smart_augmentation/higher/smart_aug/test_dataug.py
Harle, Antoine (Contracteur) bce882de38 Changement mesure process time
2020-02-03 12:55:54 -05:00

192 lines
No EOL
5.7 KiB
Python
Executable file

""" Script to run experiment on smart augmentation.
"""
import sys
from LeNet import *
from dataug import *
#from utils import *
from train_utils import *
# Use available TF (see transformations.py)
tf_names = [
## Geometric TF ##
'Identity',
'FlipUD',
'FlipLR',
#'Rotate',
#'TranslateX',
#'TranslateY',
#'ShearX',
#'ShearY',
## Color TF (Expect image in the range of [0, 1]) ##
#'Contrast',
#'Color',
#'Brightness',
#'Sharpness',
#'Posterize',
#'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
#Color TF (Common mag scale)
#'+Contrast',
#'+Color',
#'+Brightness',
#'+Sharpness',
#'-Contrast',
#'-Color',
#'-Brightness',
#'-Sharpness',
#'=Posterize',
#'=Solarize',
## Bad Tranformations ##
# Bad Geometric TF #
#'BShearX',
#'BShearY',
#'BTranslateX-',
#'BTranslateX-',
#'BTranslateY',
#'BTranslateY-',
#'BadContrast',
#'BadBrightness',
#'Random',
#'RandBlend'
]
device = torch.device('cuda') #Select device to use
if device == torch.device('cpu'):
device_name = 'CPU'
else:
device_name = torch.cuda.get_device_name(device)
torch.backends.cudnn.benchmark = True #Faster if same input size #Not recommended for reproductibility
#Increase reproductibility
torch.manual_seed(0)
np.random.seed(0)
##########################################
if __name__ == "__main__":
#Task to perform
tasks={
'classic',
#'aug_model'
}
#Parameters
n_inner_iter = 1
epochs = 2
dataug_epoch_start=0
optim_param={
'Meta':{
'optim':'Adam',
'lr':1e-2, #1e-2
},
'Inner':{
'optim': 'SGD',
'lr':1e-2, #1e-2
'momentum':0.9, #0.9
}
}
#Models
#model = LeNet(3,10)
#model = ResNet(num_classes=10)
import torchvision.models as models
#model=models.resnet18()
model_name = 'resnet18' #'wide_resnet50_2' #'resnet18' #str(model)
model = getattr(models.resnet, model_name)(pretrained=False)
#### Classic ####
if 'classic' in tasks:
t0 = time.perf_counter()
model = model.to(device)
print("{} on {} for {} epochs".format(model_name, device_name, epochs))
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=1)
#log= train_classic_higher(model=model, epochs=epochs)
exec_time=time.perf_counter() - t0
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved()
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]),
"Time": (np.mean(times),np.std(times), exec_time),
'Optimizer': optim_param['Inner'],
"Device": device_name,
"Memory": max_cached,
"Log": log}
print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs".format(model_name,epochs)
with open("../res/log/%s.json" % filename, "w+") as f:
try:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
except:
print("Failed to save logs :",f.name)
print(sys.exc_info()[1])
try:
plot_resV2(log, fig_name="../res/"+filename)
except:
print("Failed to plot res")
print(sys.exc_info()[1])
print('Execution Time (s): %.00f '%(exec_time))
print('-'*9)
#### Augmented Model ####
if 'aug_model' in tasks:
t0 = time.perf_counter()
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
model = Higher_model(model, model_name) #run_dist_dataugV3
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_dist_dataugV3(model=aug_model,
epochs=epochs,
inner_it=n_inner_iter,
dataug_epoch_start=dataug_epoch_start,
opt_param=optim_param,
print_freq=1,
unsup_loss=1,
hp_opt=False,
save_sample_freq=None)
exec_time=time.perf_counter() - t0
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved()
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]),
"Time": (np.mean(times),np.std(times), exec_time),
'Optimizer': optim_param,
"Device": device_name,
"Memory": max_cached,
"Param_names": aug_model.TF_names(),
"Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
with open("../res/log/%s.json" % filename, "w+") as f:
try:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
except:
print("Failed to save logs :",f.name)
print(sys.exc_info()[1])
try:
plot_resV2(log, fig_name="../res/"+filename, param_names=aug_model.TF_names())
except:
print("Failed to plot res")
print(sys.exc_info()[1])
print('Execution Time (s): %.00f '%(exec_time))
print('-'*9)