import torch #import torch.optim import torchvision import higher from datasets import * from utils import * def test(model): device = next(model.parameters()).device model.eval() #for i, (features, labels) in enumerate(dl_test): # features,labels = features.to(device), labels.to(device) # pred = model.forward(features) # return pred.argmax(dim=1).eq(labels).sum().item() / dl_test.batch_size * 100 correct = 0 total = 0 loss = [] with torch.no_grad(): for features, labels in dl_test: features,labels = features.to(device), labels.to(device) outputs = model(features) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() loss.append(F.cross_entropy(outputs, labels).item()) accuracy = 100 * correct / total return accuracy, np.mean(loss) def compute_vaLoss(model, dl_it, dl): device = next(model.parameters()).device try: xs, ys = next(dl_it) except StopIteration: #Fin epoch val dl_it = iter(dl) xs, ys = next(dl_it) xs, ys = xs.to(device), ys.to(device) model.eval() #Validation sans transfornations ! return F.cross_entropy(F.log_softmax(model(xs), dim=1), ys) def train_classic(model, opt_param, epochs=1, print_freq=1): device = next(model.parameters()).device #opt = torch.optim.Adam(model.parameters(), lr=1e-3) optim = torch.optim.SGD(model.parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9 model.train() dl_val_it = iter(dl_val) log = [] for epoch in range(epochs): #print_torch_mem("Start epoch") t0 = time.process_time() for i, (features, labels) in enumerate(dl_train): #print_torch_mem("Start iter") features,labels = features.to(device), labels.to(device) optim.zero_grad() logits = model.forward(features) pred = F.log_softmax(logits, dim=1) loss = F.cross_entropy(pred,labels) loss.backward() optim.step() #### Tests #### tf = time.process_time() val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) accuracy, _ =test(model) model.train() #### Print #### if(print_freq and epoch%print_freq==0): print('-'*9) print('Epoch : %d/%d'%(epoch,epochs)) print('Time : %.00f'%(tf - t0)) print('Train loss :',loss.item(), '/ val loss', val_loss.item()) print('Accuracy :', accuracy) #### Log #### data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": None, } log.append(data) return log def train_classic_higher(model, epochs=1): device = next(model.parameters()).device #opt = torch.optim.Adam(model.parameters(), lr=1e-3) optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9) model.train() dl_val_it = iter(dl_val) log = [] fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) diffopt = higher.optim.get_diff_optim(optim, model.parameters(),fmodel=fmodel,track_higher_grads=False) #with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=False) as (fmodel, diffopt): for epoch in range(epochs): #print_torch_mem("Start epoch "+str(epoch)) #print("Fast param ",len(fmodel._fast_params)) t0 = time.process_time() for i, (features, labels) in enumerate(dl_train): #print_torch_mem("Start iter") features,labels = features.to(device), labels.to(device) #optim.zero_grad() logits = model.forward(features) pred = F.log_softmax(logits, dim=1) loss = F.cross_entropy(pred,labels) #.backward() #optim.step() diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step) model_copy(src=fmodel, dst=model, patch_copy=False) optim_copy(dopt=diffopt, opt=optim) fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True) diffopt = higher.optim.get_diff_optim(optim, model.parameters(),fmodel=fmodel,track_higher_grads=False) #### Tests #### tf = time.process_time() try: xs_val, ys_val = next(dl_val_it) except StopIteration: #Fin epoch val dl_val_it = iter(dl_val) xs_val, ys_val = next(dl_val_it) xs_val, ys_val = xs_val.to(device), ys_val.to(device) val_loss = F.cross_entropy(model(xs_val), ys_val) accuracy, _ =test(model) model.train() #### Log #### data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": None, } log.append(data) return log def train_UDA(model, dl_unsup, opt_param, epochs=1, print_freq=1): device = next(model.parameters()).device #opt = torch.optim.Adam(model.parameters(), lr=1e-3) opt = torch.optim.SGD(model.parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9 model.train() dl_val_it = iter(dl_val) dl_unsup_it =iter(dl_unsup) log = [] for epoch in range(epochs): #print_torch_mem("Start epoch") t0 = time.process_time() for i, (features, labels) in enumerate(dl_train): #print_torch_mem("Start iter") features,labels = features.to(device), labels.to(device) optim.zero_grad() #Supervised logits = model.forward(features) pred = F.log_softmax(logits, dim=1) sup_loss = F.cross_entropy(pred,labels) #Unsupervised try: aug_xs, origin_xs, ys = next(dl_unsup_it) except StopIteration: #Fin epoch val dl_unsup_it =iter(dl_unsup) aug_xs, origin_xs, ys = next(dl_unsup_it) aug_xs, origin_xs, ys = aug_xs.to(device), origin_xs.to(device), ys.to(device) #print(aug_xs.shape, origin_xs.shape, ys.shape) sup_logits = model.forward(origin_xs) unsup_logits = model.forward(aug_xs) log_sup=F.log_softmax(sup_logits, dim=1) log_unsup=F.log_softmax(unsup_logits, dim=1) #KL div w/ logits unsup_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_unsup) unsup_loss=unsup_loss.sum(dim=-1).mean() #print(unsup_loss) unsupp_coeff = 1 loss = sup_loss + unsup_loss * unsupp_coeff loss.backward() optim.step() #### Tests #### tf = time.process_time() try: xs_val, ys_val = next(dl_val_it) except StopIteration: #Fin epoch val dl_val_it = iter(dl_val) xs_val, ys_val = next(dl_val_it) xs_val, ys_val = xs_val.to(device), ys_val.to(device) val_loss = F.cross_entropy(model(xs_val), ys_val) accuracy, _ =test(model) model.train() #### Print #### if(print_freq and epoch%print_freq==0): print('-'*9) print('Epoch : %d/%d'%(epoch,epochs)) print('Time : %.00f'%(tf - t0)) print('Train loss :',loss.item(), '/ val loss', val_loss.item()) print('Sup Loss :', sup_loss.item(), '/ unsup_loss :', unsup_loss.item()) print('Accuracy :', accuracy) #### Log #### data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": None, } log.append(data) return log def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, hp_opt=False, save_sample=False): device = next(model.parameters()).device log = [] dl_val_it = iter(dl_val) val_loss=None high_grad_track = True if inner_it == 0: #No HP optimization high_grad_track=False if dataug_epoch_start!=0: #Augmentation de donnee differee model.augment(mode=False) high_grad_track = False ## Optimizers ## #Inner Opt inner_opt = torch.optim.SGD(model['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9 diffopt = model['model'].get_diffopt( inner_opt, grad_callback=(lambda grads: clip_norm(grads, max_norm=10)), track_higher_grads=high_grad_track) #Meta Opt hyper_param = list(model['data_aug'].parameters()) if hp_opt : for param_group in diffopt.param_groups: for param in list(opt_param['Inner'].keys())[1:]: param_group[param]=torch.tensor(param_group[param]).to(device).requires_grad_() hyper_param += [param_group[param]] meta_opt = torch.optim.Adam(hyper_param, lr=opt_param['Meta']['lr']) #lr=1e-2 model.train() meta_opt.zero_grad() for epoch in range(1, epochs+1): t0 = time.process_time() for i, (xs, ys) in enumerate(dl_train): xs, ys = xs.to(device), ys.to(device) if(not KLdiv): #Methode uniforme logits = model(xs) # modified `params` can also be passed as a kwarg loss = F.cross_entropy(F.log_softmax(logits, dim=1), ys, reduction='none') # no need to call loss.backwards() if model._data_augmentation: #Weight loss w_loss = model['data_aug'].loss_weight()#.to(device) loss = loss * w_loss loss = loss.mean() else: #Methode KL div # Supervised loss (classic) if model.is_augmenting() : model.augment(mode=False) sup_logits = model(xs) model.augment(mode=True) else: sup_logits = model(xs) log_sup=F.log_softmax(sup_logits, dim=1) loss = F.cross_entropy(log_sup, ys) # Unsupervised loss (KLdiv) if model.is_augmenting() : aug_logits = model(xs) log_aug=F.log_softmax(aug_logits, dim=1) aug_loss=0 w_loss = model['data_aug'].loss_weight() #Weight loss #KL div w/ logits - Similarite predictions (distributions) aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug) aug_loss = aug_loss.sum(dim=-1) aug_loss = (w_loss * aug_loss).mean() aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean() unsupp_coeff = 1 loss += aug_loss * unsupp_coeff #print_graph(loss) #to visualize computational graph #t = time.process_time() diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step) #print(len(model['model']['functional']._fast_params),"step", time.process_time()-t) if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step #print("meta") val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss() #print_graph(val_loss) #to visualize computational graph val_loss.backward() torch.nn.utils.clip_grad_norm_(model['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN meta_opt.step() #Adjust Hyper-parameters model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1 if hp_opt: for param_group in diffopt.param_groups: for param in list(opt_param['Inner'].keys())[1:]: param_group[param].data = param_group[param].data.clamp(min=1e-4) #Reset gradients diffopt.detach_() model['model'].detach_() meta_opt.zero_grad() tf = time.process_time() if save_sample: #Data sample saving try: viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch)) viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch)) except: print("Couldn't save samples epoch"+epoch) pass if(not val_loss): #Compute val loss for logs val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) # Test model accuracy, test_loss =test(model) model.train() #### Log #### param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])] data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "mix_dist": model['data_aug']['mix_dist'].item(), "param": param, } if hp_opt : data["opt_param"]=[{'lr': p_grp['lr'].item(), 'momentum': p_grp['momentum'].item()} for p_grp in diffopt.param_groups] log.append(data) ############# #### Print #### if(print_freq and epoch%print_freq==0): print('-'*9) print('Epoch : %d/%d'%(epoch,epochs)) print('Time : %.00f'%(tf - t0)) print('Train loss :',loss.item(), '/ val loss', val_loss.item()) print('Accuracy :', max([x["acc"] for x in log])) print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start)) if not model['data_aug']._fixed_prob: print('TF Proba :', model['data_aug']['prob'].data) #print('proba grad',model['data_aug']['prob'].grad) if not model['data_aug']._fixed_mag: print('TF Mag :', model['data_aug']['mag'].data) #print('Mag grad',model['data_aug']['mag'].grad) if not model['data_aug']._fixed_mix: print('Mix:', model['data_aug']['mix_dist'].item()) #print('Reg loss:', model['data_aug'].reg_loss().item()) if hp_opt : for param_group in diffopt.param_groups: print('Opt param - lr:', param_group['lr'].item(),'- momentum:', param_group['momentum'].item()) ############# #Augmentation de donnee differee if not model.is_augmenting() and (epoch == dataug_epoch_start): print('Starting Data Augmention...') dataug_epoch_start = epoch model.augment(mode=True) if inner_it != 0: #Rebuild diffopt if needed high_grad_track = True diffopt = model['model'].get_diffopt( inner_opt, grad_callback=(lambda grads: clip_norm(grads, max_norm=10)), track_higher_grads=high_grad_track) #Data sample saving try: viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch)) viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch)) except: print("Couldn't save finals samples") pass return log