import torch #import torch.optim import torchvision import higher from datasets import * from utils import * def train_classic_higher(model, epochs=1): device = next(model.parameters()).device #opt = torch.optim.Adam(model.parameters(), lr=1e-3) optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9) model.train() dl_val_it = iter(dl_val) log = [] fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) diffopt = higher.optim.get_diff_optim(optim, model.parameters(),fmodel=fmodel,track_higher_grads=False) #with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=False) as (fmodel, diffopt): for epoch in range(epochs): #print_torch_mem("Start epoch "+str(epoch)) #print("Fast param ",len(fmodel._fast_params)) t0 = time.process_time() for i, (features, labels) in enumerate(dl_train): #print_torch_mem("Start iter") features,labels = features.to(device), labels.to(device) #optim.zero_grad() logits = model.forward(features) pred = F.log_softmax(logits, dim=1) loss = F.cross_entropy(pred,labels) #.backward() #optim.step() diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step) model_copy(src=fmodel, dst=model, patch_copy=False) optim_copy(dopt=diffopt, opt=optim) fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) diffopt = higher.optim.get_diff_optim(optim, model.parameters(),fmodel=fmodel,track_higher_grads=False) #### Tests #### tf = time.process_time() try: xs_val, ys_val = next(dl_val_it) except StopIteration: #Fin epoch val dl_val_it = iter(dl_val) xs_val, ys_val = next(dl_val_it) xs_val, ys_val = xs_val.to(device), ys_val.to(device) val_loss = F.cross_entropy(model(xs_val), ys_val) accuracy, _ =test(model) model.train() #### Log #### data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": None, } log.append(data) return log def train_classic_tests(model, epochs=1): device = next(model.parameters()).device #opt = torch.optim.Adam(model.parameters(), lr=1e-3) optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9) countcopy=0 model.train() dl_val_it = iter(dl_val) log = [] fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) doptim = higher.optim.get_diff_optim(optim, model.parameters(), fmodel=fmodel, track_higher_grads=False) for epoch in range(epochs): print_torch_mem("Start epoch") print(len(fmodel._fast_params)) t0 = time.process_time() #with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=True) as (fmodel, doptim): #fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) #doptim = higher.optim.get_diff_optim(optim, model.parameters(), track_higher_grads=True) for i, (features, labels) in enumerate(dl_train): features,labels = features.to(device), labels.to(device) #with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=False) as (fmodel, doptim): #optim.zero_grad() pred = fmodel.forward(features) loss = F.cross_entropy(pred,labels) doptim.step(loss) #(opt.zero_grad, loss.backward, opt.step) #loss.backward() #new_params = doptim.step(loss, params=fmodel.parameters()) #fmodel.update_params(new_params) #print('Fast param',len(fmodel._fast_params)) #print('opt state', type(doptim.state[0][0]['momentum_buffer']), doptim.state[0][2]['momentum_buffer'].shape) if False or (len(fmodel._fast_params)>1): print("fmodel fast param",len(fmodel._fast_params)) ''' #val_loss = F.cross_entropy(fmodel(features), labels) #print_graph(val_loss) #val_loss.backward() #print('bip') tmp = fmodel.parameters() #print(list(tmp)[1]) tmp = [higher.utils._copy_tensor(t,safe_copy=True) if isinstance(t, torch.Tensor) else t for t in tmp] #print(len(tmp)) #fmodel._fast_params.clear() del fmodel._fast_params fmodel._fast_params=None fmodel.fast_params=tmp # Surcharge la memoire #fmodel.update_params(tmp) #Meilleur perf / Surcharge la memoire avec trach higher grad #optim._fmodel=fmodel ''' countcopy+=1 model_copy(src=fmodel, dst=model, patch_copy=False) fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) #doptim.detach_dyn() #tmp = doptim.state #tmp = doptim.state_dict() #for k, v in tmp['state'].items(): # print('dict',k, type(v)) a = optim.param_groups[0]['params'][0] state = optim.state[a] #state['momentum_buffer'] = None #print('opt state', type(optim.state[a]), len(optim.state[a])) #optim.load_state_dict(tmp) for group_idx, group in enumerate(optim.param_groups): # print('gp idx',group_idx) for p_idx, p in enumerate(group['params']): optim.state[p]=doptim.state[group_idx][p_idx] #print('opt state', type(optim.state[a]['momentum_buffer']), optim.state[a]['momentum_buffer'][0:10]) #print('dopt state', type(doptim.state[0][0]['momentum_buffer']), doptim.state[0][0]['momentum_buffer'][0:10]) ''' for a in tmp: #print(type(a), len(a)) for nb, b in a.items(): #print(nb, type(b), len(b)) for n, state in b.items(): #print(n, type(states)) #print(state.grad_fn) state = torch.tensor(state.data).requires_grad_() #print(state.grad_fn) ''' doptim = higher.optim.get_diff_optim(optim, model.parameters(), track_higher_grads=True) #doptim.state = tmp countcopy+=1 model_copy(src=fmodel, dst=model) optim_copy(dopt=diffopt, opt=inner_opt) #### Tests #### tf = time.process_time() try: xs_val, ys_val = next(dl_val_it) except StopIteration: #Fin epoch val dl_val_it = iter(dl_val) xs_val, ys_val = next(dl_val_it) xs_val, ys_val = xs_val.to(device), ys_val.to(device) val_loss = F.cross_entropy(model(xs_val), ys_val) accuracy, _ =test(model) model.train() #### Log #### data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": None, } log.append(data) #countcopy+=1 #model_copy(src=fmodel, dst=model, patch_copy=False) #optim.load_state_dict(doptim.state_dict()) #Besoin sauver etat otpim ? print("Copy ", countcopy) return log from torchvision.datasets.vision import VisionDataset from PIL import Image import augmentation_transforms import numpy as np class AugmentedDatasetV2(VisionDataset): def __init__(self, root, train=True, transform=None, target_transform=None, download=False, subset=None): super(AugmentedDatasetV2, self).__init__(root, transform=transform, target_transform=target_transform) supervised_dataset = torchvision.datasets.CIFAR10(root, train=train, download=download, transform=transform) self.sup_data = supervised_dataset.data if not subset else supervised_dataset.data[subset[0]:subset[1]] self.sup_targets = supervised_dataset.targets if not subset else supervised_dataset.targets[subset[0]:subset[1]] assert len(self.sup_data)==len(self.sup_targets) for idx, img in enumerate(self.sup_data): self.sup_data[idx]= Image.fromarray(img) #to PIL Image self.unsup_data=[] self.unsup_targets=[] self.origin_idx=[] self.dataset_info= { 'name': 'CIFAR10', 'sup': len(self.sup_data), 'unsup': len(self.unsup_data), 'length': len(self.sup_data)+len(self.unsup_data), } self._TF = [ ## Geometric TF ## 'Rotate', 'TranslateX', 'TranslateY', 'ShearX', 'ShearY', 'Cutout', ## Color TF ## 'Contrast', 'Color', 'Brightness', 'Sharpness', 'Posterize', 'Solarize', 'Invert', 'AutoContrast', 'Equalize', ] self._op_list =[] self.prob=0.5 self.mag_range=(1, 10) for tf in self._TF: for mag in range(self.mag_range[0], self.mag_range[1]): self._op_list+=[(tf, self.prob, mag)] self._nb_op = len(self._op_list) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ aug_img, origin_img, target = self.unsup_data[index], self.sup_data[self.origin_idx[index]], self.unsup_targets[index] # doing this so that it is consistent with all other datasets # to return a PIL Image #img = Image.fromarray(img) if self.transform is not None: aug_img = self.transform(aug_img) origin_img = self.transform(origin_img) if self.target_transform is not None: target = self.target_transform(target) return aug_img, origin_img, target def augement_data(self, aug_copy=1): policies = [] for op_1 in self._op_list: for op_2 in self._op_list: policies += [[op_1, op_2]] for idx, image in enumerate(self.sup_data): if idx%(self.dataset_info['sup']/5)==0: print("Augmenting data... ", idx,"/", self.dataset_info['sup']) #if idx==10000:break for _ in range(aug_copy): chosen_policy = policies[np.random.choice(len(policies))] aug_image = augmentation_transforms.apply_policy(chosen_policy, image, use_mean_std=False) #Cast en float image #aug_image = augmentation_transforms.cutout_numpy(aug_image) self.unsup_data+=[(aug_image*255.).astype(self.sup_data.dtype)]#Cast float image to uint8 self.unsup_targets+=[self.sup_targets[idx]] self.origin_idx+=[idx] #self.unsup_data=(np.array(self.unsup_data)*255.).astype(self.sup_data.dtype) #Cast float image to uint8 self.unsup_data=np.array(self.unsup_data) assert len(self.unsup_data)==len(self.unsup_targets) self.dataset_info['unsup']=len(self.unsup_data) self.dataset_info['length']=self.dataset_info['sup']+self.dataset_info['unsup'] def __len__(self): return self.dataset_info['unsup']#self.dataset_info['length'] def __str__(self): return "CIFAR10(Sup:{}-Unsup:{}-{}TF(Mag{}-{}))".format(self.dataset_info['sup'], self.dataset_info['unsup'], len(self._TF), self.mag_range[0], self.mag_range[1]) def train_UDA(model, dl_unsup, opt_param, epochs=1, print_freq=1): """Training of a model using UDA inspired approach. Intended to be used alongside an already augmented dataset (see AugmentedDatasetV2). Args: model (nn.Module): Model to train. dl_unsup (Dataloader): Data loader of unsupervised/augmented data. opt_param (dict): Dictionnary containing optimizers parameters. epochs (int): Number of epochs to perform. (default: 1) print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1) Returns: (list) Logs of training. Each items is a dict containing results of an epoch. """ device = next(model.parameters()).device #opt = torch.optim.Adam(model.parameters(), lr=1e-3) opt = torch.optim.SGD(model.parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9 model.train() dl_val_it = iter(dl_val) dl_unsup_it =iter(dl_unsup) log = [] for epoch in range(epochs): #print_torch_mem("Start epoch") t0 = time.process_time() for i, (features, labels) in enumerate(dl_train): #print_torch_mem("Start iter") features,labels = features.to(device), labels.to(device) optim.zero_grad() #Supervised logits = model.forward(features) pred = F.log_softmax(logits, dim=1) sup_loss = F.cross_entropy(pred,labels) #Unsupervised try: aug_xs, origin_xs, ys = next(dl_unsup_it) except StopIteration: #Fin epoch val dl_unsup_it =iter(dl_unsup) aug_xs, origin_xs, ys = next(dl_unsup_it) aug_xs, origin_xs, ys = aug_xs.to(device), origin_xs.to(device), ys.to(device) #print(aug_xs.shape, origin_xs.shape, ys.shape) sup_logits = model.forward(origin_xs) unsup_logits = model.forward(aug_xs) log_sup=F.log_softmax(sup_logits, dim=1) log_unsup=F.log_softmax(unsup_logits, dim=1) #KL div w/ logits unsup_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_unsup) unsup_loss=unsup_loss.sum(dim=-1).mean() #print(unsup_loss) unsupp_coeff = 1 loss = sup_loss + unsup_loss * unsupp_coeff loss.backward() optim.step() #### Tests #### tf = time.process_time() try: xs_val, ys_val = next(dl_val_it) except StopIteration: #Fin epoch val dl_val_it = iter(dl_val) xs_val, ys_val = next(dl_val_it) xs_val, ys_val = xs_val.to(device), ys_val.to(device) val_loss = F.cross_entropy(model(xs_val), ys_val) accuracy, _ =test(model) model.train() #### Print #### if(print_freq and epoch%print_freq==0): print('-'*9) print('Epoch : %d/%d'%(epoch,epochs)) print('Time : %.00f'%(tf - t0)) print('Train loss :',loss.item(), '/ val loss', val_loss.item()) print('Sup Loss :', sup_loss.item(), '/ unsup_loss :', unsup_loss.item()) print('Accuracy :', accuracy) #### Log #### data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": None, } log.append(data) return log def run_simple_dataug(inner_it, epochs=1): device = next(model.parameters()).device dl_train_it = iter(dl_train) dl_val_it = iter(dl_val) #aug_model = nn.Sequential( # Data_aug(), # LeNet(1,10), # ) aug_model = Augmented_model(Data_aug(), LeNet(1,10)).to(device) print(str(aug_model)) meta_opt = torch.optim.Adam(aug_model['data_aug'].parameters(), lr=1e-2) inner_opt = torch.optim.SGD(aug_model['model'].parameters(), lr=1e-2, momentum=0.9) log = [] t0 = time.process_time() epoch = 0 while epoch < epochs: meta_opt.zero_grad() aug_model.train() with higher.innerloop_ctx(aug_model, inner_opt, copy_initial_weights=True, track_higher_grads=True) as (fmodel, diffopt): #effet copy_initial_weight pas clair... for i in range(n_inner_iter): try: xs, ys = next(dl_train_it) except StopIteration: #Fin epoch train tf = time.process_time() epoch +=1 dl_train_it = iter(dl_train) xs, ys = next(dl_train_it) accuracy, _ =test(model) aug_model.train() #### Print #### print('-'*9) print('Epoch %d/%d'%(epoch,epochs)) print('train loss',loss.item(), '/ val loss', val_loss.item()) print('acc', accuracy) print('mag', aug_model['data_aug']['mag'].item()) #### Log #### data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": aug_model['data_aug']['mag'].item(), } log.append(data) t0 = time.process_time() xs, ys = xs.to(device), ys.to(device) logits = fmodel(xs) # modified `params` can also be passed as a kwarg loss = F.cross_entropy(logits, ys) # no need to call loss.backwards() #loss.backward(retain_graph=True) #print(fmodel['model']._params['b4'].grad) #print('mag', fmodel['data_aug']['mag'].grad) diffopt.step(loss) # note that `step` must take `loss` as an argument! # The line above gets P[t+1] from P[t] and loss[t]. `step` also returns # these new parameters, as an alternative to getting them from # `fmodel.fast_params` or `fmodel.parameters()` after calling # `diffopt.step`. # At this point, or at any point in the iteration, you can take the # gradient of `fmodel.parameters()` (or equivalently # `fmodel.fast_params`) w.r.t. `fmodel.parameters(time=0)` (equivalently # `fmodel.init_fast_params`). i.e. `fast_params` will always have # `grad_fn` as an attribute, and be part of the gradient tape. # At the end of your inner loop you can obtain these e.g. ... #grad_of_grads = torch.autograd.grad( # meta_loss_fn(fmodel.parameters()), fmodel.parameters(time=0)) try: xs_val, ys_val = next(dl_val_it) except StopIteration: #Fin epoch val dl_val_it = iter(dl_val) xs_val, ys_val = next(dl_val_it) xs_val, ys_val = xs_val.to(device), ys_val.to(device) fmodel.augment(mode=False) val_logits = fmodel(xs_val) #Validation sans transfornations ! val_loss = F.cross_entropy(val_logits, ys_val) #print('val_loss',val_loss.item()) val_loss.backward() #print('mag', fmodel['data_aug']['mag'], '/', fmodel['data_aug']['mag'].grad) #model=copy.deepcopy(fmodel) aug_model.load_state_dict(fmodel.state_dict()) #Do not copy gradient ! #Copie des gradients for paramName, paramValue, in fmodel.named_parameters(): for netCopyName, netCopyValue, in aug_model.named_parameters(): if paramName == netCopyName: netCopyValue.grad = paramValue.grad #print('mag', aug_model['data_aug']['mag'], '/', aug_model['data_aug']['mag'].grad) meta_opt.step() plot_res(log, fig_name="res/{}-{} epochs- {} in_it".format(str(aug_model),epochs,inner_it)) print('-'*9) times = [x["time"] for x in log] print(str(aug_model),": acc", max([x["acc"] for x in log]), "in (ms):", np.mean(times), "+/-", np.std(times)) def run_dist_dataug(model, epochs=1, inner_it=1, dataug_epoch_start=0): device = next(model.parameters()).device dl_train_it = iter(dl_train) dl_val_it = iter(dl_val) meta_opt = torch.optim.Adam(model['data_aug'].parameters(), lr=1e-3) inner_opt = torch.optim.SGD(model['model'].parameters(), lr=1e-2, momentum=0.9) high_grad_track = True if dataug_epoch_start>0: model.augment(mode=False) high_grad_track = False model.train() log = [] t0 = time.process_time() countcopy=0 val_loss=torch.tensor(0) opt_param=None epoch = 0 while epoch < epochs: meta_opt.zero_grad() with higher.innerloop_ctx(model, inner_opt, copy_initial_weights=True, override=opt_param, track_higher_grads=high_grad_track) as (fmodel, diffopt): #effet copy_initial_weight pas clair... for i in range(n_inner_iter): try: xs, ys = next(dl_train_it) except StopIteration: #Fin epoch train tf = time.process_time() epoch +=1 dl_train_it = iter(dl_train) xs, ys = next(dl_train_it) #viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch)) #viz_sample_data(imgs=aug_model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch)) accuracy, _ =test(model) model.train() #### Print #### print('-'*9) print('Epoch : %d/%d'%(epoch,epochs)) print('Train loss :',loss.item(), '/ val loss', val_loss.item()) print('Accuracy :', accuracy) print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start)) print('TF Proba :', model['data_aug']['prob'].data) #print('proba grad',aug_model['data_aug']['prob'].grad) ############# #### Log #### data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": [p for p in model['data_aug']['prob']], } log.append(data) ############# if epoch == dataug_epoch_start: print('Starting Data Augmention...') model.augment(mode=True) high_grad_track = True t0 = time.process_time() xs, ys = xs.to(device), ys.to(device) ''' #Methode exacte final_loss = 0 for tf_idx in range(fmodel['data_aug']._nb_tf): fmodel['data_aug'].transf_idx=tf_idx logits = fmodel(xs) loss = F.cross_entropy(logits, ys) #loss.backward(retain_graph=True) #print('idx', tf_idx) #print(fmodel['data_aug']['prob'][tf_idx], fmodel['data_aug']['prob'][tf_idx].grad) final_loss += loss*fmodel['data_aug']['prob'][tf_idx] #Take it in the forward function ? loss = final_loss ''' #Methode uniforme logits = fmodel(xs) # modified `params` can also be passed as a kwarg loss = F.cross_entropy(logits, ys, reduction='none') # no need to call loss.backwards() if fmodel._data_augmentation: #Weight loss w_loss = fmodel['data_aug'].loss_weight().to(device) loss = loss * w_loss loss = loss.mean() #''' #to visualize computational graph #print_graph(loss) #loss.backward(retain_graph=True) #print(fmodel['model']._params['b4'].grad) #print('prob grad', fmodel['data_aug']['prob'].grad) diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step) try: xs_val, ys_val = next(dl_val_it) except StopIteration: #Fin epoch val dl_val_it = iter(dl_val) xs_val, ys_val = next(dl_val_it) xs_val, ys_val = xs_val.to(device), ys_val.to(device) fmodel.augment(mode=False) #Validation sans transfornations ! val_loss = F.cross_entropy(fmodel(xs_val), ys_val) #print_graph(val_loss) val_loss.backward() countcopy+=1 model_copy(src=fmodel, dst=model) optim_copy(dopt=diffopt, opt=inner_opt) meta_opt.step() model['data_aug'].adjust_param() #Contrainte sum(proba)=1 print("Copy ", countcopy) return log def run_dist_dataugV2(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, loss_patience=None, save_sample=False): device = next(model.parameters()).device log = [] countcopy=0 val_loss=torch.tensor(0) #Necessaire si pas de metastep sur une epoch dl_val_it = iter(dl_val) #if inner_it!=0: meta_opt = torch.optim.Adam(model['data_aug'].parameters(), lr=opt_param['Meta']['lr']) #lr=1e-2 inner_opt = torch.optim.SGD(model['model'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9 high_grad_track = True if inner_it == 0: high_grad_track=False if dataug_epoch_start!=0: model.augment(mode=False) high_grad_track = False val_loss_monitor= None if loss_patience != None : if dataug_epoch_start==-1: val_loss_monitor = loss_monitor(patience=loss_patience, end_train=2) #1st limit = dataug start else: val_loss_monitor = loss_monitor(patience=loss_patience) #Val loss monitor (Not on val data : used by Dataug... => Test data) model.train() fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track) meta_opt.zero_grad() for epoch in range(1, epochs+1): #print_torch_mem("Start epoch "+str(epoch)) #print(high_grad_track, fmodel._data_augmentation, len(fmodel._fast_params)) t0 = time.process_time() #with higher.innerloop_ctx(model, inner_opt, copy_initial_weights=True, override=opt_param, track_higher_grads=high_grad_track) as (fmodel, diffopt): for i, (xs, ys) in enumerate(dl_train): xs, ys = xs.to(device), ys.to(device) #Methode exacte #final_loss = 0 #for tf_idx in range(fmodel['data_aug']._nb_tf): # fmodel['data_aug'].transf_idx=tf_idx # logits = fmodel(xs) # loss = F.cross_entropy(logits, ys) # #loss.backward(retain_graph=True) # final_loss += loss*fmodel['data_aug']['prob'][tf_idx] #Take it in the forward function ? #loss = final_loss if(not KLdiv): #Methode uniforme logits = fmodel(xs) # modified `params` can also be passed as a kwarg loss = F.cross_entropy(F.log_softmax(logits, dim=1), ys, reduction='none') # no need to call loss.backwards() if fmodel._data_augmentation: #Weight loss w_loss = fmodel['data_aug'].loss_weight()#.to(device) loss = loss * w_loss loss = loss.mean() else: #Methode KL div if fmodel._data_augmentation : fmodel.augment(mode=False) sup_logits = fmodel(xs) fmodel.augment(mode=True) else: sup_logits = fmodel(xs) log_sup=F.log_softmax(sup_logits, dim=1) loss = F.cross_entropy(log_sup, ys) if fmodel._data_augmentation: aug_logits = fmodel(xs) log_aug=F.log_softmax(aug_logits, dim=1) w_loss = fmodel['data_aug'].loss_weight() #Weight loss #if epoch>50: #debut differe ? #KL div w/ logits - Similarite predictions (distributions) aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug) aug_loss = aug_loss.sum(dim=-1) #aug_loss = F.kl_div(aug_logits, sup_logits, reduction='none') aug_loss = (w_loss * aug_loss).mean() aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean() unsupp_coeff = 1 loss += aug_loss * unsupp_coeff #to visualize computational graph #print_graph(loss) #loss.backward(retain_graph=True) #print(fmodel['model']._params['b4'].grad) #print('prob grad', fmodel['data_aug']['prob'].grad) #t = time.process_time() diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step) #print(len(fmodel._fast_params),"step", time.process_time()-t) if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step #print("meta") val_loss = compute_vaLoss(model=fmodel, dl_it=dl_val_it, dl=dl_val) #+ fmodel['data_aug'].reg_loss() #print_graph(val_loss) #t = time.process_time() val_loss.backward() #print("meta", time.process_time()-t) #print('proba grad',model['data_aug']['prob'].grad) if model['data_aug']['prob'].grad is None or model['data_aug']['mag'] is None: print("Warning no grad (iter",i,") :\n Prob-",model['data_aug']['prob'].grad,"\n Mag-", model['data_aug']['mag'].grad) countcopy+=1 model_copy(src=fmodel, dst=model) optim_copy(dopt=diffopt, opt=inner_opt) torch.nn.utils.clip_grad_norm_(model['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN #if epoch>50: meta_opt.step() model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1 try: #Dataugv6 model['data_aug'].next_TF_set() except: pass fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track) meta_opt.zero_grad() tf = time.process_time() #viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch)) #viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch), weight_labels=model['data_aug'].loss_weight()) if(not high_grad_track): countcopy+=1 model_copy(src=fmodel, dst=model) optim_copy(dopt=diffopt, opt=inner_opt) val_loss = compute_vaLoss(model=fmodel, dl_it=dl_val_it, dl=dl_val) #Necessaire pour reset higher (Accumule les fast_param meme avec track_higher_grads = False) fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track) accuracy, test_loss =test(model) model.train() #### Log #### #print(type(model['data_aug']) is dataug.Data_augV5) param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])] data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": param #if isinstance(model['data_aug'], Data_augV5) #else [p.item() for p in model['data_aug']['prob']], } log.append(data) ############# #### Print #### if(print_freq and epoch%print_freq==0): print('-'*9) print('Epoch : %d/%d'%(epoch,epochs)) print('Time : %.00f'%(tf - t0)) print('Train loss :',loss.item(), '/ val loss', val_loss.item()) print('Accuracy :', max([x["acc"] for x in log])) print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start)) print('TF Proba :', model['data_aug']['prob'].data) #print('proba grad',model['data_aug']['prob'].grad) print('TF Mag :', model['data_aug']['mag'].data) #print('Mag grad',model['data_aug']['mag'].grad) #print('Reg loss:', model['data_aug'].reg_loss().item()) #print('Aug loss', aug_loss.item()) ############# if val_loss_monitor : model.eval() val_loss_monitor.register(test_loss)#val_loss.item()) if val_loss_monitor.end_training(): break #Stop training model.train() if not model.is_augmenting() and (epoch == dataug_epoch_start or (val_loss_monitor and val_loss_monitor.limit_reached()==1)): print('Starting Data Augmention...') dataug_epoch_start = epoch model.augment(mode=True) if inner_it != 0: high_grad_track = True try: viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch)) viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch), weight_labels=model['data_aug'].loss_weight()) except: print("Couldn't save finals samples") pass #print("Copy ", countcopy) return log