""" Example use of smart augmentation. """ from model import * from dataug import * from train_utils import * # Use available TF (see transformations.py) tf_names = [ ## Geometric TF ## 'Identity', 'FlipUD', 'FlipLR', 'Rotate', 'TranslateX', 'TranslateY', 'ShearX', 'ShearY', ## Color TF (Expect image in the range of [0, 1]) ## 'Contrast', 'Color', 'Brightness', 'Sharpness', 'Posterize', 'Solarize', #=>Image entre [0,1] #Pas opti pour des batch ] device = torch.device('cuda') #Select device to use if device == torch.device('cpu'): device_name = 'CPU' else: device_name = torch.cuda.get_device_name(device) ########################################## if __name__ == "__main__": #Parameters n_inner_iter = 1 epochs = 150 optim_param={ 'Meta':{ 'optim':'Adam', 'lr':1e-2, #1e-2 }, 'Inner':{ 'optim': 'SGD', 'lr':1e-2, #1e-2 'momentum':0.9, #0.9 } } #Models model = LeNet(3,10) #model = ResNet(num_classes=10) #model = MobileNetV2(num_classes=10) #model = WideResNet(num_classes=10, wrn_size=32) #Smart_aug initialisation tf_dict = {k: TF.TF_dict[k] for k in tf_names} model = Higher_model(model) #run_dist_dataugV3 aug_model = Augmented_model( Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) # Training trained_model = run_simple_smartaug(model=aug_model, epochs=epochs, inner_it=n_inner_iter, opt_param=optim_param)