smart_augmentation/PBA/model.py
2019-11-14 17:59:53 -05:00

353 lines
13 KiB
Python
Executable file

# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""PBA & AutoAugment Train/Eval module.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
import os
import time
import numpy as np
import tensorflow as tf
import autoaugment.custom_ops as ops
from autoaugment.shake_drop import build_shake_drop_model
from autoaugment.shake_shake import build_shake_shake_model
import pba.data_utils as data_utils
import pba.helper_utils as helper_utils
from pba.wrn import build_wrn_model
from pba.resnet import build_resnet_model
from pba.LeNet import LeNet
arg_scope = tf.contrib.framework.arg_scope
def setup_arg_scopes(is_training):
"""Sets up the argscopes that will be used when building an image model.
Args:
is_training: Is the model training or not.
Returns:
Arg scopes to be put around the model being constructed.
"""
batch_norm_decay = 0.9
batch_norm_epsilon = 1e-5
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
'scale': True,
# collection containing the moving mean and moving variance.
'is_training': is_training,
}
scopes = []
scopes.append(arg_scope([ops.batch_norm], **batch_norm_params))
return scopes
def build_model(inputs, num_classes, is_training, hparams):
"""Constructs the vision model being trained/evaled.
Args:
inputs: input features/images being fed to the image model build built.
num_classes: number of output classes being predicted.
is_training: is the model training or not.
hparams: additional hyperparameters associated with the image model.
Returns:
The logits of the image model.
"""
scopes = setup_arg_scopes(is_training)
if len(scopes) != 1:
raise ValueError('Nested scopes depreciated in py3.')
with scopes[0]:
if hparams.model_name == 'pyramid_net':
logits = build_shake_drop_model(inputs, num_classes, is_training)
elif hparams.model_name == 'wrn':
logits = build_wrn_model(inputs, num_classes, hparams.wrn_size)
elif hparams.model_name == 'shake_shake':
logits = build_shake_shake_model(inputs, num_classes, hparams,
is_training)
elif hparams.model_name == 'resnet':
logits = build_resnet_model(inputs, num_classes, hparams,
is_training)
elif hparams.model_name == 'LeNet':
logits = LeNet(inputs, num_classes)
else:
raise ValueError("Unknown model name.")
return logits
class Model(object):
"""Builds an model."""
def __init__(self, hparams, num_classes, image_size):
self.hparams = hparams
self.num_classes = num_classes
self.image_size = image_size
def build(self, mode):
"""Construct the model."""
assert mode in ['train', 'eval']
self.mode = mode
self._setup_misc(mode)
self._setup_images_and_labels(self.hparams.dataset)
self._build_graph(self.images, self.labels, mode)
self.init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
def _setup_misc(self, mode):
"""Sets up miscellaneous in the model constructor."""
self.lr_rate_ph = tf.Variable(0.0, name='lrn_rate', trainable=False)
self.reuse = None if (mode == 'train') else True
self.batch_size = self.hparams.batch_size
if mode == 'eval':
self.batch_size = self.hparams.test_batch_size
def _setup_images_and_labels(self, dataset):
"""Sets up image and label placeholders for the model."""
if dataset == 'cifar10' or dataset == 'cifar100' or self.mode == 'train':
self.images = tf.placeholder(tf.float32,
[self.batch_size, self.image_size, self.image_size, 3])
self.labels = tf.placeholder(tf.float32,
[self.batch_size, self.num_classes])
else:
self.images = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 3])
self.labels = tf.placeholder(tf.float32, [None, self.num_classes])
def assign_epoch(self, session, epoch_value):
session.run(
self._epoch_update, feed_dict={self._new_epoch: epoch_value})
def _build_graph(self, images, labels, mode):
"""Constructs the TF graph for the model.
Args:
images: A 4-D image Tensor
labels: A 2-D labels Tensor.
mode: string indicating training mode ( e.g., 'train', 'valid', 'test').
"""
is_training = 'train' in mode
if is_training:
self.global_step = tf.train.get_or_create_global_step()
logits = build_model(images, self.num_classes, is_training,
self.hparams)
self.predictions, self.cost = helper_utils.setup_loss(logits, labels)
self._calc_num_trainable_params()
# Adds L2 weight decay to the cost
self.cost = helper_utils.decay_weights(self.cost,
self.hparams.weight_decay_rate)
if is_training:
self._build_train_op()
# Setup checkpointing for this child model
# Keep 2 or more checkpoints around during training.
with tf.device('/cpu:0'):
self.saver = tf.train.Saver(max_to_keep=10)
self.init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
def _calc_num_trainable_params(self):
self.num_trainable_params = np.sum([
np.prod(var.get_shape().as_list())
for var in tf.trainable_variables()
])
tf.logging.info('number of trainable params: {}'.format(
self.num_trainable_params))
def _build_train_op(self):
"""Builds the train op for the model."""
hparams = self.hparams
tvars = tf.trainable_variables()
grads = tf.gradients(self.cost, tvars)
if hparams.gradient_clipping_by_global_norm > 0.0:
grads, norm = tf.clip_by_global_norm(
grads, hparams.gradient_clipping_by_global_norm)
tf.summary.scalar('grad_norm', norm)
# Setup the initial learning rate
initial_lr = self.lr_rate_ph
optimizer = tf.train.MomentumOptimizer(
initial_lr, 0.9, use_nesterov=True)
self.optimizer = optimizer
apply_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=self.global_step, name='train_step')
train_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies([apply_op]):
self.train_op = tf.group(*train_ops)
class ModelTrainer(object):
"""Trains an instance of the Model class."""
def __init__(self, hparams):
self._session = None
self.hparams = hparams
# Set the random seed to be sure the same validation set
# is used for each model
np.random.seed(0)
self.data_loader = data_utils.DataSet(hparams)
np.random.seed() # Put the random seed back to random
self.data_loader.reset()
# extra stuff for ray
self._build_models()
self._new_session()
self._session.__enter__()
def save_model(self, checkpoint_dir, step=None):
"""Dumps model into the backup_dir.
Args:
step: If provided, creates a checkpoint with the given step
number, instead of overwriting the existing checkpoints.
"""
model_save_name = os.path.join(checkpoint_dir,
'model.ckpt') + '-' + str(step)
save_path = self.saver.save(self.session, model_save_name)
tf.logging.info('Saved child model')
return model_save_name
def extract_model_spec(self, checkpoint_path):
"""Loads a checkpoint with the architecture structure stored in the name."""
self.saver.restore(self.session, checkpoint_path)
tf.logging.warning(
'Loaded child model checkpoint from {}'.format(checkpoint_path))
def eval_child_model(self, model, data_loader, mode):
"""Evaluate the child model.
Args:
model: image model that will be evaluated.
data_loader: dataset object to extract eval data from.
mode: will the model be evalled on train, val or test.
Returns:
Accuracy of the model on the specified dataset.
"""
tf.logging.info('Evaluating child model in mode {}'.format(mode))
while True:
try:
accuracy = helper_utils.eval_child_model(
self.session, model, data_loader, mode)
tf.logging.info(
'Eval child model accuracy: {}'.format(accuracy))
# If epoch trained without raising the below errors, break
# from loop.
break
except (tf.errors.AbortedError, tf.errors.UnavailableError) as e:
tf.logging.info(
'Retryable error caught: {}. Retrying.'.format(e))
return accuracy
@contextlib.contextmanager
def _new_session(self):
"""Creates a new session for model m."""
# Create a new session for this model, initialize
# variables, and save / restore from checkpoint.
sess_cfg = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False)
sess_cfg.gpu_options.allow_growth = True
self._session = tf.Session('', config=sess_cfg)
self._session.run([self.m.init, self.meval.init])
return self._session
def _build_models(self):
"""Builds the image models for train and eval."""
# Determine if we should build the train and eval model. When using
# distributed training we only want to build one or the other and not both.
with tf.variable_scope('model', use_resource=False):
m = Model(self.hparams, self.data_loader.num_classes, self.data_loader.image_size)
m.build('train')
self._num_trainable_params = m.num_trainable_params
self._saver = m.saver
with tf.variable_scope('model', reuse=True, use_resource=False):
meval = Model(self.hparams, self.data_loader.num_classes, self.data_loader.image_size)
meval.build('eval')
self.m = m
self.meval = meval
def _run_training_loop(self, curr_epoch):
"""Trains the model `m` for one epoch."""
start_time = time.time()
while True:
try:
train_accuracy = helper_utils.run_epoch_training(
self.session, self.m, self.data_loader, curr_epoch)
break
except (tf.errors.AbortedError, tf.errors.UnavailableError) as e:
tf.logging.info(
'Retryable error caught: {}. Retrying.'.format(e))
tf.logging.info('Finished epoch: {}'.format(curr_epoch))
tf.logging.info('Epoch time(min): {}'.format(
(time.time() - start_time) / 60.0))
return train_accuracy
def _compute_final_accuracies(self, iteration):
"""Run once training is finished to compute final test accuracy."""
if (iteration >= self.hparams.num_epochs - 1):
test_accuracy = self.eval_child_model(self.meval, self.data_loader,
'test')
else:
test_accuracy = 0
tf.logging.info('Test Accuracy: {}'.format(test_accuracy))
return test_accuracy
def run_model(self, epoch):
"""Trains and evalutes the image model."""
valid_accuracy = 0.
training_accuracy = self._run_training_loop(epoch)
if self.hparams.validation_size > 0:
valid_accuracy = self.eval_child_model(self.meval,
self.data_loader, 'val')
tf.logging.info('Train Acc: {}, Valid Acc: {}'.format(
training_accuracy, valid_accuracy))
return training_accuracy, valid_accuracy
def reset_config(self, new_hparams):
self.hparams = new_hparams
self.data_loader.reset_policy(new_hparams)
return
@property
def saver(self):
return self._saver
@property
def session(self):
return self._session
@property
def num_trainable_params(self):
return self._num_trainable_params