import matplotlib.pyplot as plt from far_ho.examples.datasets import Datasets, Dataset import os import numpy as np import tensorflow as tf import augmentation_transforms as augmentation_transforms ##### ATTENTION FICHIER EN DOUBLE => A REGLER MIEUX #### def viz_data(dataset, fig_name='data_sample',aug_policy=None): plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) img = dataset.data[i][:,:,0] if aug_policy : img = augment_img(img,aug_policy) #print('im shape',img.shape) plt.imshow(img, cmap=plt.cm.binary) plt.xlabel(np.nonzero(dataset.target[i])[0].item()) plt.savefig(fig_name) def augment_img(data, policy): #print('Im shape',data.shape) data = np.stack((data,)*3, axis=-1) #BOF BOF juste pour forcer 3 channels #print('Im shape',data.shape) final_img = augmentation_transforms.apply_policy(policy, data) #final_img = augmentation_transforms.random_flip(augmentation_transforms.zero_pad_and_crop(final_img, 4)) # Apply cutout #final_img = augmentation_transforms.cutout_numpy(final_img) im_rgb = np.array(final_img, np.float32) im_gray = np.dot(im_rgb[...,:3], [0.2989, 0.5870, 0.1140]) #Just pour retourner a 1 channel return im_gray ### https://www.kaggle.com/raoulma/mnist-image-class-tensorflow-cnn-99-51-test-acc#5.-Build-the-neural-network-with-tensorflow- ## build the neural network class # weight initialization def weight_variable(shape, name = None): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial, name = name) # bias initialization def bias_variable(shape, name = None): initial = tf.constant(0.1, shape=shape) # positive bias return tf.Variable(initial, name = name) # 2D convolution def conv2d(x, W, name = None): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME', name = name) # max pooling def max_pool_2x2(x, name = None): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name = name) def cnn(x_data_tf,y_data_tf, name='model'): # tunable hyperparameters for nn architecture s_f_conv1 = 3; # filter size of first convolution layer (default = 3) n_f_conv1 = 36; # number of features of first convolution layer (default = 36) s_f_conv2 = 3; # filter size of second convolution layer (default = 3) n_f_conv2 = 36; # number of features of second convolution layer (default = 36) s_f_conv3 = 3; # filter size of third convolution layer (default = 3) n_f_conv3 = 36; # number of features of third convolution layer (default = 36) n_n_fc1 = 576; # number of neurons of first fully connected layer (default = 576) # 1.layer: convolution + max pooling W_conv1_tf = weight_variable([s_f_conv1, s_f_conv1, 1, n_f_conv1], name = 'W_conv1_tf') # (5,5,1,32) b_conv1_tf = bias_variable([n_f_conv1], name = 'b_conv1_tf') # (32) h_conv1_tf = tf.nn.relu(conv2d(x_data_tf, W_conv1_tf) + b_conv1_tf, name = 'h_conv1_tf') # (.,28,28,32) h_pool1_tf = max_pool_2x2(h_conv1_tf, name = 'h_pool1_tf') # (.,14,14,32) # 2.layer: convolution + max pooling W_conv2_tf = weight_variable([s_f_conv2, s_f_conv2, n_f_conv1, n_f_conv2], name = 'W_conv2_tf') b_conv2_tf = bias_variable([n_f_conv2], name = 'b_conv2_tf') h_conv2_tf = tf.nn.relu(conv2d(h_pool1_tf, W_conv2_tf) + b_conv2_tf, name ='h_conv2_tf') #(.,14,14,32) h_pool2_tf = max_pool_2x2(h_conv2_tf, name = 'h_pool2_tf') #(.,7,7,32) # 3.layer: convolution + max pooling W_conv3_tf = weight_variable([s_f_conv3, s_f_conv3, n_f_conv2, n_f_conv3], name = 'W_conv3_tf') b_conv3_tf = bias_variable([n_f_conv3], name = 'b_conv3_tf') h_conv3_tf = tf.nn.relu(conv2d(h_pool2_tf, W_conv3_tf) + b_conv3_tf, name = 'h_conv3_tf') #(.,7,7,32) h_pool3_tf = max_pool_2x2(h_conv3_tf, name = 'h_pool3_tf') # (.,4,4,32) # 4.layer: fully connected W_fc1_tf = weight_variable([4*4*n_f_conv3,n_n_fc1], name = 'W_fc1_tf') # (4*4*32, 1024) b_fc1_tf = bias_variable([n_n_fc1], name = 'b_fc1_tf') # (1024) h_pool3_flat_tf = tf.reshape(h_pool3_tf, [-1,4*4*n_f_conv3], name = 'h_pool3_flat_tf') # (.,1024) h_fc1_tf = tf.nn.relu(tf.matmul(h_pool3_flat_tf, W_fc1_tf) + b_fc1_tf, name = 'h_fc1_tf') # (.,1024) # add dropout #keep_prob_tf = tf.placeholder(dtype=tf.float32, name = 'keep_prob_tf') #h_fc1_drop_tf = tf.nn.dropout(h_fc1_tf, keep_prob_tf, name = 'h_fc1_drop_tf') # 5.layer: fully connected W_fc2_tf = weight_variable([n_n_fc1, 10], name = 'W_fc2_tf') b_fc2_tf = bias_variable([10], name = 'b_fc2_tf') z_pred_tf = tf.add(tf.matmul(h_fc1_tf, W_fc2_tf), b_fc2_tf, name = 'z_pred_tf')# => (.,10) # predicted probabilities in one-hot encoding y_pred_proba_tf = tf.nn.softmax(z_pred_tf, name='y_pred_proba_tf') # tensor of correct predictions y_pred_correct_tf = tf.equal(tf.argmax(y_pred_proba_tf, 1), tf.argmax(y_data_tf, 1), name = 'y_pred_correct_tf') return y_pred_proba_tf