# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """PBA & AutoAugment Train/Eval module. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import os import time import numpy as np import tensorflow as tf import autoaugment.custom_ops as ops from autoaugment.shake_drop import build_shake_drop_model from autoaugment.shake_shake import build_shake_shake_model import pba.data_utils as data_utils import pba.helper_utils as helper_utils from pba.wrn import build_wrn_model from pba.resnet import build_resnet_model from pba.LeNet import LeNet arg_scope = tf.contrib.framework.arg_scope def setup_arg_scopes(is_training): """Sets up the argscopes that will be used when building an image model. Args: is_training: Is the model training or not. Returns: Arg scopes to be put around the model being constructed. """ batch_norm_decay = 0.9 batch_norm_epsilon = 1e-5 batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, 'scale': True, # collection containing the moving mean and moving variance. 'is_training': is_training, } scopes = [] scopes.append(arg_scope([ops.batch_norm], **batch_norm_params)) return scopes def build_model(inputs, num_classes, is_training, hparams): """Constructs the vision model being trained/evaled. Args: inputs: input features/images being fed to the image model build built. num_classes: number of output classes being predicted. is_training: is the model training or not. hparams: additional hyperparameters associated with the image model. Returns: The logits of the image model. """ scopes = setup_arg_scopes(is_training) if len(scopes) != 1: raise ValueError('Nested scopes depreciated in py3.') with scopes[0]: if hparams.model_name == 'pyramid_net': logits = build_shake_drop_model(inputs, num_classes, is_training) elif hparams.model_name == 'wrn': logits = build_wrn_model(inputs, num_classes, hparams.wrn_size) elif hparams.model_name == 'shake_shake': logits = build_shake_shake_model(inputs, num_classes, hparams, is_training) elif hparams.model_name == 'resnet': logits = build_resnet_model(inputs, num_classes, hparams, is_training) elif hparams.model_name == 'LeNet': logits = LeNet(inputs, num_classes) else: raise ValueError("Unknown model name.") return logits class Model(object): """Builds an model.""" def __init__(self, hparams, num_classes, image_size): self.hparams = hparams self.num_classes = num_classes self.image_size = image_size def build(self, mode): """Construct the model.""" assert mode in ['train', 'eval'] self.mode = mode self._setup_misc(mode) self._setup_images_and_labels(self.hparams.dataset) self._build_graph(self.images, self.labels, mode) self.init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) def _setup_misc(self, mode): """Sets up miscellaneous in the model constructor.""" self.lr_rate_ph = tf.Variable(0.0, name='lrn_rate', trainable=False) self.reuse = None if (mode == 'train') else True self.batch_size = self.hparams.batch_size if mode == 'eval': self.batch_size = self.hparams.test_batch_size def _setup_images_and_labels(self, dataset): """Sets up image and label placeholders for the model.""" if dataset == 'cifar10' or dataset == 'cifar100' or self.mode == 'train': self.images = tf.placeholder(tf.float32, [self.batch_size, self.image_size, self.image_size, 3]) self.labels = tf.placeholder(tf.float32, [self.batch_size, self.num_classes]) else: self.images = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 3]) self.labels = tf.placeholder(tf.float32, [None, self.num_classes]) def assign_epoch(self, session, epoch_value): session.run( self._epoch_update, feed_dict={self._new_epoch: epoch_value}) def _build_graph(self, images, labels, mode): """Constructs the TF graph for the model. Args: images: A 4-D image Tensor labels: A 2-D labels Tensor. mode: string indicating training mode ( e.g., 'train', 'valid', 'test'). """ is_training = 'train' in mode if is_training: self.global_step = tf.train.get_or_create_global_step() logits = build_model(images, self.num_classes, is_training, self.hparams) self.predictions, self.cost = helper_utils.setup_loss(logits, labels) self._calc_num_trainable_params() # Adds L2 weight decay to the cost self.cost = helper_utils.decay_weights(self.cost, self.hparams.weight_decay_rate) if is_training: self._build_train_op() # Setup checkpointing for this child model # Keep 2 or more checkpoints around during training. with tf.device('/cpu:0'): self.saver = tf.train.Saver(max_to_keep=10) self.init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) def _calc_num_trainable_params(self): self.num_trainable_params = np.sum([ np.prod(var.get_shape().as_list()) for var in tf.trainable_variables() ]) tf.logging.info('number of trainable params: {}'.format( self.num_trainable_params)) def _build_train_op(self): """Builds the train op for the model.""" hparams = self.hparams tvars = tf.trainable_variables() grads = tf.gradients(self.cost, tvars) if hparams.gradient_clipping_by_global_norm > 0.0: grads, norm = tf.clip_by_global_norm( grads, hparams.gradient_clipping_by_global_norm) tf.summary.scalar('grad_norm', norm) # Setup the initial learning rate initial_lr = self.lr_rate_ph optimizer = tf.train.MomentumOptimizer( initial_lr, 0.9, use_nesterov=True) self.optimizer = optimizer apply_op = optimizer.apply_gradients( zip(grads, tvars), global_step=self.global_step, name='train_step') train_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies([apply_op]): self.train_op = tf.group(*train_ops) class ModelTrainer(object): """Trains an instance of the Model class.""" def __init__(self, hparams): self._session = None self.hparams = hparams # Set the random seed to be sure the same validation set # is used for each model np.random.seed(0) self.data_loader = data_utils.DataSet(hparams) np.random.seed() # Put the random seed back to random self.data_loader.reset() # extra stuff for ray self._build_models() self._new_session() self._session.__enter__() def save_model(self, checkpoint_dir, step=None): """Dumps model into the backup_dir. Args: step: If provided, creates a checkpoint with the given step number, instead of overwriting the existing checkpoints. """ model_save_name = os.path.join(checkpoint_dir, 'model.ckpt') + '-' + str(step) save_path = self.saver.save(self.session, model_save_name) tf.logging.info('Saved child model') return model_save_name def extract_model_spec(self, checkpoint_path): """Loads a checkpoint with the architecture structure stored in the name.""" self.saver.restore(self.session, checkpoint_path) tf.logging.warning( 'Loaded child model checkpoint from {}'.format(checkpoint_path)) def eval_child_model(self, model, data_loader, mode): """Evaluate the child model. Args: model: image model that will be evaluated. data_loader: dataset object to extract eval data from. mode: will the model be evalled on train, val or test. Returns: Accuracy of the model on the specified dataset. """ tf.logging.info('Evaluating child model in mode {}'.format(mode)) while True: try: accuracy = helper_utils.eval_child_model( self.session, model, data_loader, mode) tf.logging.info( 'Eval child model accuracy: {}'.format(accuracy)) # If epoch trained without raising the below errors, break # from loop. break except (tf.errors.AbortedError, tf.errors.UnavailableError) as e: tf.logging.info( 'Retryable error caught: {}. Retrying.'.format(e)) return accuracy @contextlib.contextmanager def _new_session(self): """Creates a new session for model m.""" # Create a new session for this model, initialize # variables, and save / restore from checkpoint. sess_cfg = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False) sess_cfg.gpu_options.allow_growth = True self._session = tf.Session('', config=sess_cfg) self._session.run([self.m.init, self.meval.init]) return self._session def _build_models(self): """Builds the image models for train and eval.""" # Determine if we should build the train and eval model. When using # distributed training we only want to build one or the other and not both. with tf.variable_scope('model', use_resource=False): m = Model(self.hparams, self.data_loader.num_classes, self.data_loader.image_size) m.build('train') self._num_trainable_params = m.num_trainable_params self._saver = m.saver with tf.variable_scope('model', reuse=True, use_resource=False): meval = Model(self.hparams, self.data_loader.num_classes, self.data_loader.image_size) meval.build('eval') self.m = m self.meval = meval def _run_training_loop(self, curr_epoch): """Trains the model `m` for one epoch.""" start_time = time.time() while True: try: train_accuracy = helper_utils.run_epoch_training( self.session, self.m, self.data_loader, curr_epoch) break except (tf.errors.AbortedError, tf.errors.UnavailableError) as e: tf.logging.info( 'Retryable error caught: {}. Retrying.'.format(e)) tf.logging.info('Finished epoch: {}'.format(curr_epoch)) tf.logging.info('Epoch time(min): {}'.format( (time.time() - start_time) / 60.0)) return train_accuracy def _compute_final_accuracies(self, iteration): """Run once training is finished to compute final test accuracy.""" if (iteration >= self.hparams.num_epochs - 1): test_accuracy = self.eval_child_model(self.meval, self.data_loader, 'test') else: test_accuracy = 0 tf.logging.info('Test Accuracy: {}'.format(test_accuracy)) return test_accuracy def run_model(self, epoch): """Trains and evalutes the image model.""" valid_accuracy = 0. training_accuracy = self._run_training_loop(epoch) if self.hparams.validation_size > 0: valid_accuracy = self.eval_child_model(self.meval, self.data_loader, 'val') tf.logging.info('Train Acc: {}, Valid Acc: {}'.format( training_accuracy, valid_accuracy)) return training_accuracy, valid_accuracy def reset_config(self, new_hparams): self.hparams = new_hparams self.data_loader.reset_policy(new_hparams) return @property def saver(self): return self._saver @property def session(self): return self._session @property def num_trainable_params(self): return self._num_trainable_params