_coeff
#print_graph(loss) #to visualize computational graph
#t = time.process_time()
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
#print(len(model['model']['functional']._fast_params),"step", time.process_time()-t)
if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step
#print("meta")
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss()
#print_graph(val_loss) #to visualize computational graph
val_loss.backward()
torch.nn.utils.clip_grad_norm_(model['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN
meta_opt.step()
#Adjust Hyper-parameters
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
if hp_opt:
for param_group in diffopt.param_groups:
for param in list(opt_param['Inner'].keys())[1:]:
param_group[param].data = param_group[param].data.clamp(min=1e-4)
#Reset gradients
diffopt.detach_()
model['model'].detach_()
meta_opt.zero_grad()
tf = time.process_time()
if save_sample: #Data sample saving
try:
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
except:
print("Couldn't save samples epoch"+epoch)
pass
if(not val_loss): #Compute val loss for logs
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
# Test model
accuracy, test_loss =test(model)
model.train()
#### Log ####
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
data={
"epoch": epoch,
"train_loss": loss.item(),
"val_loss": val_loss.item(),
"acc": accuracy,
"time": tf - t0,
"mix_dist": model['data_aug']['mix_dist'].item(),
"param": param,
}
if hp_opt : data["opt_param"]=[{'lr': p_grp['lr'].item(), 'momentum': p_grp['momentum'].item()} for p_grp in diffopt.param_groups]
log.append(data)
#############
#### Print ####
if(print_freq and epoch%print_freq==0):
print('-'*9)
print('Epoch : %d/%d'%(epoch,epochs))
print('Time : %.00f'%(tf - t0))
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
print('Accuracy :', max([x["acc"] for x in log]))
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
if not model['data_aug']._fixed_prob: print('TF Proba :', model['data_aug']['prob'].data)
#print('proba grad',model['data_aug']['prob'].grad)
if not model['data_aug']._fixed_mag: print('TF Mag :', model['data_aug']['mag'].data)
#print('Mag grad',model['data_aug']['mag'].grad)
if not model['data_aug']._fixed_mix: print('Mix:', model['data_aug']['mix_dist'].item())
#print('Reg loss:', model['data_aug'].reg_loss().item())
if hp_opt :
for param_group in diffopt.param_groups:
print('Opt param - lr:', param_group['lr'].item(),'- momentum:', param_group['momentum'].item())
#############
#Augmentation de donnee differee
if not model.is_augmenting() and (epoch == dataug_epoch_start):
print('Starting Data Augmention...')
dataug_epoch_start = epoch
model.augment(mode=True)
if inner_it != 0: #Rebuild diffopt if needed
high_grad_track = True
diffopt = model['model'].get_diffopt(
inner_opt,
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
track_higher_grads=high_grad_track)
#Data sample saving
try:
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
except:
print("Couldn't save finals samples")
pass
return log