smart_augmentation/higher/smart_aug/datasets.py
2020-02-03 17:46:32 -05:00

160 lines
No EOL
7.1 KiB
Python
Executable file

""" Dataset definition.
MNIST / CIFAR10
"""
import torch
from torch.utils.data.dataset import ConcatDataset
import torchvision
#Train/Validation batch size.
BATCH_SIZE = 300
#Test batch size.
TEST_SIZE = BATCH_SIZE
#TEST_SIZE = 10000 #legerement +Rapide / + Consomation memoire !
#Wether to download data.
download_data=False
#Number of worker to use.
num_workers=2 #4
#Pin GPU memory
pin_memory=False #True :+ GPU memory / + Lent
#Data storage folder
dataroot="../data"
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
#transform_train = torchvision.transforms.Compose([
# torchvision.transforms.RandomHorizontalFlip(),
# torchvision.transforms.ToTensor(),
# torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
#])
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
# torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
])
transform_train = torchvision.transforms.Compose([
#transforms.RandomHorizontalFlip(),
#transforms.RandomVerticalFlip(),
torchvision.transforms.ToTensor(),
])
#from RandAugment import RandAugment
# Add RandAugment with N, M(hyperparameter)
#transform_train.transforms.insert(0, RandAugment(n=2, m=30))
### Classic Dataset ###
#MNIST
#data_train = torchvision.datasets.MNIST(dataroot, train=True, download=True, transform=transform_train)
#data_val = torchvision.datasets.MNIST(dataroot, train=True, download=True, transform=transform)
#data_test = torchvision.datasets.MNIST(dataroot, train=False, download=True, transform=transform)
#CIFAR
data_train = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform_train)
#data_val = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform)
data_test = torchvision.datasets.CIFAR10(dataroot, train=False, download=download_data, transform=transform)
#data_train = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform_train)
#data_val = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform)
#data_test = torchvision.datasets.CIFAR100(dataroot, train=False, download=download_data, transform=transform)
#SVHN
#trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=download_data, transform=transform_train)
#extraset = torchvision.datasets.SVHN(root=dataroot, split='extra', download=download_data, transform=transform_train)
#data_train = ConcatDataset([trainset, extraset])
#data_test = torchvision.datasets.SVHN(dataroot, split='test', download=download_data, transform=transform)
#ImageNet
#Necessite SciPy
# Probleme ? : https://github.com/ildoonet/pytorch-randaugment/blob/48b8f509c4bbda93bbe733d98b3fd052b6e4c8ae/RandAugment/imagenet.py#L28
#data_train = torchvision.datasets.ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='train', transform=transform_train)
#data_test = torchvision.datasets.ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='val', transform=transform_test)
#Validation set size [0, 1]
valid_size=0.1
#train_subset_indices=range(int(len(data_train)*(1-valid_size)))
#val_subset_indices=range(int(len(data_train)*(1-valid_size)),len(data_train))
#train_subset_indices=range(BATCH_SIZE*10)
#val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20)
#from torch.utils.data import SubsetRandomSampler
#dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
#dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False, num_workers=num_workers, pin_memory=pin_memory)
#Cross Validation
'''
from skorch.dataset import CVSplit
import numpy as np
cvs = CVSplit(cv=valid_size, stratified=True) #Stratified =True for unbalanced dataset #ShuffleSplit
def next_CVSplit():
train_subset, val_subset = cvs(data_train, y=np.array(data_train.targets))
dl_train = torch.utils.data.DataLoader(train_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
dl_val = torch.utils.data.DataLoader(val_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
return dl_train, dl_val
dl_train, dl_val = next_CVSplit()
'''
import numpy as np
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import StratifiedShuffleSplit
class CVSplit(object):
"""Class that perform train/valid split on a dataset.
Inspired from : https://skorch.readthedocs.io/en/latest/user/dataset.html
Attributes:
_stratified (bool): Wether the split should be stratified. Recommended to be True for unbalanced dataset.
_val_size (float, int): If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the validation split.
If int, represents the absolute number of validation samples.
_data (Dataset): Dataset to split.
_targets (np.array): Targets of the dataset used if _stratified is set to True.
_cv (BaseShuffleSplit) : Scikit learn object used to split.
"""
def __init__(self, data, val_size=0.1, stratified=True):
""" Intialize CVSplit.
Args:
data (Dataset): Dataset to split.
val_size (float, int): If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the validation split.
If int, represents the absolute number of validation samples. (Default: 0.1)
stratified (bool): Wether the split should be stratified. Recommended to be True for unbalanced dataset.
"""
self._stratified=stratified
self._val_size=val_size
self._data=data
if self._stratified:
cv_cls = StratifiedShuffleSplit
self._targets= np.array(data_train.targets)
else:
cv_cls = ShuffleSplit
self._cv= cv_cls(test_size=val_size, random_state=0)
def next_split(self):
""" Get next cross-validation split.
Returns:
Train DataLoader, Validation DataLoader
"""
args=(np.arange(len(self._data)),)
if self._stratified:
args = args + (self._targets,)
idx_train, idx_valid = next(iter(self._cv.split(*args)))
train_subset = torch.utils.data.Subset(self._data, idx_train)
val_subset = torch.utils.data.Subset(self._data, idx_valid)
dl_train = torch.utils.data.DataLoader(train_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
dl_val = torch.utils.data.DataLoader(val_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
return dl_train, dl_val
cvs = CVSplit(data_train, val_size=valid_size)
dl_train, dl_val = cvs.next_split()