smart_augmentation/higher/smart_aug/test_dataug.py
2024-08-20 11:53:35 +02:00

204 lines
No EOL
7.7 KiB
Python
Executable file

""" Script to run experiment on smart augmentation.
"""
import sys
from dataug import *
#from utils import *
from train_utils import *
from transformations import TF_loader
# from arg_parser import *
TF_loader=TF_loader()
torch.backends.cudnn.benchmark = True #Faster if same input size #Not recommended for reproductibility
#Increase reproductibility
torch.manual_seed(0)
np.random.seed(0)
##########################################
if __name__ == "__main__":
args = parser.parse_args()
print(args)
res_folder=args.res_folder
postfix=args.postfix
if args.dtype == 'FP32':
def_type=torch.float32
elif args.dtype == 'FP16':
# def_type=torch.float16 #Default : float32
def_type=torch.bfloat16
else:
raise Exception('dtype not supported :', args.dtype)
torch.set_default_dtype(def_type) #Default : float32
device = torch.device(args.device) #Select device to use
if device == torch.device('cpu'):
device_name = 'CPU'
else:
device_name = torch.cuda.get_device_name(device)
#Parameters
n_inner_iter = args.K
epochs = args.epochs
dataug_epoch_start=0
Nb_TF_seq= args.N
optim_param={
'Meta':{
'optim':'Adam',
'lr':args.mlr,
'epoch_start': args.meta_epoch_start, #0 / 2 (Resnet?)
'reg_factor': args.mag_reg,
'scheduler': None, #None, 'multiStep'
},
'Inner':{
'optim': 'SGD',
'lr':args.lr, #1e-2/1e-1 (ResNet)
'momentum':args.momentum, #0.9
'weight_decay':args.decay, #0.0005
'nesterov':args.nesterov, #False (True: Bad behavior w/ Data_aug)
'scheduler': args.scheduler, #None, 'cosine', 'multiStep', 'exponential'
'warmup':{
'multiplier': args.warmup, #2 #+ batch_size => + mutliplier #No warmup = 0
'epochs': 5
}
}
}
#Info params
F1=True
sample_save=None
print_f= epochs/4
#Load network
model, model_name= load_model(args.model, num_classes=len(dl_train.dataset.classes), pretrained=args.pretrained)
#### Classic ####
if not args.augment:
if device_name != 'CPU':
torch.cuda.reset_max_memory_allocated() #reset_peak_stats
torch.cuda.reset_max_memory_cached() #reset_peak_stats
t0 = time.perf_counter()
model = model.to(device)
print("{} on {} for {} epochs{}".format(model_name, device_name, epochs, postfix))
#print("RandAugment(N{}-M{:.2f})-{} on {} for {} epochs{}".format(rand_aug['N'],rand_aug['M'],model_name, device_name, epochs, postfix))
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=print_f)
#log= train_classic_higher(model=model, epochs=epochs)
exec_time=time.perf_counter() - t0
if device_name != 'CPU':
max_allocated = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0)
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB
else:
max_allocated = 0.0
max_cached=0.0
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]),
"Time": (np.mean(times),np.std(times), exec_time),
'Optimizer': optim_param['Inner'],
"Device": device_name,
"Memory": [max_allocated, max_cached],
#"Rand_Aug": rand_aug,
"Log": log}
print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{} epochs".format(model_name,epochs)+postfix
#print("RandAugment-",model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
#filename = "RandAugment(N{}-M{:.2f})-{}-{} epochs".format(rand_aug['N'],rand_aug['M'],model_name,epochs)+postfix
with open(res_folder+"log/%s.json" % filename, "w+") as f:
try:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
except:
print("Failed to save logs :",f.name)
print(sys.exc_info()[1])
try:
plot_resV2(log, fig_name=res_folder+filename, f1=F1)
except:
print("Failed to plot res")
print(sys.exc_info()[1])
print('Execution Time (s): %.00f '%(exec_time))
print('-'*9)
#### Augmented Model ####
else:
# tf_config='../config/invScale_wide_tf_config.json'#'../config/invScale_wide_tf_config.json'#'../config/base_tf_config.json'
tf_dict, tf_ignore_mag =TF_loader.load_TF_dict(args.tf_config)
if device_name != 'CPU':
torch.cuda.reset_max_memory_allocated() #reset_peak_stats
torch.cuda.reset_max_memory_cached() #reset_peak_stats
t0 = time.perf_counter()
model = Higher_model(model, model_name) #run_dist_dataugV3
dataug_mod = 'Data_augV8' if args.learn_seq else 'Data_augV5'
if n_inner_iter !=0:
aug_model = Augmented_model(
globals()[dataug_mod](TF_dict=tf_dict,
N_TF=Nb_TF_seq,
temp=args.temp,
fixed_prob=False,
fixed_mag=args.fixed_mag,
shared_mag=args.shared_mag,
TF_ignore_mag=tf_ignore_mag), model).to(device)
else:
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=Nb_TF_seq), model).to(device)
print("{} on {} for {} epochs - {} inner_it{}".format(str(aug_model), device_name, epochs, n_inner_iter, postfix))
log, aug_acc = run_dist_dataugV3(model=aug_model,
epochs=epochs,
inner_it=n_inner_iter,
dataug_epoch_start=dataug_epoch_start,
opt_param=optim_param,
unsup_loss=1,
augment_loss=args.augment_loss,
hp_opt=False, #False #['lr', 'momentum', 'weight_decay']
print_freq=print_f,
save_sample_freq=sample_save)
exec_time=time.perf_counter() - t0
if device_name != 'CPU':
max_allocated = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0)
max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB
else:
max_allocated = 0.0
max_cached = 0.0
####
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]),
"Aug_Accuracy": [args.augment_loss, aug_acc],
"Time": (np.mean(times),np.std(times), exec_time),
'Optimizer': optim_param,
"Device": device_name,
"Memory": [max_allocated, max_cached],
"TF_config": args.tf_config,
"Param_names": aug_model.TF_names(),
"Log": log}
print(str(aug_model),": acc", out["Accuracy"], "/ aug_acc", out["Aug_Accuracy"][1] , "in:", out["Time"][0], "+/-", out["Time"][1])
filename = "{}-{}_epochs-{}_in_it-AL{}".format(str(aug_model),epochs,n_inner_iter,args.augment_loss)+postfix
with open(res_folder+"log/%s.json" % filename, "w+") as f:
try:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
except:
print("Failed to save logs :",f.name)
print(sys.exc_info()[1])
try:
plot_resV2(log, fig_name=res_folder+filename, param_names=aug_model.TF_names(), f1=F1)
except:
print("Failed to plot res")
print(sys.exc_info()[1])
print('Execution Time (s): %.00f '%(exec_time))
print('-'*9)