mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
236 lines
No EOL
8.4 KiB
Python
Executable file
236 lines
No EOL
8.4 KiB
Python
Executable file
""" Utilties function.
|
|
|
|
"""
|
|
import numpy as np
|
|
import json, math, time, os
|
|
import matplotlib.pyplot as plt
|
|
import copy
|
|
import gc
|
|
|
|
from torchviz import make_dot
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
import time
|
|
|
|
def print_graph(PyTorch_obj, fig_name='graph'):
|
|
"""Save the computational graph.
|
|
|
|
Args:
|
|
PyTorch_obj (Tensor): End of the graph. Commonly, the loss tensor to get the whole graph.
|
|
fig_name (string): Relative path where to save the graph. (default: graph)
|
|
"""
|
|
graph=make_dot(PyTorch_obj)
|
|
graph.format = 'pdf' #https://graphviz.readthedocs.io/en/stable/manual.html#formats
|
|
graph.render(fig_name)
|
|
|
|
def plot_resV2(log, fig_name='res', param_names=None):
|
|
"""Save a visual graph of the logs.
|
|
|
|
Args:
|
|
log (dict): Logs of the training generated by most of train_utils.
|
|
fig_name (string): Relative path where to save the graph. (default: res)
|
|
param_names (list): Labels for the parameters. (default: None)
|
|
"""
|
|
epochs = [x["epoch"] for x in log]
|
|
|
|
fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(30, 15))
|
|
|
|
ax[0, 0].set_title('Loss')
|
|
ax[0, 0].plot(epochs,[x["train_loss"] for x in log], label='Train')
|
|
ax[0, 0].plot(epochs,[x["val_loss"] for x in log], label='Val')
|
|
ax[0, 0].legend()
|
|
|
|
ax[1, 0].set_title('Acc')
|
|
ax[1, 0].plot(epochs,[x["acc"] for x in log])
|
|
|
|
if log[0]["param"]!= None:
|
|
if not param_names : param_names = ['P'+str(idx) for idx, _ in enumerate(log[0]["param"])]
|
|
#proba=[[x["param"][idx] for x in log] for idx, _ in enumerate(log[0]["param"])]
|
|
proba=[[x["param"][idx]['p'] for x in log] for idx, _ in enumerate(log[0]["param"])]
|
|
mag=[[x["param"][idx]['m'] for x in log] for idx, _ in enumerate(log[0]["param"])]
|
|
|
|
ax[0, 1].set_title('Prob =f(epoch)')
|
|
ax[0, 1].stackplot(epochs, proba, labels=param_names)
|
|
#ax[0, 1].legend(param_names, loc='center left', bbox_to_anchor=(1, 0.5))
|
|
|
|
ax[1, 1].set_title('Prob =f(TF)')
|
|
mean = np.mean(proba, axis=1)
|
|
std = np.std(proba, axis=1)
|
|
ax[1, 1].bar(param_names, mean, yerr=std)
|
|
plt.sca(ax[1, 1]), plt.xticks(rotation=90)
|
|
|
|
ax[0, 2].set_title('Mag =f(epoch)')
|
|
ax[0, 2].stackplot(epochs, mag, labels=param_names)
|
|
#ax[0, 2].plot(epochs, np.array(mag).T, label=param_names)
|
|
ax[0, 2].legend(param_names, loc='center left', bbox_to_anchor=(1, 0.5))
|
|
|
|
ax[1, 2].set_title('Mag =f(TF)')
|
|
mean = np.mean(mag, axis=1)
|
|
std = np.std(mag, axis=1)
|
|
ax[1, 2].bar(param_names, mean, yerr=std)
|
|
plt.sca(ax[1, 2]), plt.xticks(rotation=90)
|
|
|
|
|
|
fig_name = fig_name.replace('.',',')
|
|
plt.savefig(fig_name, bbox_inches='tight')
|
|
plt.close()
|
|
|
|
def plot_compare(filenames, fig_name='res'):
|
|
"""Save a visual graph comparing trainings stats.
|
|
|
|
Args:
|
|
filenames (list[Strings]): Relative paths to the logs (JSON files).
|
|
fig_name (string): Relative path where to save the graph. (default: res)
|
|
"""
|
|
all_data=[]
|
|
legend=""
|
|
for idx, file in enumerate(filenames):
|
|
legend+=str(idx)+'-'+file+'\n'
|
|
with open(file) as json_file:
|
|
data = json.load(json_file)
|
|
all_data.append(data)
|
|
|
|
fig, ax = plt.subplots(ncols=3, figsize=(30, 8))
|
|
|
|
for data_idx, log in enumerate(all_data):
|
|
log=log['Log']
|
|
epochs = [x["epoch"] for x in log]
|
|
|
|
ax[0].plot(epochs,[x["train_loss"] for x in log], label=str(data_idx)+'-Train')
|
|
ax[0].plot(epochs,[x["val_loss"] for x in log], label=str(data_idx)+'-Val')
|
|
|
|
ax[1].plot(epochs,[x["acc"] for x in log], label=str(data_idx))
|
|
#ax[1].text(x=0.5,y=0,s=str(data_idx)+'-'+filenames[data_idx], transform=ax[1].transAxes)
|
|
|
|
if log[0]["param"]!= None:
|
|
if isinstance(log[0]["param"],float):
|
|
ax[2].plot(epochs,[x["param"] for x in log], label=str(data_idx)+'-Mag')
|
|
|
|
else :
|
|
for idx, _ in enumerate(log[0]["param"]):
|
|
ax[2].plot(epochs,[x["param"][idx] for x in log], label=str(data_idx)+'-P'+str(idx))
|
|
|
|
fig.suptitle(legend)
|
|
ax[0].set_title('Loss')
|
|
ax[1].set_title('Acc')
|
|
ax[2].set_title('Param')
|
|
for a in ax: a.legend()
|
|
|
|
fig_name = fig_name.replace('.',',')
|
|
plt.savefig(fig_name, bbox_inches='tight')
|
|
plt.close()
|
|
|
|
def viz_sample_data(imgs, labels, fig_name='data_sample', weight_labels=None):
|
|
"""Save data samples.
|
|
|
|
Args:
|
|
imgs (Tensor): Batch of image to sample from. Intended to contain at least 25 images.
|
|
labels (Tensor): Labels of the images.
|
|
fig_name (string): Relative path where to save the graph. (default: data_sample)
|
|
weight_labels (Tensor): Weights associated to each labels. (default: None)
|
|
"""
|
|
sample = imgs[0:25,].permute(0, 2, 3, 1).squeeze().cpu()
|
|
|
|
plt.figure(figsize=(10,10))
|
|
for i in range(25):
|
|
plt.subplot(5,5,i+1) #Trop de figure cree ?
|
|
plt.xticks([])
|
|
plt.yticks([])
|
|
plt.grid(False)
|
|
plt.imshow(sample[i,].detach().numpy(), cmap=plt.cm.binary)
|
|
label = str(labels[i].item())
|
|
if weight_labels is not None : label+= (" - p %.2f" % weight_labels[i].item())
|
|
plt.xlabel(label)
|
|
|
|
plt.savefig(fig_name)
|
|
print("Sample saved :", fig_name)
|
|
plt.close('all')
|
|
|
|
def print_torch_mem(add_info=''):
|
|
"""Print informations on PyTorch memory usage.
|
|
|
|
Args:
|
|
add_info (string): Prefix added before the print. (default: None)
|
|
"""
|
|
nb=0
|
|
max_size=0
|
|
for obj in gc.get_objects():
|
|
#print(type(obj))
|
|
try:
|
|
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): # and len(obj.size())>1:
|
|
#print(i, type(obj), obj.size())
|
|
size = np.sum(obj.size())
|
|
if(size>max_size): max_size=size
|
|
nb+=1
|
|
except:
|
|
pass
|
|
print(add_info, "-Pytroch tensor nb:",nb," / Max dim:", max_size)
|
|
|
|
#print(add_info, "-Garbage size :",len(gc.garbage))
|
|
|
|
"""Simple GPU memory report."""
|
|
|
|
mega_bytes = 1024.0 * 1024.0
|
|
string = add_info + ' memory (MB)'
|
|
string += ' | allocated: {}'.format(
|
|
torch.cuda.memory_allocated() / mega_bytes)
|
|
string += ' | max allocated: {}'.format(
|
|
torch.cuda.max_memory_allocated() / mega_bytes)
|
|
string += ' | cached: {}'.format(torch.cuda.memory_cached() / mega_bytes)
|
|
string += ' | max cached: {}'.format(
|
|
torch.cuda.max_memory_cached()/ mega_bytes)
|
|
print(string)
|
|
|
|
'''
|
|
def plot_TF_influence(log, fig_name='TF_influence', param_names=None):
|
|
proba=[[x["param"][idx]['p'] for x in log] for idx, _ in enumerate(log[0]["param"])]
|
|
mag=[[x["param"][idx]['m'] for x in log] for idx, _ in enumerate(log[0]["param"])]
|
|
|
|
plt.figure()
|
|
|
|
mean = np.mean(proba, axis=1)*np.mean(mag, axis=1) #Pourrait etre interessant de multiplier avant le mean
|
|
std = np.std(proba, axis=1)*np.std(mag, axis=1)
|
|
plt.bar(param_names, mean, yerr=std)
|
|
|
|
plt.xticks(rotation=90)
|
|
fig_name = fig_name.replace('.',',')
|
|
plt.savefig(fig_name, bbox_inches='tight')
|
|
plt.close()
|
|
'''
|
|
|
|
from torch._six import inf
|
|
def clip_norm(tensors, max_norm, norm_type=2):
|
|
"""Clips norm of passed tensors.
|
|
The norm is computed over all tensors together, as if they were
|
|
concatenated into a single vector. Clipped tensors are returned.
|
|
|
|
See: https://github.com/facebookresearch/higher/issues/18
|
|
|
|
Args:
|
|
tensors (Iterable[Tensor]): an iterable of Tensors or a
|
|
single Tensor to be normalized.
|
|
max_norm (float or int): max norm of the gradients
|
|
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
|
|
infinity norm.
|
|
Returns:
|
|
Clipped (List[Tensor]) tensors.
|
|
"""
|
|
if isinstance(tensors, torch.Tensor):
|
|
tensors = [tensors]
|
|
tensors = list(tensors)
|
|
max_norm = float(max_norm)
|
|
norm_type = float(norm_type)
|
|
if norm_type == inf:
|
|
total_norm = max(t.abs().max() for t in tensors)
|
|
else:
|
|
total_norm = 0
|
|
for t in tensors:
|
|
param_norm = t.norm(norm_type)
|
|
total_norm += param_norm.item() ** norm_type
|
|
total_norm = total_norm ** (1. / norm_type)
|
|
clip_coef = max_norm / (total_norm + 1e-6)
|
|
if clip_coef >= 1:
|
|
return tensors
|
|
return [t.mul(clip_coef) for t in tensors] |