mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-03 11:40:46 +02:00
663 lines
30 KiB
HTML
663 lines
30 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
|
|
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
|
|
<meta name="generator" content="Doxygen 1.8.13"/>
|
|
<meta name="viewport" content="width=device-width, initial-scale=1"/>
|
|
<title>My Project: dataug Namespace Reference</title>
|
|
<link href="tabs.css" rel="stylesheet" type="text/css"/>
|
|
<script type="text/javascript" src="jquery.js"></script>
|
|
<script type="text/javascript" src="dynsections.js"></script>
|
|
<link href="search/search.css" rel="stylesheet" type="text/css"/>
|
|
<script type="text/javascript" src="search/searchdata.js"></script>
|
|
<script type="text/javascript" src="search/search.js"></script>
|
|
<link href="doxygen.css" rel="stylesheet" type="text/css" />
|
|
</head>
|
|
<body>
|
|
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
|
|
<div id="titlearea">
|
|
<table cellspacing="0" cellpadding="0">
|
|
<tbody>
|
|
<tr style="height: 56px;">
|
|
<td id="projectalign" style="padding-left: 0.5em;">
|
|
<div id="projectname">My Project
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
<!-- end header part -->
|
|
<!-- Generated by Doxygen 1.8.13 -->
|
|
<script type="text/javascript">
|
|
var searchBox = new SearchBox("searchBox", "search",false,'Search');
|
|
</script>
|
|
<script type="text/javascript" src="menudata.js"></script>
|
|
<script type="text/javascript" src="menu.js"></script>
|
|
<script type="text/javascript">
|
|
$(function() {
|
|
initMenu('',true,false,'search.php','Search');
|
|
$(document).ready(function() { init_search(); });
|
|
});
|
|
</script>
|
|
<div id="main-nav"></div>
|
|
<!-- window showing the filter options -->
|
|
<div id="MSearchSelectWindow"
|
|
onmouseover="return searchBox.OnSearchSelectShow()"
|
|
onmouseout="return searchBox.OnSearchSelectHide()"
|
|
onkeydown="return searchBox.OnSearchSelectKey(event)">
|
|
</div>
|
|
|
|
<!-- iframe showing the search results (closed by default) -->
|
|
<div id="MSearchResultsWindow">
|
|
<iframe src="javascript:void(0)" frameborder="0"
|
|
name="MSearchResults" id="MSearchResults">
|
|
</iframe>
|
|
</div>
|
|
|
|
</div><!-- top -->
|
|
<div class="header">
|
|
<div class="summary">
|
|
<a href="#nested-classes">Classes</a> |
|
|
<a href="#func-members">Functions</a> |
|
|
<a href="#var-members">Variables</a> </div>
|
|
<div class="headertitle">
|
|
<div class="title">dataug Namespace Reference</div> </div>
|
|
</div><!--header-->
|
|
<div class="contents">
|
|
<table class="memberdecls">
|
|
<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="nested-classes"></a>
|
|
Classes</h2></td></tr>
|
|
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classdataug_1_1Augmented__model.html">Augmented_model</a></td></tr>
|
|
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classdataug_1_1Data__augV5.html">Data_augV5</a></td></tr>
|
|
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classdataug_1_1Data__augV7.html">Data_augV7</a></td></tr>
|
|
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classdataug_1_1Higher__model.html">Higher_model</a></td></tr>
|
|
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classdataug_1_1RandAug.html">RandAug</a></td></tr>
|
|
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
|
|
</table><table class="memberdecls">
|
|
<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="func-members"></a>
|
|
Functions</h2></td></tr>
|
|
<tr class="memitem:a49f9aa79e56656aaaf631498ce639a77"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#a49f9aa79e56656aaaf631498ce639a77">__init__</a> (self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True)</td></tr>
|
|
<tr class="separator:a49f9aa79e56656aaaf631498ce639a77"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:a5c200dee1df65ee57ff3cfe046367439"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#a5c200dee1df65ee57ff3cfe046367439">forward</a> (self, x)</td></tr>
|
|
<tr class="separator:a5c200dee1df65ee57ff3cfe046367439"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:aac093b3b527fe9ab7aeb08d0a60a2375"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#aac093b3b527fe9ab7aeb08d0a60a2375">apply_TF</a> (self, x, sampled_TF)</td></tr>
|
|
<tr class="separator:aac093b3b527fe9ab7aeb08d0a60a2375"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:ab896f408428568708381647ce1acbcb0"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#ab896f408428568708381647ce1acbcb0">adjust_param</a> (self, soft=False)</td></tr>
|
|
<tr class="separator:ab896f408428568708381647ce1acbcb0"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:a7d57ec611fa1ed1479fa2219b0d83d3f"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#a7d57ec611fa1ed1479fa2219b0d83d3f">loss_weight</a> (self)</td></tr>
|
|
<tr class="separator:a7d57ec611fa1ed1479fa2219b0d83d3f"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:afa0085b0b89464ab1103ca1cf631465a"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#afa0085b0b89464ab1103ca1cf631465a">reg_loss</a> (self, reg_factor=0.005)</td></tr>
|
|
<tr class="separator:afa0085b0b89464ab1103ca1cf631465a"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:a4fad5e8c4ce3185f6b3e51b05ba06fbf"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#a4fad5e8c4ce3185f6b3e51b05ba06fbf">train</a> (self, mode=True)</td></tr>
|
|
<tr class="separator:a4fad5e8c4ce3185f6b3e51b05ba06fbf"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:a24108b035b3036f30165d37c57c25045"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#a24108b035b3036f30165d37c57c25045">eval</a> (self)</td></tr>
|
|
<tr class="separator:a24108b035b3036f30165d37c57c25045"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:a5c8accf01013ed35abd3484034181d24"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#a5c8accf01013ed35abd3484034181d24">augment</a> (self, mode=True)</td></tr>
|
|
<tr class="separator:a5c8accf01013ed35abd3484034181d24"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:aa357c11aa23f0850bc1e1de17ce901b2"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#aa357c11aa23f0850bc1e1de17ce901b2">__getitem__</a> (self, key)</td></tr>
|
|
<tr class="separator:aa357c11aa23f0850bc1e1de17ce901b2"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:a5ce12566a63f79e8f79ff186d8b59820"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#a5ce12566a63f79e8f79ff186d8b59820">__str__</a> (self)</td></tr>
|
|
<tr class="separator:a5ce12566a63f79e8f79ff186d8b59820"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:a100bf720b9a794b1fb7b1a608e88c393"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#a100bf720b9a794b1fb7b1a608e88c393">TF_prob</a> (self)</td></tr>
|
|
<tr class="separator:a100bf720b9a794b1fb7b1a608e88c393"><td class="memSeparator" colspan="2"> </td></tr>
|
|
<tr class="memitem:a28f3ce87c65716b74f18392c8846f557"><td class="memItemLeft" align="right" valign="top">def </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacedataug.html#a28f3ce87c65716b74f18392c8846f557">__init__</a> (self, TF_dict=TF.TF_dict, N_TF=1, mag=TF.PARAMETER_MAX)</td></tr>
|
|
<tr class="separator:a28f3ce87c65716b74f18392c8846f557"><td class="memSeparator" colspan="2"> </td></tr>
|
|
</table><table class="memberdecls">
|
|
<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="var-members"></a>
|
|
Variables</h2></td></tr>
|
|
<tr class="memitem:a6f6b78392ea3335dfe8871c42bbfdefd"><td class="memItemLeft" align="right" valign="top"><a id="a6f6b78392ea3335dfe8871c42bbfdefd"></a>
|
|
 </td><td class="memItemRight" valign="bottom"><b>mag</b></td></tr>
|
|
<tr class="separator:a6f6b78392ea3335dfe8871c42bbfdefd"><td class="memSeparator" colspan="2"> </td></tr>
|
|
</table>
|
|
<a name="details" id="details"></a><h2 class="groupheader">Detailed Description</h2>
|
|
<div class="textblock"><pre class="fragment">Data augmentation modules.
|
|
|
|
Features a custom implementaiton of RandAugment (RandAug), as well as a data augmentation modules allowing gradient propagation.
|
|
|
|
Typical usage:
|
|
|
|
aug_model = Augmented_model(Data_AugV5, model)
|
|
</pre> </div><h2 class="groupheader">Function Documentation</h2>
|
|
<a id="aa357c11aa23f0850bc1e1de17ce901b2"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#aa357c11aa23f0850bc1e1de17ce901b2">◆ </a></span>__getitem__()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.__getitem__ </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>key</em> </td>
|
|
</tr>
|
|
<tr>
|
|
<td></td>
|
|
<td>)</td>
|
|
<td></td><td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Access to the learnable parameters
|
|
Args:
|
|
key (string): Name of the learnable parameter to access.
|
|
|
|
Returns:
|
|
nn.Parameter.
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="a49f9aa79e56656aaaf631498ce639a77"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#a49f9aa79e56656aaaf631498ce639a77">◆ </a></span>__init__() <span class="overload">[1/2]</span></h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.__init__ </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>TF_dict</em> = <code>TF.TF_dict</code>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>N_TF</em> = <code>1</code>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>mix_dist</em> = <code>0.0</code>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>fixed_prob</em> = <code>False</code>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>fixed_mag</em> = <code>True</code>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>shared_mag</em> = <code>True</code> </td>
|
|
</tr>
|
|
<tr>
|
|
<td></td>
|
|
<td>)</td>
|
|
<td></td><td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Data augmentation module with learnable parameters.
|
|
|
|
Applies transformations (TF) to batch of data.
|
|
Each TF is defined by a (name, probability of application, magnitude of distorsion) tuple which can be learned. For the full definiton of the TF, see transformations.py.
|
|
The TF probabilities defines a distribution from which we sample the TF applied.
|
|
|
|
Be warry, that the order of sequential application of TF is not taken into account. See Data_augV7.
|
|
|
|
Attributes:
|
|
_data_augmentation (bool): Wether TF will be applied during forward pass.
|
|
_TF_dict (dict) : A dictionnary containing the data transformations (TF) to be applied.
|
|
_TF (list) : List of TF names.
|
|
_nb_tf (int) : Number of TF used.
|
|
_N_seqTF (int) : Number of TF to be applied sequentially to each inputs
|
|
_shared_mag (bool) : Wether to share a single magnitude parameters for all TF.
|
|
_fixed_mag (bool): Wether to lock the TF magnitudes.
|
|
_fixed_prob (bool): Wether to lock the TF probabilies.
|
|
_samples (list): Sampled TF index during last forward pass.
|
|
_mix_dist (bool): Wether we use a mix of an uniform distribution and the real distribution (TF probabilites). If False, only a uniform distribution is used.
|
|
_fixed_mix (bool): Wether we lock the mix distribution factor.
|
|
_params (nn.ParameterDict): Learnable parameters.
|
|
_reg_tgt (Tensor): Target for the magnitude regularisation. Only used when _fixed_mag is set to false (ie. we learn the magnitudes).
|
|
_reg_mask (list): Mask selecting the TF considered for the regularisation.
|
|
</pre><pre class="fragment">Init Data_augv5.
|
|
|
|
Args:
|
|
TF_dict (dict): A dictionnary containing the data transformations (TF) to be applied. (default: use all available TF from transformations.py)
|
|
N_TF (int): Number of TF to be applied sequentially to each inputs. (default: 1)
|
|
mix_dist (float): Proportion [0.0, 1.0] of the real distribution used for sampling/selection of the TF. Distribution = (1-mix_dist)*Uniform_distribution + mix_dist*Real_distribution. If None is given, try to learn this parameter. (default: 0)
|
|
fixed_prob (bool): Wether to lock the TF probabilies. (default: False)
|
|
fixed_mag (bool): Wether to lock the TF magnitudes. (default: True)
|
|
shared_mag (bool): Wether to share a single magnitude parameters for all TF. (default: True)
|
|
</pre><pre class="fragment">Data augmentation module with learnable parameters.
|
|
|
|
Applies transformations (TF) to batch of data.
|
|
Each TF is defined by a (name, probability of application, magnitude of distorsion) tuple which can be learned. For the full definiton of the TF, see transformations.py.
|
|
The TF probabilities defines a distribution from which we sample the TF applied.
|
|
|
|
Replace the use of TF by TF sets which are combinaisons of classic TF.
|
|
|
|
Attributes:
|
|
_data_augmentation (bool): Wether TF will be applied during forward pass.
|
|
_TF_dict (dict) : A dictionnary containing the data transformations (TF) to be applied.
|
|
_TF (list) : List of TF names.
|
|
_nb_tf (int) : Number of TF used.
|
|
_N_seqTF (int) : Number of TF to be applied sequentially to each inputs
|
|
_shared_mag (bool) : Wether to share a single magnitude parameters for all TF.
|
|
_fixed_mag (bool): Wether to lock the TF magnitudes.
|
|
_fixed_prob (bool): Wether to lock the TF probabilies.
|
|
_samples (list): Sampled TF index during last forward pass.
|
|
_mix_dist (bool): Wether we use a mix of an uniform distribution and the real distribution (TF probabilites). If False, only a uniform distribution is used.
|
|
_fixed_mix (bool): Wether we lock the mix distribution factor.
|
|
_params (nn.ParameterDict): Learnable parameters.
|
|
_reg_tgt (Tensor): Target for the magnitude regularisation. Only used when _fixed_mag is set to false (ie. we learn the magnitudes).
|
|
_reg_mask (list): Mask selecting the TF considered for the regularisation.
|
|
</pre><pre class="fragment">Init Data_augv7.
|
|
|
|
Args:
|
|
TF_dict (dict): A dictionnary containing the data transformations (TF) to be applied. (default: use all available TF from transformations.py)
|
|
N_TF (int): Number of TF to be applied sequentially to each inputs. Minimum 2, otherwise prefer using Data_augV5. (default: 2)
|
|
mix_dist (float): Proportion [0.0, 1.0] of the real distribution used for sampling/selection of the TF. Distribution = (1-mix_dist)*Uniform_distribution + mix_dist*Real_distribution. If None is given, try to learn this parameter. (default: 0)
|
|
fixed_prob (bool): Wether to lock the TF probabilies. (default: False)
|
|
fixed_mag (bool): Wether to lock the TF magnitudes. (default: True)
|
|
shared_mag (bool): Wether to share a single magnitude parameters for all TF. (default: True)
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="a28f3ce87c65716b74f18392c8846f557"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#a28f3ce87c65716b74f18392c8846f557">◆ </a></span>__init__() <span class="overload">[2/2]</span></h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.__init__ </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>TF_dict</em> = <code>TF.TF_dict</code>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>N_TF</em> = <code>1</code>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>mag</em> = <code>TF.PARAMETER_MAX</code> </td>
|
|
</tr>
|
|
<tr>
|
|
<td></td>
|
|
<td>)</td>
|
|
<td></td><td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">RandAugment implementation.
|
|
|
|
Applies transformations (TF) to batch of data.
|
|
Each TF is defined by a (name, probability of application, magnitude of distorsion) tuple. For the full definiton of the TF, see transformations.py.
|
|
The TF probabilities are ignored and, instead selected randomly.
|
|
|
|
Attributes:
|
|
_data_augmentation (bool): Wether TF will be applied during forward pass.
|
|
_TF_dict (dict) : A dictionnary containing the data transformations (TF) to be applied.
|
|
_TF (list) : List of TF names.
|
|
_nb_tf (int) : Number of TF used.
|
|
_N_seqTF (int) : Number of TF to be applied sequentially to each inputs
|
|
_shared_mag (bool) : Wether to share a single magnitude parameters for all TF. Should be True.
|
|
_fixed_mag (bool): Wether to lock the TF magnitudes. Should be True.
|
|
_params (nn.ParameterDict): Data augmentation parameters.
|
|
</pre><pre class="fragment">Init RandAug.
|
|
|
|
Args:
|
|
TF_dict (dict): A dictionnary containing the data transformations (TF) to be applied. (default: use all available TF from transformations.py)
|
|
N_TF (int): Number of TF to be applied sequentially to each inputs. (default: 1)
|
|
mag (float): Magnitude of the TF. Should be between [PARAMETER_MIN, PARAMETER_MAX] defined in transformations.py. (default: PARAMETER_MAX)
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="a5ce12566a63f79e8f79ff186d8b59820"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#a5ce12566a63f79e8f79ff186d8b59820">◆ </a></span>__str__()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.__str__ </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em></td><td>)</td>
|
|
<td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Name of the module
|
|
|
|
Returns:
|
|
String containing the name of the module as well as the higher levels parameters.
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="ab896f408428568708381647ce1acbcb0"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#ab896f408428568708381647ce1acbcb0">◆ </a></span>adjust_param()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.adjust_param </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>soft</em> = <code>False</code> </td>
|
|
</tr>
|
|
<tr>
|
|
<td></td>
|
|
<td>)</td>
|
|
<td></td><td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Enforce limitations to the learned parameters.
|
|
|
|
Ensure that the parameters value stays in the right intevals. This should be called after each update of those parameters.
|
|
|
|
Args:
|
|
soft (bool): Wether to use a softmax function for TF probabilites. Not Recommended as it tends to lock the probabilities, preventing them to be learned. (default: False)
|
|
</pre><pre class="fragment">Not used
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="aac093b3b527fe9ab7aeb08d0a60a2375"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#aac093b3b527fe9ab7aeb08d0a60a2375">◆ </a></span>apply_TF()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.apply_TF </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>x</em>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>sampled_TF</em> </td>
|
|
</tr>
|
|
<tr>
|
|
<td></td>
|
|
<td>)</td>
|
|
<td></td><td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Applies the sampled transformations.
|
|
|
|
Args:
|
|
x (Tensor): Batch of data.
|
|
sampled_TF (Tensor): Indexes of the TF to be applied to each element of data.
|
|
|
|
Returns:
|
|
Tensor: Batch of tranformed data.
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="a5c8accf01013ed35abd3484034181d24"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#a5c8accf01013ed35abd3484034181d24">◆ </a></span>augment()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.augment </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>mode</em> = <code>True</code> </td>
|
|
</tr>
|
|
<tr>
|
|
<td></td>
|
|
<td>)</td>
|
|
<td></td><td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Set the augmentation mode.
|
|
|
|
Args:
|
|
mode (bool): Wether to perform data augmentation on the forward pass. (default: True)
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="a24108b035b3036f30165d37c57c25045"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#a24108b035b3036f30165d37c57c25045">◆ </a></span>eval()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.eval </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em></td><td>)</td>
|
|
<td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Set the module to evaluation mode.
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="a5c200dee1df65ee57ff3cfe046367439"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#a5c200dee1df65ee57ff3cfe046367439">◆ </a></span>forward()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.forward </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>x</em> </td>
|
|
</tr>
|
|
<tr>
|
|
<td></td>
|
|
<td>)</td>
|
|
<td></td><td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Main method of the Data augmentation module.
|
|
|
|
Args:
|
|
x (Tensor): Batch of data.
|
|
|
|
Returns:
|
|
Tensor : Batch of tranformed data.
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="a7d57ec611fa1ed1479fa2219b0d83d3f"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#a7d57ec611fa1ed1479fa2219b0d83d3f">◆ </a></span>loss_weight()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.loss_weight </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em></td><td>)</td>
|
|
<td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Weights for the loss.
|
|
Compute the weights for the loss of each inputs depending on wich TF was applied to them.
|
|
Should be applied to the loss before reduction.
|
|
|
|
Do nottake into account the order of application of the TF. See Data_augV7.
|
|
|
|
Returns:
|
|
Tensor : Loss weights.
|
|
</pre><pre class="fragment">Weights for the loss.
|
|
Compute the weights for the loss of each inputs depending on wich TF was applied to them.
|
|
Should be applied to the loss before reduction.
|
|
|
|
Returns:
|
|
Tensor : Loss weights.
|
|
</pre><pre class="fragment">Not used
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="afa0085b0b89464ab1103ca1cf631465a"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#afa0085b0b89464ab1103ca1cf631465a">◆ </a></span>reg_loss()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.reg_loss </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>reg_factor</em> = <code>0.005</code> </td>
|
|
</tr>
|
|
<tr>
|
|
<td></td>
|
|
<td>)</td>
|
|
<td></td><td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Regularisation term used to learn the magnitudes.
|
|
Use an L2 loss to encourage high magnitudes TF.
|
|
|
|
Args:
|
|
reg_factor (float): Factor by wich the regularisation loss is multiplied. (default: 0.005)
|
|
Returns:
|
|
Tensor containing the regularisation loss value.
|
|
</pre><pre class="fragment">Not used
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="a100bf720b9a794b1fb7b1a608e88c393"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#a100bf720b9a794b1fb7b1a608e88c393">◆ </a></span>TF_prob()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.TF_prob </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em></td><td>)</td>
|
|
<td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Gives an estimation of the individual TF probabilities.
|
|
|
|
Be warry that the probability returned isn't exact. The TF distribution isn't fully represented by those.
|
|
Each probability should be taken individualy. They only represent the chance for a specific TF to be picked at least once.
|
|
|
|
Returms:
|
|
Tensor containing the single TF probabilities of applications.
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
<a id="a4fad5e8c4ce3185f6b3e51b05ba06fbf"></a>
|
|
<h2 class="memtitle"><span class="permalink"><a href="#a4fad5e8c4ce3185f6b3e51b05ba06fbf">◆ </a></span>train()</h2>
|
|
|
|
<div class="memitem">
|
|
<div class="memproto">
|
|
<table class="memname">
|
|
<tr>
|
|
<td class="memname">def dataug.train </td>
|
|
<td>(</td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>self</em>, </td>
|
|
</tr>
|
|
<tr>
|
|
<td class="paramkey"></td>
|
|
<td></td>
|
|
<td class="paramtype"> </td>
|
|
<td class="paramname"><em>mode</em> = <code>True</code> </td>
|
|
</tr>
|
|
<tr>
|
|
<td></td>
|
|
<td>)</td>
|
|
<td></td><td></td>
|
|
</tr>
|
|
</table>
|
|
</div><div class="memdoc">
|
|
<pre class="fragment">Set the module training mode.
|
|
|
|
Args:
|
|
mode (bool): Wether to learn the parameter of the module. None would not change mode. (default: None)
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div><!-- contents -->
|
|
<!-- start footer part -->
|
|
<hr class="footer"/><address class="footer"><small>
|
|
Generated by  <a href="http://www.doxygen.org/index.html">
|
|
<img class="footer" src="doxygen.png" alt="doxygen"/>
|
|
</a> 1.8.13
|
|
</small></address>
|
|
</body>
|
|
</html>
|